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Abstract: 

Recently, object detection based on deep convolutional neural networks (CNNs) have achieved 

remarkable result and successfully applied many real-world applications. However, scale variation 

problem in multiscale object detection still is challenging problem, especially for small objects. 

Concerning the above problem, we proposed a new detection network with an efficient feature fusion 

module based on SSD using VGG-16 as backbone called Multi-path Feature Fusion Single Shot Multi-

box Detector (MF-SSD). The proposed feature fusion module consists of two newly designed modules 

with dilated convolution, which fuses features from shallow layers (mainly contain boundary information) 

to higher level features (mainly contain semantic reach information) without reducing the original 

resolution of the feature map. We have conducted experiments on three datasets to explicate the efficacy 

of our proposed detector. The proposed MF-SSD with input size 512×512 achieved 81.5% mAP and 

34.1 % mAP on PASCAL VOC test set and MS COCO test-dev, respectively. Experimental results show 

the proposed feature fusion module can improve both semantic and boundary information for object 

detection. 
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1. Introduction 

Object detection can be applied by wide applications due to its having momentous research parts 

in computer vison. Classifying a particular object category and the need to find out location information 

by using bounding boxes are the essence of object detection. In recent years, the introduction of deep 

convolutional neural networks (CNNs) is one of main turning points in object detector due to its dominant 

importance of extracting features. We can categorize CNN based object detector into two types of 

frameworks including the one stage detector, e.g., Faster R-CNN [1], R-FCN [2] and SPP-Net [3], and 

the two-stage object detector, e.g., YOLO [4], SSD [5] and RetinaNet [6] etc. 

 

Fig. 1. (a) Different scale features are generated using an image pyramid, which is time 

consuming. (b) only single scale feature is generated to detect objects, which leads lower accuracy and 

is adopted Faster R-CNN [1] and R-FCN [2]. (c) Different scale features are generated by a feature 

fusion method to improve feature map from top layer to down layer. (d) different scale features are 

generated using a feature pyramid, which is adopted by SSD (e) different scale features from different 

layers are fused by concatenation approach, which is adopted by FSSD [15]. (f) Different scale features 

from different layers are generated to further improve contextual information for object detection, which 

achieves high performance but relatively lower speed. 

 

However, scale variation in object detection is still a challenging problem for both methods. We 

can clearly see from Fig. 1 that various approaches have been introduced and carried out by researchers 

for handling the scale variation problem. CNN based object detector such as SSD, Faster RCNN extracts 

useful information from the input images by using various backbone networks such as VGG [7], ResNet 

[8]. The backbones, which are used in detector and pretrained by ImageNet [9], are the main body of 

detector for extracting features. The design of novel classifiers for getting higher score adopts ImageNet 

on which most of the classifiers are trained. VGG connects multiple layers which consist of convolution 

layers and max pooling layers with different kernel size to build a deeper network without residual 

connection. GoogLeNet [10], a deeper and wider neural network, consists of inception modules which 

enhance feature extraction at different scales using convolution layers with different kernel size. ResNet 

architecture consists of “bottleneck” design which is using skip connections to jump over some layers 
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with residual sum operation in each stage. DenseNet [11] densely connects several layers, through dense 

blocks, where we connect all layers with each other. 

To mitigate scale variation problem, feature fusion strategies have been proposed such as Image 

pyramids [12], FPN [13], DSSD [14] and FSSD [15]. As shown in Fig. 1. (a), Image pyramids generate 

different scale feature maps using CNN with different scale images, which is computationally expensive. 

Anchors with various size are generated by Fig. 1. (b) like structures by using single feature map. This 

kind of method has a limitation to detect various size of objects due to the fixed receptive fields. Fig. 1. 

(c) like structure has been applied by FPN, DSSD, SharpMask [16] methods which fuse different scale 

features using element wise summation, while DSSD obtains features from top layers to fuse features 

from down layers by using Deconvolutions.  As shown in Fig. 1. (d), feature pyramid is adopted by 

SSD to detect objects with different scales. In SSD, the extracted features of small objects usually are 

obtained from Conv 4-3 layer and the extracted features of large objects usually are obtained from Conv 

8 layer. Fig. 1. (e) like structure has been adopted by FSSD [15] which fuses features through 

concatenation approach which gives us a chance to fuse more layers form last part of the detector without 

losing any information. 

Shallower layers usually contain boundary information including angles, lines and curves. The 

lack of semantic rich information in shallower layers causes lower accuracy on small objects for a deeper 

network. Extracting semantic features in deep layer in which there are sufficient information with larger 

receptive fields and lower resolutions provides a good condition for object classification. Extracting 

features in shallow layers in which there are spatial-rich information with small receptive fields provides 

a good condition for object localization or vector regression. It is vital that high resolution representations 

are made available to small object detection. There are poor high-resolution features available in the 

deeper layer, which made model hard to detect small objects. 

 We can expand kernel size with original weights using a dilated convolution [17] which samples 

sparsely at different locations and increases receptive field with same computational cost. Dilated 

convolution avoids the negative effect of down sampling operation, and it is possible to have features 

with high resolution in deep layers by using dilated convolution. However, large object detection without 

enough receptive fields is difficult. DetNet [18] uses dilated convolution to design a specific detection 

backbone. 

Fig. 2. The architecture of Multi-path Feature Fusion Single Shot Multi-box Detector (MF-SSD).
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1.1. Contribution  

In this research, to mitigate problems pointed out above, we propose Multi-path Feature Fusion 

Single Shot Multi-Box Detector (MF-SSD) by adding an efficient feature fusion module which embed 

two newly designed modules to extract sufficient features. We provided the architecture of MF-SSD in 

Fig.2. We employ dilated convolution with different dilation ratios to design Two-branch Residual 

dilated Convolution Module (TRDCM) and Two-branch Residual dilated Add Convolution Module 

(TRDACM), which enlarges receptive field without extra computational cost. We have conducted 

numerous experiments on MS COCO [19]， PASCAL VOC2007, and PASCAL VOC2012 [20] datasets 

to explicate the efficacy of our proposed detector. In the proposed feature fusion module, we not only 

extract features with sufficient boundary information, which is beneficial for vector regression, but also 

extract features with contextual information which is beneficial for object classification. Using the 

proposed feature fusion module, we improve a lot of performance compared with original SSD, 

especially for small objects. In summary, we highlighted our main contributions as follows: 

1. A new object detection framework, MF-SSD, is proposed to handle multiscale problem, especially 

for small objects. 

2. We newly designed an efficient feature fusion module to extract sufficient information with 

various types to improve better performance for object detection compared with the conventional 

SSD. The proposed feature fusion module contains two newly designed modules including the 

TRDCM and TRDACM. Through these two modules, we improved contextual information with a 

sufficient feature. 

3. We have explicated the efficacy of our proposed MF-SSD through numerous experiments. 

 

2. Related work  

 

2.1. Traditional object detection 

The whole processing of traditional object detection consists of more steps compared to other 

frameworks. The first step is generating candidate regions with input images which can be slid by sliding-

windows with certain step size, which is called a region selector. The next step is extracting useful 

features of the candidate regions. The feature extractor mainly uses SIFT [21], HOG [22], etc. Whether 

we extracted sufficient information in the above step will affect the performance of the classification; the 

final stage is to identify object category. Before CNN based object detection algorithm, DPM [23] was 

widely studied method in this field. 

 

2.2. Object detection based on deep neural network 

2.2.1 Two-state object detection: The two-stage framework is accurate and also relatively complicated 

compared to one-stage framework. There are many methods including Selective Search [24], Edge Boxes 

[25], and RPN [26] to produce region proposals in the first step. In the second step, the SVM or CNN 

based algorithm refines and classifies the proposals generated in the previous stage. Features in the region 

of interest (RoI) can be extracted by using the selective search, which is adopted R-CNN [27]. Different 

objects which are classified by SVM indicated under a RoI by bonding boxes. SPPnet [3] demonstrated 

that feature maps can be generated efficiently on a single image scale by using region-based detectors. 

Faster R-CNN [1] adopted more efficient network, a region proposal network, to create region proposals 
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based on Fast R-CNN [28]. In real world case, the detection speed is still not very fast, because the RoI 

pooling layer cannot share parameters inside every convolution layer in the Faster R-CNN. Compared to 

previous region-based detectors, e.g., Fast/Faster R-CNN [1], R-FCN [29] employs a fully convolutional 

network to shorten the time spending on training and testing , for it can share parameters through 

convolution in the RoI. R-FCN accelerated the detection speed compared with Faster R-CNN. [29] used 

hand-engineered features with Faster R-CNN to improve model perfection. 

 

2.2.2 One-state object detection: The one-stage detector, a faster and clearer object detector but weaker 

in accuracy, predicts object classes and bounding boxes without generating a region proposal. Overfeat 

[30] which is considered earliest object detector has integrated classification and localization all into one 

convolutional network. YOLO [4], a real time framework based on CNN, is introduced by R. Joseph et 

al. YOLO is faster and relatively lower accurate framework, for it uses a single network in whole process 

without proposing bonding boxes. Later on, researchers improved YOLO and released YOLO v2 [31], 

YOLO v3[32], YOLO v4 [33] and YOLO v5 [34] which improves detector on time spending and 

precision. Predicting objects with anchor boxes is implemented by the improved version of YOLO 

without using a fully connected layer which is changed by convolutional layers. However, increasing 

detection speed is not sufficient for YOLO, because it still hard to detect too small and crowded objects 

in real world case. SSD [5] is proposed to mitigate the limitation of YOLO. Compared to earliest 

frameworks, the main advantages of SSD is that it adopted Fig. 1. (c) like structure, a multi-resolution 

technique, which fuses different scale features to improve detection performance. In conventional SSD, 

extracting information related to small objects depend on only one layer, e.g., Conv4-3 layer. However, 

the feature extraction in SSD is not enough for detecting small objects, thus we still need to improve for 

detecting crowded and small objects. RetinaNet [6] which is also one of the best frameworks uses focal 

loss, a new type of cross entropy loss, to addresses class imbalance problem. In recent years, researchers 

have also introduced anchor free object detectors, which find out the key points without using anchor 

boxes in an image. Anchor free framework is proposed by Law and Deng called Cornernet [35]. 

 

2.3. Feature fusion 

As mentioned in the before, the extracted features in shallow layer mainly contain features with 

higher resolution, while the extracted features in deep layer contain semantic rich information and larger 

receptive fields. Feature pyramid representation is introduced and widely used for solving scale variation 

problem. Researchers proposed Skip connection [36] and hyper-column [37] methods to combine 

different scale features to get more useful features maps. Object detection include both classification and 

vector regression, but most of the detectors uses backbones which designed for image classification task. 

To mitigate the dissimilarity between detector and image classification, many methods [5] with the 

lightweight property is proposed to extract more representative features to get higher accuracy. PANet 

[38] introduces an extra bottom-up pathway to accelerate training and reduces the extent between 

different level features. A similar bottom-up pathway structure is introduced by BiFPN [39], which uses 

scale-wise level reweighting to fuse different level features efficiently. In recent years, [40-41] adopts 

the Neural Architecture Search (NAS) algorithm to extract useful features in more efficient way. 

 

2.4. Low rank matrix recovery  

Recovering low dimensional features from given data is used for many research areas including 

machine learning and data analysing. The Low Rank Matrix Recovery (LRMR) is extended to various 

https://www.collinsdictionary.com/zh/dictionary/english-thesaurus/employ
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fields and its applicability has been tested by researchers. Output sensor data which is one of the main 

fields using LRMR technique to get more useful features is crucial task in the signal processing [49] [50]. 

Hankel matrix [51] [52] can also be represented by low dimensional features to simplify our tasks in real 

word application. a low dimensional features which has significant rule in graphical theory [53] [54] is 

used to constitute adjacency matrix. Further, low dimensional representations are predominant in 

computer vison and object detection. [55] [56] applied low dimensional features to get SVD. [57] [58] 

applied low dimensional features to get covariance matrix. [59] [60] [61] applied low dimensional 

features to obtain useful information. [62] [63] [64] [65] [66] further interpreted main advantage of low 

dimensional features in different research areas. 

A low dimensional component 𝐿 ∈ ℝ𝑚×𝑛 can be formulated as the following forms [67]:  

min
𝐿,𝐸

 𝑟𝑎𝑛𝑘(𝐿)+𝜆‖𝐸‖𝑝 𝑠. 𝑡.  𝑃𝛺(𝑌) = 𝑃𝛺(𝐿 + 𝐸),                 (1) 

where ‖·‖𝑝 is general term. The p represents any number, such as ‖·‖𝐹
2  is applied for extracting noise 

[68], 𝑙0  is applied for handing outlier [56]. 𝑌 ∈ ℝ𝑚×𝑛  which contains error matrix 𝐸 ∈ ℝ𝑚×𝑛  is 

original dat. We can control noisy levels by using non-negative 𝜆 > 0, which is typically set to 0.001.  

We cannot directly solve equation 1 due to its np-hardness [69]. There are two kind of methods 

used for solving equation 1. One of methods is Matrix Factorization (MF) [70] [71]. This kind of method 

can be applied when ground truth rank is available. The main principle of this method is that any 

observation matrix can be represented by inner product of submatrices. If our submatrices consist of two 

matrices, one matrix represents original data and others is rearrests noisy data or error. Further MF 

method [72] [73] has some advantages when the GT rank which is not available in the real world 

application is available.  

Data usually is corrupted by various reason, and we do not know intrinsic rank r without 

interpreting the data. If data did not contain any noise, we can get low rank component from the following 

problem: 

𝑚𝑖𝑛
𝑈,𝑉

‖𝑃𝛺(𝑌 − 𝑈𝑉)‖𝐹
2 ,                                 (2) 

where 𝑈 ∈ ℝ𝑚×𝑟 and 𝑉 ∈ ℝ𝑟×𝑛. 

Papers [74] [75] [76] studied Nuclear-Norm Minimization (NNM), which is required to calculate 

singular values of the matrix. MF method is not best option when GT rank is not available. In this 

situation, we can use NNM to solve our problem to get a low dimensional component of the original data. 

We can formulate same problem via NNM method as follows:  

𝑚𝑖𝑛
𝐿

𝜆 ‖𝐿‖∗ +
1

2
‖𝑃𝛺(𝑌 − 𝐿)‖𝐹

2 .                         (3) 

where 𝜆 is positive parameter which often set to smaller number.  

Unfortunately, most of the papers only considered that the low rank component consists of small 

noise. Papers [68] [77] [78] were considered original data with some noisy levels to solve low rank 

components. As mentioned, both NNM and MF methods have own advantages and disadvantages. NNM 

mainly is used for unknown rank problem and MF mainly is used for rank available problem. In large 

scale problem, the applicability of NNF is largely reduced by the necessary to calculate singular values 

in every process. Other mixing methods [79] [80] [81] combined various methods to increase efficiency 

of LRMR. Fusing different layers increases applicability of the algorithm. We can combine extra layers 

to increase useful information in object detection task. Non-negativity allows us to combine different 
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models [82] [83]. 

To increase low dimensional features and relative useful information, we adopted Tikhonov 

regularization and 𝑙1 norm. Further, we combined two methods to increase applicability and efficiency 

of our algorithm, which handles both outlier and other noises. We proposed efficient solver for LRMR 

which is not required to use SVD for every loop. In most of the situation, we do not know GT rank of 

the data which can affect final performance of the model. We also solved this problem in efficient manner 

using Theorem 1. Unlike existing mixture algorithms, we not only increased applicability but also 

reduced time demanding in various tasks to get better low dimensional component.  

 

3. Methodology 

The whole architecture of MF-SSD in Fig. 2 consists of three parts including backbone which 

adopts pre-trained VGG-16, feature fusion module (FFM) and detection head. We first introduce the 

FFM which includes Connection Module (CM) which are blue and green rectangular boxes in Fig. 2, 

Two-branch Residual Dilated Convolution Module (TRDCM) which is orange rectangular boxes in Fig. 

2 and Two-branch Residual Dilated Add Convolution Module (TRDACM) which is purple rectangular 

box in Fig. 2.  

 

(a) 

 

 

(b) 

Fig. 3. Detailed structure of connection modules: (a) Concats high level feature map with shallow 

layer feature map using concatenation approach with bilinear interpolation; (b) Concats feature maps 

without adjusting channel number using concatenation approach with bilinear interpolation. 

 

3.1. Connection Module (CM) 

There are two types of Connection Module (CM) which are shown in Fig. 3. We first introduce 

the CM module in Fig. 3. (a) or orange rectangular box in Fig. 2. Suppose input 1 (𝑁, 𝐶1, 𝐻1, 𝑊1) is the 
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lower-level feature map and input 2 (𝑁, 𝐶2, 𝐻2, 𝑊2)  represents higher level feature map; where 𝑁 

means batch size, 𝐶 means channel number, 𝐻 and 𝑊 represents feature map size. First of all, we 

use convolution layer with kernel size 1x1 to adjust two input features into same channel number. 

Typically, the higher-level feature contains lower resolution compared to lower-level feature. We use 

up-sampling operation with bilinear interpolation to adjust higher-level feature map size  (𝐻2, 𝑊2). 

Noting that up-sampling operation did not change channel number. Deconvolution also uses for similar 

purpose besides up-sampling operation. After conducting numerous experiments to test negative effects 

of both up sampling and deconvolution, we decided to use up-sampling operation in the proposed MF-

SSD. After up sampling operation we obtain same feature map size (𝐻1 = 𝐻2, 𝑊1 = 𝑊2). Finally, we 

fused two inputs using concatenation attention approach [37], and obtained final output (𝑁, C, H, W). 

After conducting several experiments to investigate various attention approaches including concatenation, 

element-wise summation [13] and element-wise product [14], concatenation approach is selected as our 

attention approach. We splice feature maps using concatenation approach into channel dimension 

without increasing feature map size.  As shown in Fig. 3. (b) (It is green rectangular box in Fig. 2), the 

CM is different from previous CM in Fig. 3. (a). The dissimilarity is that we did not use the convolution 

layer with kernel size 1x1 before up sampling operation with bilinear interpolation, because three features 

we concatenated are already same number of channels. We only use convolution layer with kernel size 

1x1 before the final output. 

 

 

(a) 

 

(b) 

Fig. 4. Detailed structure of two-branch residual dilated convolution module (TRDCM): (a) 

Residual connection without convolution operation; (b) Residual connection with convolution operation 

with kernel size 1x1. 

 

3.2. Two-branch Residual Dilated Convolution Module (TRDCM) 

  As mentioned in the before, the main reason of the lack of sufficient features for detecting small 

objects is that the high-resolution features are reduced or unobtainable in the deeper layers. In 

conventional SSD, the extracted features in the shallower layers contain a small amount of semantic 

information, which is the main problem causes insufficient features for small object detection. Therefore, 

we introduce Two-branch Residual Dilated Convolution Module (TRDCM), where we can expand kernel 

size with original weights using a dilated convolution [17] which samples sparsely at different locations 

and increases receptive field with same computational cost. Unlike previous feature fusion methods, our 
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method fuses feature from deeper layers to shallower layers to increase semantic information, and we 

can still use the high-resolution features in the deeper layers. Insufficient information for small objects 

in traditional SSD is only obtained from Conv4-3 layer. To enhance insufficient features, we added 

TRDCM which receives features from Conv4-3 layer. As shown in Fig. 4, the TRDCM consists of two 

branches with residual connection. We introduced two versions for TRDCM. The first one in Fig. 4. (a) 

consists of residual connection without convolution, and the second one in Fig. 4. (b) consists of residual 

connection with 1x1 convolution layer. In the TRDCM, we use 1x1, 3x3 (dilated ratio is 2) and 3x3 

(dilated ratio is 3) convolutions with residual connection for first branch, and 1x1, 3x3 (dilated ratio is 3) 

and 3x3 (dilated ratio is 5) convolutions with residual connection for second branch. We have conducted 

several experiments to verify the dilation ratio setting is optimal. More results about two versions of the 

TRDCM are listed in the ablation study section. 

 

Fig. 5. Detailed structure of two-branch residual dilated add convolution module (TRDACM). 

 

3.3. Two-branch Residual Dilated Add Convolution Module (TRDACM) 

As shown in Fig. 5, we also introduced Two-branch Residual Dilated Add Convolution Module 

(TRDACM) which are purple rectangular boxes in Fig. 2 to enhance contextual information. In the 

TRDACM, we also used two branches with dilated convolution and residual connection to combine of 

them, which not only increases receptive field, but also reduce gradient vanishing problem. Firstly, two 

branch go through 1x1 convolution to adjust the channel number, and then two of branches go through 

two 3x3 dilated convolution with different dilated ratios to capture contextual information. After 

conducting several experiments, we choose dilatated ratio (d=2 and d=3) for first branch, and dilated 

ratio (d=3 and d=3) for second branch. Both branches use residual connection without convolution for 

better optimization. Finally, we use concatenation attention approach to combine two branches. After 

concatenation, final output goes through 1x1 convolution to integrate contextual information. More 

results about the TRDACM module are highlighted in ablation study section. 

 

 

3.4. Low rank matrix recovering method 

3.4.1 Problem formulation: As mentioned in the previous section, NNM has the need to calculate SVD 

in the whole process. We cannot apply directly this method to big data. The theorem 1 gives us a chance 

to solve large scale problem.  

Theorem 1: For any matrix 𝐿 ∈ ℝ𝑚×𝑛, the following relationship holds [68]: 

‖𝐿‖∗ = min
𝑈,𝑉

1

2
‖𝑈‖𝐹

2 +
1

2
‖𝑉‖𝐹

2    𝑠. 𝑡.   𝐿 = 𝑈𝑉. 

After applying theorem 1 to combine NNM and MF, we obtained following Tikhonov 

regularisation [84] problem which increases useful features for recovering low dimensional component 

form noisy data.  
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𝑚𝑖𝑛
𝑈,𝑉

 
𝜆

2
‖𝑈‖𝐹

2 +
𝜆

2
‖𝑉‖𝐹

2 +
1

2
‖𝑃𝛺(𝑌 − 𝑈𝑉)‖𝐹

2 .                   (4) 

After generalizing equation 4, we obtained generalised Tikhonov regularization which extends 

applicability for recovering low dimensional component problem from noisy data [85].  

𝑚𝑖𝑛
𝑈,𝑉

 
𝜆

2
‖𝛤𝑈𝑈‖𝐹

2 +
𝜆

2
‖𝑉𝛤𝑉‖𝐹

2 +
1

2
‖𝑃𝛺(𝑌 − 𝑈𝑉)‖𝐹

2  

𝑠. 𝑡.  𝑧𝑈
𝑇𝛤𝑈𝑧𝑈 > 0 𝑎𝑛𝑑 𝑧𝑉

𝑇𝛤𝑉𝑧𝑉 > 0, ∀ 𝑧𝑈 ∈ 𝑅𝑚\{0} 𝑎𝑛𝑑 𝑧𝑉 ∈ 𝑅𝑛\{0},       (5) 

where 𝛤𝑈 and 𝛤𝑉 represents positive definite matrices; the equation 5 has some advantages compared 

to previous problem formulation for ill-conditioned problem. 

In real world case, we can combine different terms to increase efficiency of getting low 

dimensional features. To increase sparsity levels of original data, 𝐿1 -norm is one of the main 

regularization strategy.    

𝑚𝑖𝑛
𝑈,𝑉

  
𝜆

2
‖𝛤𝑈𝑈‖𝐹

2 +
𝜆

2
‖𝑉𝛤𝑉‖𝐹

2 +
1

2
‖𝑃𝛺(𝑌 − 𝑈𝑉)‖𝐹

2 + 𝛽𝑈‖𝑈‖1 + 𝛽𝑉‖𝑉‖1   

𝑠. 𝑡.  𝑧𝑈
𝑇𝛤𝑈𝑧𝑈 > 0 𝑎𝑛𝑑 𝑧𝑉

𝑇𝛤𝑉𝑧𝑉 > 0, ∀ 𝑧𝑈 ∈ 𝑅𝑚\{0} 𝑎𝑛𝑑 𝑧𝑉 ∈ 𝑅𝑛\{0},          (6) 

where 𝛽𝑈 ≥ 0 and 𝛽𝑉 ≥ 0 are used to better control of specific levels of sparsity.  

The observation data not only corrupted by small noises but also corrupted various type of noises. 

The weight matrix (𝑊 𝑎𝑛𝑑 W̅) ∈ [0,1]𝑚×𝑛 is used to better handle various noises. Besides weight 

matrix, we also applied maximum entropy terms, which is useful to know whether original data is 

corrupted by random noise or other types of noises. After applying both weight matrix and entropy which 

is defined by − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑘
𝑖=1  with ∑ 𝑝𝑖 = 1𝑘

𝑖=1 , we obtained following problem formulation:  

𝑚𝑖𝑛
𝑈,𝑉,𝑊

 
𝜆

2
‖𝛤𝑈𝑈‖𝐹

2 +
𝜆

2
‖𝑉𝛤𝑉‖𝐹

2 +
1

2
‖𝑊⨀(𝑌 − 𝑈𝑉)‖𝐹

2  

+𝛽𝑈‖𝑈‖1 + 𝛽𝑉‖𝑉‖1 + 𝛾𝛴𝑖𝑗(𝑤𝑖𝑗𝑙𝑜𝑔𝑤𝑖𝑗 + 𝑤̅𝑖𝑗𝑙𝑜𝑔𝑤̅𝑖𝑗) 

𝑠. 𝑡.  𝑊 + 𝑊̅ = 𝟏;  𝑊 𝑎𝑛𝑑 𝑊̅  ∈ [0,1]𝑚×𝑛;  𝑧𝑈
𝑇𝛤𝑈𝑧𝑈 > 0 𝑎𝑛𝑑 𝑧𝑉

𝑇𝛤𝑉𝑧𝑉 > 0; 

  ∀ 𝑧𝑈 ∈ 𝑅𝑚\{0} 𝑎𝑛𝑑 𝑧𝑉 ∈ 𝑅𝑛\{0},                            (7) 

where 𝛾 ≥ 0 represents a nonnegative term and 1 represents an all-one matrix. The all-one matrix is 

same size with 𝑊. In this equation, we used 𝑊 as a weight matrix to change 𝑃𝛺. Because it is difficult 

to calculate the binary valued matrix. Therefore, we can get final results by using derivatives. 

 

3.4.2 Solving the Problem: We can solve equation 7 by using ALM [86] [87] which divides main problem 

into subproblems. Other methods such as ADMM [88] also is used to solve same problem. The ALM 

like approaches are mainly applicable for separable problem [89] [90]. Our final formulation is not 

separable, and we need to convert our problem into applicable form.  

To solve our problem by using ADMM, we added constraint term 𝐿 = 𝑈𝑉 to our final equation 

7 and obtained following problem formulation: 

 𝑚𝑖𝑛
𝑈,𝑉,𝑊,𝐿

 
𝜆

2
‖𝛤𝑈𝑈‖𝐹

2 +
𝜆

2
‖𝑉𝛤𝑉‖𝐹

2 +
1

2
‖𝑊⨀(𝑌 − 𝐿)‖𝐹

2 + 𝛽𝑈‖𝑈‖1 

+𝛽𝑉‖𝑉‖1 + 𝛾𝛴𝑖𝑗(𝑤𝑖𝑗𝑙𝑜𝑔𝑤𝑖𝑗 + 𝑤̅𝑖𝑗𝑙𝑜𝑔𝑤̅𝑖𝑗) 

𝑠. 𝑡.  𝐿 = 𝑈𝑉, 𝑊 + 𝑊̅ = 𝟏;  𝑊 𝑎𝑛𝑑 𝑊̅  ∈ [0,1]𝑚×𝑛; 𝑧𝑈𝛤𝑈𝑧𝑈
𝑇 > 0 𝑎𝑛𝑑 𝑧𝑉𝛤𝑉𝑧𝑉

𝑇 > 0; 

∀ 𝑧𝑈 ∈ 𝑅𝑚\{0} 𝑎𝑛𝑑 𝑧𝑉 ∈ 𝑅𝑛\{0}  .             (8) 

After applying Lagrangian multiplier to above equation, we obtained following forms: 

ℒ{ 𝑊+𝑊̅=1;𝑊,𝑊̅ ∈[0,1]𝑚×𝑛}(𝑈, 𝑉, 𝐿, 𝑊, 𝑀) ≔  
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𝜆

2
‖𝛤𝑈𝑈‖𝐹

2 +
𝜆

2
‖𝑉𝛤𝑉‖𝐹

2 +
1

2
‖𝑊⨀(𝑌 − 𝐿)‖𝐹

2 + 𝛽𝑈‖𝑈‖1 + 𝛽𝑉‖𝑉‖1 

+𝛾𝛴𝑖𝑗(𝑤𝑖𝑗𝑙𝑜𝑔𝑤𝑖𝑗 + 𝑤̅𝑖𝑗𝑙𝑜𝑔𝑤̅𝑖𝑗)  +
𝛼

2
‖𝐿 − 𝑈𝑉‖𝐹

2 + ⟨𝑀, 𝐿 − 𝑈𝑉⟩,            (9) 

where 𝛼 > 0 is a positive term, and 𝑀 is matrix multiplier with same size of original data. We updated 

weight matrix and Tikhonov matrix by using same method which introduced later in this section. We 

take equation 8 into two sub-equations including: the problem related to weight matrix and the problem 

related to other parameters. 

𝑉(𝑡+1) ← (𝜆𝛤𝑉
𝑇𝛤𝑉 + 𝛼(𝑡)𝑈(𝑡)𝑇𝑈(𝑡))

−1
(𝛼𝑈(𝑡)𝑇𝐿(𝑡) + 𝑈(𝑡)𝑇𝑀(𝑡) −

𝛽

2
) 

𝑈(𝑡+1) ← [(𝛼(𝑡)𝐿(𝑡)𝑉(𝑡+1)𝑇 −
𝛽

2
+ 𝑀(𝑡)𝑉(𝑡+1)𝑇) (𝜆𝛤𝑈𝛤𝑈

𝑇 + 𝛼(𝑡)𝑉(𝑡+1)𝑉(𝑡+1)𝑇)
−1

] 

𝐿(𝑡+1) ←
𝑊(𝑡)⨀𝑌+𝛼(𝑡)𝑈(𝑡+1)𝑉(𝑡+1)−𝑀(𝑡)

𝑊(𝑡)+𝛼(𝑡)𝐼
.                           (10) 

We take a derivative for equation 9 to get derivatives of 𝑈, 𝑉, and 𝐿 matrices. The final results 

are shown in equation 10. We updated 𝐿 in elementwise method and solved 𝑈 and 𝑉 as a matrix. We 

updated weight matrix by using same process and obtained the solution of the weight matrix. 

𝑚𝑖𝑛
𝑊,𝑊̅

1

2
‖𝑊⨀(𝑌 − 𝐿(𝑡+1))‖

𝐹

2
 + 𝛾𝛴𝑖𝑗(𝑤𝑖𝑗𝑙𝑜𝑔𝑤𝑖𝑗 + 𝑤̅𝑖𝑗𝑙𝑜𝑔𝑤̅𝑖𝑗) 

  𝑠. 𝑡. 𝑊 + 𝑊̅ = 𝟏;  𝑊 𝑎𝑛𝑑 𝑊̅  ∈ [0,1]𝑚×𝑛 .                   (11) 

We can solve above equation without any changes. Therefore, we get the following results:  

𝒬(𝑤𝑖𝑗 , 𝑤̅𝑖𝑗 , 𝜆𝑖𝑗) ≔ 𝑤𝑖𝑗[𝑌 − 𝐿(𝑡+1)]𝑖𝑗
2 +  𝛾(𝑤𝑖𝑗𝑙𝑜𝑔𝑤𝑖𝑗 +    𝑤̅𝑖𝑗𝑙𝑜𝑔𝑤̅𝑖𝑗) +𝜆𝑖𝑗(𝑤𝑖𝑗 + 𝑤̅𝑖𝑗 − 1),  (12)            

             𝑤𝑖𝑗
(t+1)

←
1

1+exp {[(𝑌−𝐿(𝑡+1))
𝑖𝑗

2
/2]/𝛾}

 ,                       (13)    

 

4. Loss Function and Metrics 

 

4.1. Loss Function 

Our loss function in equation 14 includes two parts: the localization loss (loc) (this is also known 

as vector regression) and classification loss (clc).   

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑀
(𝐿𝑐𝑙𝑐(𝑥, 𝑐) + 𝛾𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔))                    (14) 

where M represents the whole number of boxes and 𝛾 represents a regularization term which controls 

balances of the loss. We used Smooth L1 loss as a localization loss which predicts parameters between 

the ground truth box (𝑔) and the predicted box (l). In vector regression, we are very hard to find the 

correct location of the object. Therefore, we introduce to offsets for the default boxes (𝑑) with the center 

(𝑐𝑥, 𝑐𝑦), width (𝑤) and height (ℎ). 

 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑  𝑁
𝑖∈𝑃𝑜𝑠 ∑  𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ} 𝑥𝑖𝑗

𝑘 𝑆𝐿1(𝑙𝑖
𝑚 − 𝑔̂𝑗

𝑚)              (15) 

where: 

𝑔̂𝑗
𝑐𝑥 = (

𝑔𝑗
𝑐𝑥−𝑑𝑖

𝑐𝑥

𝑑𝑖
𝑤 − 𝜇𝑥)/𝜎𝑥 ,  𝑔̂𝑗

𝑐𝑦
= (

𝑔𝑗
𝑐𝑦

−𝑑𝑖
𝑐𝑦

𝑑𝑖
ℎ − 𝜇𝑦)/𝜎𝑦 
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𝑔̂𝑗
𝑤 = (𝑙𝑜𝑔

𝑔𝑗
𝑤

𝑑𝑖
𝑤 − 𝜇𝑤)/𝜎𝑤 ,  𝑔̂𝑗

ℎ = (𝑙𝑜𝑔
𝑔𝑗

ℎ

𝑑𝑖
ℎ − 𝜇ℎ)/𝜎ℎ                   (16) 

 

𝑆𝐿1 = {
0.5𝑥2      |𝑥| ≤ 1

|𝑥| − 0.5      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                            (17) 

We set 𝜇𝑥 = 𝜇𝑦 = 𝜇𝑤 = 𝜇ℎ = 0.001  , 𝜎𝑥 = 𝜇𝑦 = 0.1  and 𝜎𝑤 = 𝜎ℎ = 0.2 . In equation 15, 

We used softmax loss as our classification loss over multiple classes confidences (𝑐).  

 

𝐿𝑐𝑙𝑐(𝑥, 𝑐) = − ∑  𝑁
𝑖∈𝑃𝑜𝑠 𝑥𝑖𝑗

p
𝑙𝑜 𝑔(𝑐̂𝑖

𝑝
) − ∑  𝑖∈𝑁𝑒𝑔 (𝑐̂𝑖

0)                (18) 

 

where: 𝑐̂𝑖
𝑝

= exp(𝑐𝑖
𝑝

) / ∑  𝑒𝑥𝑝𝑝 (𝑐𝑖
𝑝

). 

 

4.2. Metrics 

Frames Per Second (FPS), Recall and Precision are used for evaluating the performance of the 

frameworks. To apply above metrics, we need to find out the value of Intersection over Union (IoU), 

where corresponding area is calculated by two factors including the predicted bounding boxes from our 

model and ground truth boxes. 

Precision and Recall are calculated through under equations, respectively.  Precision represents 

how many objects are correctly predicted, while Recall represents how many objects correctly predicted 

respect to the ground truth.  We called True Positive if the IoU is more than a threshold (typically set 

to 0.5). We called False Positive if IoU is less than a threshold; and we called False Negative if detector 

fails to detect. 

       

 

 

In our experiment, we also tested mAP values derived from mean of Average Precision (AP) of 

whole classes. 

 

5. Experiment results 

 

5.1.  Datasets 
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In order to compare our MF-SSD framework with the other object detector fairly, we evaluated 

the MF-SSD on three datasets including: MS COCO [19], PASCAL VOC2007 and PASCAL VOC2012 

[20]. Three datasets are introduced in Table 1. Different from VOC dataset, the MS COCO mainly 

contains various natural pictures, common objects with complicated background and multiple objects 

with small size; the evaluation process on this dataset is more complex compared to other dataset. The 

mAP and FPS are used to assess performance results for the MF-SSD and other compared algorithms. 

 

Table 1: Construction of datasets.  

 

5.2. Implementation 

In all experiments, we have adopted same data augmentation strategy for SSD [5] and experiments 

are tested under Pytorch framework [42]. Firstly, our proposed MF-SSD is trained by the combined 

training set of PASCAL VOC2007 and PASCAL VOC2012. Testing process includes three datasets and 

we will introduce all of them in the next section.  

Two step is required to train the MF-SSD. In first step, freeze train, we set requires grad setting 

to false for top 28 layers. In second step, unfreeze train, we did not set requires grad setting for all layers. 

We adopted adam optimizer and set batch size, learning rate and weight decay to 32, 0.00045 and 0.00045 

for freeze train, respectively. We also adopted adam optimizer for unfreeze train and set batch size, 

learning rate and weight decay to 16, 0.00011 and 0.00045 respectively. We have used learning scheduler 

with step size 1 and gamma 0.94 for both freeze train and unfreeze train. We totally used 50 epochs for 

freeze train and 100 epochs for unfreeze train. As for MSCOCO, the train set is used to train our model 

and the evaluation server is used to test our model. We used same training strategy. We used same 

training strategy for MSCOCO. We adopted adam optimizer and set batch size, learning rate and weight 

decay to 32, 0.0002 and 0.0002 for freeze train, respectively. For unfreeze train, same optimizer is used 

and we set learning rate and weight decay to 0.00011, 0.0002 and 0.0002, respectively. We totally used 

80 epochs and 100 epochs for freeze train and unfreeze train, respectively.  

 

5.3. Experiment on PASCAL VOC2007 dataset 

The comparison results between the MF-SSD and other popular detectors are shown in Table 2. 

All of the detectors are trained by combined training set of VOC2007 and VOC2012 and evaluated on 

VOC2007 test set. The proposed MF-SSD300 has achieved 79.8% mAP and 20.6 FPS detection speed 

for low resolution image with input size 300×300, while the proposed MF-SSD512 with input size 

512×512 has achieved 81.5% mAP and 17.5 FPS on PASCAL VOC2007. As shown in Table 2, the 

performance result of our algorithm is better than two stage object detectors including Faster RCNN, 

ION, MR-CNN and R-FCN. The R-FCN still did not achieve high performance result, even if it uses 

Resnet101 as backbone and high-resolution image with input size 600×1000.  
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The proposed MF-SSD300 outperforms SSD300 by 2.6% mAP, FSSD300 by 1.0% mAP, 

DSOD300 by 2.1% mAP, FA-SSD by 1.7% mAP and DF-SSD by 0.9% mAP for same input size 

300×300. The proposed MF-SSD512 with input size 512×512 has achieved 81.5% mAP, which is higher 

than most of the detector including one or two stage frameworks. The DSSD513 has achieved 81.5% 

mAP which is same result to MF-SSD512 but 3 times slower that MF-SSD512. This is because DSSD513 

uses ResNet101 as backbone which is stronger network compared with VGG-16. Additionally, 

DSSD513 method creates 43688 anchor boxes which takes more time to reduce redundant boxes. 

Compared to DSSD513, our model adapts 24564 anchor boxes.   

 

5.4. Experiment on PASCAL VOC2012 dataset 

In second experiment, VOC12 with same experiment setting is used to evaluate different 

algorithms which are compared with MF-SSD. The proposed MF-SSD300 achieved 77.7% mAP and 

80.1% mAP with input size 300×300 and 512×512, respectively. We can see from Table 3 that our 

framework achieved higher mAP score compared to other detectors. Especially, the MF-SSD512 

achieved higher average precision on several categories including Bird, Cow, Car, Person, Plant and 

Sheep. The proposed MF-SSD achieved higher AP score, which higher than conventional SSD, on many 

categories, especially for categories with small size such as bird, bottle etc.  

  

Table 3 Comparison results between different object detectors on PASCAL VOC2012 dataset. 

 

Table 2 Comparison results between different object detectors on PASCAL VOC2007 dataset. 
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5.5. Experiment on MSCOCO dataset 

In third experiment is conducted on MSCOCO which is used with same experiment setting to 

Table 3 Comparison results between different object detectors on PASCAL VOC2012 dataset. 

 

Table 4 Comparison results between different object detectors on MSCOCO dataset. 
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evaluate different algorithms with MF-SSD. The results highlighted on Table 4 and the MF-SSD300 

achieved 29.7% mAP with input size 300×300 which can be seen higher score for VGG backbone in 

detector. When we extended input size to 512, the MF-SSD512 got 34.1% mAP. Specifically, the MF-

SSD512 has achieved 34.1% on the primary metric AP0.5:0.95, 58.5% on the strict metric AP0.5 and 35.5% 

on the strict metric AP0.75 respectively. In addition, the proposed MF-SSD has achieved higher score 

with 20.2% AP on small objects which detectors uses more efficient FFM to detect more precisely. It 

clearly showed that the outstanding for extracting features for smaller objects of our feature fusion 

module, which fuses different level features to increases useful contextual information for object 

detection. The DSSD513 has achieved 33.0% mAP which is higher than other compared methods. The 

DSSD513 also achieved good performance, especially for large objects. 

 

 

5.6. Quantitative Result 

As shown in Fig. 6, we randomly chose 8 images from VOC2007 test set and visualize them with 

IoU scores higher than 0.7. The final results of the conventional SSD are shown and highlighted in second 

forth columns. The corresponding results for same picture are highlighted with boxes in the first and 

third columns. Our MF-SSD detected more objects from all picture we have tested compared to 

conventional SSD300 with same inputs. For better visualization, we use bonding boxes with same colour 

for same category and detection score for each category are shown above the bonding boxes. Our 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MF -SSD                 SSD                         MF-SSD                          SSD 

Fig. 6. Quantitative results between the proposed MF-SSD and conventional SSD on PASCAL VOC2007 

test set. The first and third columns represents for MF-SSD; second and forth columns represents for 

conventional SSD. 
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proposed feature fusion module works efficiently in terms of fusing contextual and boundary features, 

which proves efficacy of our proposed framework. 

 

5.7. Experiment with LRMR method 

In this section, we have tested the performance of our LRMR by using two datasets. For all 

compared algorithms, we have performed experiments on same PC. In our experiments for LRMR testing, 

we did not use GPU. In the object detection part, a PC with GPU is used for all algorithms on VOC. Our 

algorithm is run by random parameters settings in the first loop. From second loop, we updated all 

parameters by using following solution which are given in the above section. The whole process of 

updating parameters is same. 

In our experiment, we selected two kinds of methods to compare the extracting performance of 

low dimensional component tasks. Some methods we selected in this section are MF based algorithms, 

and others are NNM based algorithms. We followed authors recommendation of each algorithm in terms 

of parameters settings. This is the list of compared algorithms: PCP [56], RegL1[63], ROUTE [67], 

Active [93], AIS-Impute [94], IRNN [95], PRMF [96], and Unify [97]. 

 

5.7.1 Synthetic Data: In this section, we made a synthetic data on which we added all types of noises. 

We followed following steps for generating a synthetic data. In the first step, we generated a matrix 𝑌 

which is typically high dimensional data. This matrix can be decomposed into many sub-matrices. In our 

case, we only selected two sub-matrices to get our data. The second step is corrupting data part. We 

mixed various noises to obtain high level noisy data. We deliberately added some noisy data which 

consists of two parts including a uniform distribution over [−25,25] and Gaussian part 𝒩(0, 𝜎2). We 

can change the outlier ratio (𝑠) from 0% to 70% in our experiment. We selected root mean square error 

(RMSE) as a main metric. We also adopted mean absolute error (MAE) when two compared algorithm 

get same results. Each result for all algorithm obtained by averaging 30 times runs. 

After having generated synthetic data, we prepared to compare all algorithms. We first tested 

whether our algorithm has a better tolerance for data with higher outlier. We prepared a data with size 

(1500*1500). All algorithms estimated our prepared data only for rank 10 estimation. In the beginning, 

the error ratio is lower than 10%, which is beneficial to better performance. As shown in Fig. 7, most of 

Table 5: Comparison results between different algorithms in terms of Time, MAE and RMSE.  
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the algorithms got better results when the error ratio is low. But some algorithms including RegL1, IRNN 

and Active did not get better performance for data with lower error ratio. When error ratio has changed 

from 10% to 40%, we can see a small difference. When error ratio has changed from 40% to 70%, we 

can clearly see a big difference. Our LRMR got better performance compared to other algorithms 

including ROUTE, Unify, PRMF, and PCP in terms of rank 10 estimation. There are only two algorithms 

including our LRMR and ROUTE, which can performance data when error ratio more than 60%. In the 

next experiment, we further compare these two algorithms in terms of time.  

In this experiment, we can change the rank, size and outlier ratio of the data. We first set matrix 

size, rank, and GT rank to 500, 5 and 5 respectively. In the second time, we set matrix size, rank and GT 

rank to 800, 5 and 5 respectively. In the third time, we set matrix size, rank and GT rank to 1500, 5 and 

5 respectively. We have only changed rank and GT rank for other group of experiments for same data 

size. As shown in Table 5, two algorithms got relatively similar results when data size is small. We can 

clearly see our algorithm got better results when data size is high dimensional. In terms of time and other 

two metrics, our LRMR performance better than compared algorithm. If data is high dimensional and 

the rank of the data is lower than GT rank, we need to spend more time on this data. 

 

Fig. 7.  Comparison results between different algorithms in terms of RMSE and error ratio s. 

 

Fig. 8.  Testing Convergence speed on various error ratios. 
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Convergence speed is one of the main factors to evaluate better algorithm. In this experiment, we 

further tested our algorithm in terms of convergence speed. Firstly, we prepared a data with size 

(1500*1500). For two algorithms, we estimated rank 15 estimation and error ratio has changed 20% to 

70%. We can clearly see from Fig. 8 that our LRMR can converge quickly within 30 to 50 iterations. 

When the error ratio is 70%, our LRMR can also converge within 50 iterations.  

In this experiment, we prepared a data with size (800*800), and we can change rank estimation 

from 20 to 60 and error ratios from 10% to 70% at the same time for our LRMR and OUTE. We can see 

from Fig. 9 that two algorithms got similar results when error ratios were lower than 40%. When error 

ratios were larger than 40%, our LRMR got better results compared to OUTE.  

 

 

Fig. 9.  Performance comparison on different rank and error ratios.  

 

5.7.2 Real Data: In this section, we evaluated our LRMR in Photometric stereo which is mainly used for 

evaluating the performance of extracting low rank component [98]. The DiLiGenT benchmark [99] 

which consists of different complex objects for photometric stereo is used to evaluate our algorithm 

efficacy. The mean angular error (MAE) is used as a metric in this experiment. GT-normal maps and 96 

images with different angle are available for each object. We have chosen four algorithms which got 

better results in the previous experiment to evaluate performance on this real dataset. The difference 

between two experiments (synthetic data and real data) is that we cannot change ground truth rank in this 

experiment.  

Table 6: Comparison results on the DiLiGenT dataset.  
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We selected algorithms which got better results in the previous section to further test the 

performance of extracting low rank component. As shown in Fig. 10, we have selected six objects from 

the dataset, which consists of various materials with different angle and lighting condition. In this 

experiment, Mean Angular Error (MAE) is used as a metric. As shown in Table 6, our algorithm got 

lower MAE compared to other algorithms. For the case of Buddha and Harvest, some algorithms cannot 

perform well. Because it is hart to perform those materials with high error ratios. In Table 6, we give all 

the experiment results for all algorithms we selected in this section. we can clearly see that our LRMR 

can perform complex materials better. The reason is that we used weight matrix and entropy term to 

maximize useful information. 

6. Ablation Study 

 

6.1. Feature Fusion Layers  

As shown in Table 7, we fuse different layers to test how different layers affect model accuracy. 

In this experiment, the proposed MF-SSD with input size 300×300 is trained on the combination set of 

VOC2007/2012, and the MF-SSD is evaluated on VOC 2007 test set. In the first group, we only fused 

different layers in VGG backbone to test the MF-SSD. In the second group, we fused different layers 

from both VGG backbone and Extra Layers. In conventional SSD, only one layer, e.g., Conv4-3 layer, 

is used to extract features for small objects, thus there are no sufficient features to detect more objects. It 

can be seen from the Table 7, when we fuse both VGG backbone (mainly contain boundary information) 

 

Fig. 10. Qualitative results between different algorithms on the DiLiGentT. 
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and Extra layers (mainly contain semantic information) the model accuracy is increased. Specially, when 

we fused Conv 4-3, Conv 5 and Con7 layers in VGG backbone and Block 11, Block 12 and Block 13 

layers in Extra layers, our proposed model has achieved 79.8% mAP.  

 

6.2. Number of branches 

As shown in Table 8, We evaluated how different 𝑁𝑏 (the number of branches in the TRDACM) 

can affect the model performance. The proposed MF-SSD with input size 300×300 is used, and the 

experiment conducted on PASCAL VOC dataset. In this experiment, we change the branches of the 

TRDACM to test model performance. 𝑁2 means that two branch with different dilated ratios 𝑑1 ∈

{2,3} and 𝑑2 ∈ {2,5}. 𝑁3  means that three branches with different dilated ratios 𝑑1 ∈ {2,3}, 𝑑2 ∈

{2,4} and 𝑑3 ∈ {2,5}. 𝑁4  means that four branches with different dilated ratios 𝑑1 ∈ {2,3}, 𝑑2 ∈

{2,4}, 𝑑3 ∈ {2,4} and 𝑑4 ∈ {2,5}. It is worth to noting that the number of dilated ratios represents from 

top branch to down branch. We achieved best result with 𝑁2. Therefore, we named residual dilated add 

module as TRDACM.  

 

6.3. Model simplification task 

As shown in Table 9, we try to evaluate the effectiveness of the TRDCM and TRDACM modules 

on conventional SSD. This experiment conducted on combination set of the VOC2007/2012 train set and 

tested on VOC 2007 test set. The conventional SSD without any modules has achieved 72.2% mAP. The 

SSD model with TRDACM has achieved 78.1% mAP and 33 FPS. The SSD with TRDACM has 

achieved a certain enhancement compared with original SSD, but still lack of sufficient information to 

reach higher accuracy. In first experiment, we only add the TRDACM module and directly use Conv4-3 

layer to replace the TRDCM module. In second experiment, we added both modules on SSD at the same 

time. When we added combination of the TRDACM and TRDCM(a) which is shown in Fig. 3. (a) on 

SSD, the model has achieved 78.5% mAP and 28.1 FPS. The combination of the TRDACM and 

TRDCM(b) which is shown in Fig. 3. (b) on SSD has achieved 78.8% mAP and 27.8 FPS. 

As shown in Table 7, the model with both TRDCM and TRDACM modules has achieved higher 

performance, but relatively lower speed. We improved the detection accuracy of the original SSD using 

our proposed feature fusion module which embeds the TRDCM and TRDACM modules. The 

experimental result clearly shows that the efficiency of the proposed feature fusion module.  

 

Table 7 Detection speed of MF-SSD with different Blocks on VOC dataset. 

 

 

https://www.collinsdictionary.com/zh/dictionary/english-thesaurus/enhancement
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Table 8 Detection speed of MF-SSD on different branches of TRDACM module. 𝑁𝑏 represents 

the number of branches. 

Table 9 Simplification task using different modules. 

 

 

7. Conclusion 

In this work, we proposed a new detector, the MF-SSD, which consists of two newly designed 

modules to improve detection ability. Whole framework consists of three parts including: 1. First part is 

backbone layer which is mainly used for extracting large and boundary elements such as line, angle etc. 

2. Second part is multi-path feature fusion layer which contains various modules to fuse more information. 

3. Third part is detection head which contains classification and regression layers to get final results. We 

also designed the TRDCM and TRDACM modules, which not only enlarges the receptive field without 

losing spatial resolution, but also improves contextual information without extra computational cost. 

Those two modules designed based on different convolutional layers with different filter size such as 

kernel size from 1 to 5. The efficacy of our MF-SSD is tested multiple datasets to prove our statements. 

The detection speed of objects including small size or large size two times faster than conventional SSD 

and the efficacy of detection in terms of small objects is higher than conventional SSD. The current work 

focuses on VGG as backbone. We will further improve MF-SSD with same feature fusion module using 

other powerful backbones in our future work. The main disadvantage of VGG is that different layer 

features cannot be fused at the same time. Because VGG stacks all layers only one direction. We will 

solve this problem in the future work to further improve MF-SSD. 
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