WEKO3
アイテム
3連応力式をフレキシビリティとするディスクリートな振動モデルについて
https://kitami-it.repo.nii.ac.jp/records/6301
https://kitami-it.repo.nii.ac.jp/records/630134615d15-000c-45e2-b41a-fd7d0538b13e
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2007-04-09 | |||||
タイトル | ||||||
タイトル | 3連応力式をフレキシビリティとするディスクリートな振動モデルについて | |||||
言語 | ja | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | departmental bulletin paper | |||||
その他のタイトル | ||||||
その他のタイトル | On the Discrete vibration Model with Three Stress Equation for Flexibility | |||||
言語 | en | |||||
著者 |
佐渡, 公明
× 佐渡, 公明× 能町, 純雄 |
|||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 32083 | |||||
姓名 | Kimiteru, SADO | |||||
言語 | en | |||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 32084 | |||||
姓名 | Sumio, G. NOMACHI | |||||
言語 | en | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | For calculating the natural frequency of a structure,it is convenient to substitute a discrete vibration model for the structure under consideration. The object of this paper is first to show the accuracy of the natural frequency for a straight beam, when the three-stress equation is taken as flexibility of the discrete vibration model. Secondly the coupled vibration of the beam is also treated by the same method. The three-stress equation coincides with the three-moment equation for the bending vibration and with the compatibility equation of the rotational angle for the torsion bending vibration. The bending moment M_r and the deflection y_r on the nodal point r are unknown values for the bending vibration,and the torsion bending moment B_r and the rotational angle θ_r are for the torsion bending vibration. The equilibrium equation of the shearing force and the torsion bending moment at r,and two three-stress equations in which the inertia force and the inertia torque are put as equivalent concentrated ones at the node are corresponding to the four unknown values y_r,θ_r, M_r and B_r,thus the natural frequency can be found from the matrix of the coefficients. Numerical results are as follows : (1)The method of the three-stress equation gives more accurate value than the method of the finite difference equation for M=?Eiy^^・・ or B=?EC_wθ^^・・. (2)When the radius of curvature R increases in the curved beam, the effect of the bending vibration increases and that of the torsion bending one inversely decreases | |||||
言語 | en | |||||
書誌情報 |
ja : 北見工業大学研究報告 巻 3, 号 2, p. 475-491, 発行日 1972-06 |
|||||
フォーマット | ||||||
内容記述タイプ | Other | |||||
内容記述 | application/pdf | |||||
著者版フラグ | ||||||
言語 | en | |||||
値 | publisher | |||||
出版者 | ||||||
出版者 | 北見工業大学 | |||||
言語 | ja |