ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "9d5c004e-ad46-45a0-883e-1e01f341ea42"}, "_deposit": {"created_by": 15, "id": "2000405", "owner": "15", "owners": [15], "owners_ext": {"displayname": "北見工業大学学術機関リポジトリ(KIT-R)", "username": "kitir"}, "pid": {"revision_id": 0, "type": "depid", "value": "2000405"}, "status": "published"}, "_oai": {"id": "oai:kitami-it.repo.nii.ac.jp:02000405", "sets": []}, "author_link": [], "control_number": "2000405", "item_7_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2023-03", "bibliographicIssueDateType": "Issued"}}]}, "item_7_date_granted_63": {"attribute_name": "学位授与年月日", "attribute_value_mlt": [{"subitem_dategranted": "2023-03-17"}]}, "item_7_degree_grantor_61": {"attribute_name": "学位授与機関", "attribute_value_mlt": [{"subitem_degreegrantor": [{"subitem_degreegrantor_language": "ja", "subitem_degreegrantor_name": "北見工業大学"}], "subitem_degreegrantor_identifier": [{"subitem_degreegrantor_identifier_name": "10106", "subitem_degreegrantor_identifier_scheme": "kakenhi"}]}]}, "item_7_degree_name_60": {"attribute_name": "学位名", "attribute_value_mlt": [{"subitem_degreename": "博士(工学)", "subitem_degreename_language": "ja"}]}, "item_7_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Recently, object detection based on deep convolutional neural networks (CNNs) have achieved \nremarkable result and successfully applied many real-world applications. However, scale variation \nproblem in multiscale object detection still is challenging problem, especially for small objects. \nConcerning the above problem, we proposed a new detection network with an efficient feature fusion \nmodule based on SSD using VGG-16 as backbone called Multi-path Feature Fusion Single Shot Multibox Detector (MF-SSD). The proposed feature fusion module consists of two newly designed modules \nwith dilated convolution, which fuses features from shallow layers (mainly contain boundary information) \nto highRecently, object detection based on deep convolutional neural networks (CNNs) have achieved \nremarkable result and successfully applied many real-world applications. However, scale variation \nproblem in multiscale object detection still is challenging problem, especially for small objects. \nConcerning the above problem, we proposed a new detection network with an efficient feature fusion \nmodule based on SSD using VGG-16 as backbone called Multi-path Feature Fusion Single Shot Multibox Detector (MF-SSD). The proposed feature fusion module consists of two newly designed modules \nwith dilated convolution, which fuses features from shallow layers (mainly contain boundary information) \nto higher level features (mainly contain semantic reach information) without reducing the original \nresolution of the feature map. We have conducted experiments on three datasets to explicate the efficacy \nof our proposed detector. The proposed MF-SSD with input size 512×512 achieved 81.5% mAP and \n34.1 % mAP on PASCAL VOC test set and MS COCO test-dev, respectively. Experimental results show \nthe proposed feature fusion module can improve both semantic and boundary information for object \ndetectioner level features (mainly contain semantic reach information) without reducing the original \nresolution of the feature map. We have conducted experiments on three datasets to explicate the efficacy \nof our proposed detector. The proposed MF-SSD with input size 512×512 achieved 81.5% mAP and \n34.1 % mAP on PASCAL VOC test set and MS COCO test-dev, respectively. Experimental results show \nthe proposed feature fusion module can improve both semantic and boundary information for object detection.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_7_dissertation_number_64": {"attribute_name": "学位授与番号", "attribute_value_mlt": [{"subitem_dissertationnumber": "甲第208号"}]}, "item_7_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.19000/0002000405", "subitem_identifier_reg_type": "JaLC"}]}, "item_7_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "北見工業大学", "subitem_publisher_language": "ja"}]}, "item_7_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "ETD", "subitem_select_language": "en"}]}, "item_7_text_65": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_text_language": "en", "subitem_text_value": "https://kitami-it.repo.nii.ac.jp/records/2000405"}]}, "item_7_text_66": {"attribute_name": "研究科・専攻名", "attribute_value_mlt": [{"subitem_text_language": "ja", "subitem_text_value": "生産基盤工学専攻"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "TUERSUNJIANG YIMAMU", "creatorNameLang": "en"}]}, {"creatorNames": [{"creatorName": "トルスンジャン・イマム", "creatorNameLang": "ja"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2023-04-03"}], "download_preview_message": "", "file_order": 0, "filename": "Doctoral Thesis_TUERSUNJIANG YIMAMU-1 .pdf", "filesize": [{"value": "1.9 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "application/pdf", "size": 1900000.0, "url": {"objectType": "fulltext", "url": "https://kitami-it.repo.nii.ac.jp/record/2000405/files/Doctoral Thesis_TUERSUNJIANG YIMAMU-1 .pdf"}, "version_id": "25365aac-67b4-4b82-912c-bb3532cb88a9"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "doctoral thesis", "resourceuri": "http://purl.org/coar/resource_type/c_db06"}]}, "item_title": "Feature Extraction for Single Shot Multibox Object Detector", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Feature Extraction for Single Shot Multibox Object Detector", "subitem_title_language": "en"}, {"subitem_title": "単画像多矩形物体検出のための特徴抽出", "subitem_title_language": "ja"}]}, "item_type_id": "7", "owner": "15", "path": ["6"], "permalink_uri": "https://doi.org/10.19000/0002000405", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2023-04-03"}, "publish_date": "2023-04-03", "publish_status": "0", "recid": "2000405", "relation": {}, "relation_version_is_last": true, "title": ["Feature Extraction for Single Shot Multibox Object Detector"], "weko_shared_id": -1}
  1. 学位論文
  2. 博士論文

単画像多矩形物体検出のための特徴抽出

https://doi.org/10.19000/0002000405
https://doi.org/10.19000/0002000405
9cb1a426-0ceb-4f9b-bd7c-90cd4e9ac5d8
名前 / ファイル ライセンス アクション
Doctoral Doctoral Thesis_TUERSUNJIANG YIMAMU-1 .pdf (1.9 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2023-04-03
タイトル
言語 en
タイトル Feature Extraction for Single Shot Multibox Object Detector
タイトル
言語 ja
タイトル 単画像多矩形物体検出のための特徴抽出
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_db06
タイプ doctoral thesis
ID登録
ID登録 10.19000/0002000405
ID登録タイプ JaLC
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 TUERSUNJIANG YIMAMU

× TUERSUNJIANG YIMAMU

en TUERSUNJIANG YIMAMU

Search repository
トルスンジャン・イマム

× トルスンジャン・イマム

ja トルスンジャン・イマム

Search repository
抄録
内容記述タイプ Abstract
内容記述 Recently, object detection based on deep convolutional neural networks (CNNs) have achieved
remarkable result and successfully applied many real-world applications. However, scale variation
problem in multiscale object detection still is challenging problem, especially for small objects.
Concerning the above problem, we proposed a new detection network with an efficient feature fusion
module based on SSD using VGG-16 as backbone called Multi-path Feature Fusion Single Shot Multibox Detector (MF-SSD). The proposed feature fusion module consists of two newly designed modules
with dilated convolution, which fuses features from shallow layers (mainly contain boundary information)
to highRecently, object detection based on deep convolutional neural networks (CNNs) have achieved
remarkable result and successfully applied many real-world applications. However, scale variation
problem in multiscale object detection still is challenging problem, especially for small objects.
Concerning the above problem, we proposed a new detection network with an efficient feature fusion
module based on SSD using VGG-16 as backbone called Multi-path Feature Fusion Single Shot Multibox Detector (MF-SSD). The proposed feature fusion module consists of two newly designed modules
with dilated convolution, which fuses features from shallow layers (mainly contain boundary information)
to higher level features (mainly contain semantic reach information) without reducing the original
resolution of the feature map. We have conducted experiments on three datasets to explicate the efficacy
of our proposed detector. The proposed MF-SSD with input size 512×512 achieved 81.5% mAP and
34.1 % mAP on PASCAL VOC test set and MS COCO test-dev, respectively. Experimental results show
the proposed feature fusion module can improve both semantic and boundary information for object
detectioner level features (mainly contain semantic reach information) without reducing the original
resolution of the feature map. We have conducted experiments on three datasets to explicate the efficacy
of our proposed detector. The proposed MF-SSD with input size 512×512 achieved 81.5% mAP and
34.1 % mAP on PASCAL VOC test set and MS COCO test-dev, respectively. Experimental results show
the proposed feature fusion module can improve both semantic and boundary information for object detection.
言語 en
書誌情報
発行日 2023-03
著者版フラグ
言語 en
値 ETD
学位名
言語 ja
学位名 博士(工学)
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 10106
言語 ja
学位授与機関名 北見工業大学
学位授与番号
学位授与番号 甲第208号
研究科・専攻名
言語 ja
研究科・専攻名 生産基盤工学専攻
学位授与年月日
学位授与年月日 2023-03-17
戻る
0
views
See details
Views

Versions

Ver.1 2023-04-03 04:34:32.699226
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3