ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学位論文
  2. 博士論文

単画像多矩形物体検出のための特徴抽出

https://doi.org/10.19000/0002000405
https://doi.org/10.19000/0002000405
9cb1a426-0ceb-4f9b-bd7c-90cd4e9ac5d8
名前 / ファイル ライセンス アクション
Doctoral Doctoral Thesis_TUERSUNJIANG YIMAMU-1 .pdf (1.9 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2023-04-03
タイトル
タイトル Feature Extraction for Single Shot Multibox Object Detector
言語 en
タイトル
タイトル 単画像多矩形物体検出のための特徴抽出
言語 ja
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_db06
タイプ doctoral thesis
ID登録
ID登録 10.19000/0002000405
ID登録タイプ JaLC
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 TUERSUNJIANG YIMAMU

× TUERSUNJIANG YIMAMU

en TUERSUNJIANG YIMAMU

Search repository
抄録
内容記述タイプ Abstract
内容記述 Recently, object detection based on deep convolutional neural networks (CNNs) have achieved
remarkable result and successfully applied many real-world applications. However, scale variation
problem in multiscale object detection still is challenging problem, especially for small objects.
Concerning the above problem, we proposed a new detection network with an efficient feature fusion
module based on SSD using VGG-16 as backbone called Multi-path Feature Fusion Single Shot Multibox Detector (MF-SSD). The proposed feature fusion module consists of two newly designed modules
with dilated convolution, which fuses features from shallow layers (mainly contain boundary information)
to highRecently, object detection based on deep convolutional neural networks (CNNs) have achieved
remarkable result and successfully applied many real-world applications. However, scale variation
problem in multiscale object detection still is challenging problem, especially for small objects.
Concerning the above problem, we proposed a new detection network with an efficient feature fusion
module based on SSD using VGG-16 as backbone called Multi-path Feature Fusion Single Shot Multibox Detector (MF-SSD). The proposed feature fusion module consists of two newly designed modules
with dilated convolution, which fuses features from shallow layers (mainly contain boundary information)
to higher level features (mainly contain semantic reach information) without reducing the original
resolution of the feature map. We have conducted experiments on three datasets to explicate the efficacy
of our proposed detector. The proposed MF-SSD with input size 512×512 achieved 81.5% mAP and
34.1 % mAP on PASCAL VOC test set and MS COCO test-dev, respectively. Experimental results show
the proposed feature fusion module can improve both semantic and boundary information for object
detectioner level features (mainly contain semantic reach information) without reducing the original
resolution of the feature map. We have conducted experiments on three datasets to explicate the efficacy
of our proposed detector. The proposed MF-SSD with input size 512×512 achieved 81.5% mAP and
34.1 % mAP on PASCAL VOC test set and MS COCO test-dev, respectively. Experimental results show
the proposed feature fusion module can improve both semantic and boundary information for object detection.
言語 en
bibliographic_information
p. 1, 発行日 2023-03
学位名
言語 ja
学位名 博士(工学)
item_7_degree_grantor_61
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 10106
言語 ja
学位授与機関名 北見工業大学
dissertation_number
学位授与番号 甲第208号
item_7_text_66
言語 ja
研究科・専攻名 生産基盤工学専攻
学位授与年月日
学位授与年月日 2023-03-17
戻る
0
views
See details
Views

Versions

Ver.1 2023-04-03 04:34:32.699226
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3