ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 洋雑誌

Efficient AM Algorithms for Stochastic ML Estimation of DOA

https://kitami-it.repo.nii.ac.jp/records/8553
https://kitami-it.repo.nii.ac.jp/records/8553
56f67342-1afe-454c-8be7-14f9cdcb3548
名前 / ファイル ライセンス アクション
4926496.pdf Efficient AM Algorithms for Stochastic ML Estimation of DOA (1.6 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-12-14
タイトル
タイトル Efficient AM Algorithms for Stochastic ML Estimation of DOA
言語 en
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Chen, Haihua

× Chen, Haihua

en Chen, Haihua

Search repository
Li, Shibao

× Li, Shibao

en Li, Shibao

Search repository
Liu, Jianhang

× Liu, Jianhang

en Liu, Jianhang

Search repository
Zhou, Yiqing

× Zhou, Yiqing

en Zhou, Yiqing

Search repository
Suzuki, Masakiyo

× Suzuki, Masakiyo

en Suzuki, Masakiyo

Search repository
著者別名
識別子Scheme WEKO
識別子 89671
識別子Scheme KAKEN - 研究者検索
識別子URI https://nrid.nii.ac.jp/ja/nrid/1000060192621/
識別子 60192621
姓名 鈴木, 正清
言語 ja
抄録
内容記述タイプ Abstract
内容記述 The estimation of direction-of-arrival (DOA) of signals is a basic and important problem in sensor array signal processing. To solve this problem, many algorithms have been proposed, among which the Stochastic Maximum Likelihood (SML) is one of the most concerned algorithms because of its high accuracy of DOA. However, the estimation of SML generally involves the multidimensional nonlinear optimization problem. As a result, its computational complexity is rather high. This paper addresses the issue of reducing computational complexity of SML estimation of DOA based on the Alternating Minimization (AM) algorithm. We have the following two contributions. First using transformation of matrix and properties of spatial projection, we propose an efficient AM (EAM) algorithm by dividing the SML criterion into two components. One depends on a single variable parameter while the other does not. Second when the array is a uniform linear array, we get the irreducible form of the EAM criterion (IAM) using polynomial forms. Simulation results show that both EAM and IAM can reduce the computational complexity of SML estimation greatly, while IAM is the best. Another advantage of IAM is that this algorithm can avoid the numerical instability problem which may happen in AM and EAM algorithms when more than one parameter converges to an identical value.
言語 en
書誌情報 en : International Journal of Antennas and Propagation

巻 2016, p. 1-10, 発行日 2016
ISSN
収録物識別子タイプ PISSN
収録物識別子 1687-5869
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1155/2016/4926496
権利
権利情報 Copyright c 2016 Haihua Chen et al.
出版者
出版者 Hindawi Publishing Corporation
著者版フラグ
言語 en
値 publisher
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 06:21:24.433382
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3