WEKO3
アイテム
推薦システムのための状態遷移確率の構造を未知としたマルコフ決定過程
https://kitami-it.repo.nii.ac.jp/records/7886
https://kitami-it.repo.nii.ac.jp/records/788622460990-dd1a-481c-890f-9430e180a1a2
名前 / ファイル | ライセンス | アクション |
---|---|---|
No194.pdf (512.2 kB)
|
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2015-08-17 | |||||
タイトル | ||||||
タイトル | 推薦システムのための状態遷移確率の構造を未知としたマルコフ決定過程 | |||||
言語 | ja | |||||
タイトル | ||||||
タイトル | Variable Order Transition Probability Markov Decision Process for the Recommendation System | |||||
言語 | en | |||||
言語 | ||||||
言語 | jpn | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 推薦問題 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | マルコフ決定過程 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | ベイズ決定理論 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 強化学習 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | recommendation | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Markov decision process | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Bayesian decision theory | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | reinforcement learning | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
著者 |
桑田, 修平
× 桑田, 修平× 前田, 康成× 松嶋, 敏泰× 平澤, 茂一 |
|||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 40682 | |||||
姓名 | Kuwata, Shuhei | |||||
言語 | en | |||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 40683 | |||||
姓名 | Maeda, Yasunari | |||||
言語 | en | |||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 40684 | |||||
姓名 | Matsushima, Toshiyasu | |||||
言語 | en | |||||
著者別名 | ||||||
識別子Scheme | WEKO | |||||
識別子 | 40685 | |||||
姓名 | Hirasawa, Shigeichi | |||||
言語 | en | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 推薦問題を扱うためのより一般化されたマルコフ決定過程モデルに対して,ベイズ基準のもとで最適な推薦ルールを履歴データから求める方法を提案する.推薦問題に関する研究において,これまで,ある商品を推薦した結果どの商品が買われたのか(推薦結果)や,さらには,一定期間内に行った複数の推薦結果が考慮されることはほとんどなかった.これに対して,マルコフ決定過程モデルを用いることで上記2点を初めて考慮した手法が提案されている.提案法は,その従来研究のモデルを一般化した点に新規性がある.また,もう1つの新規性として,推薦ルールを求めるためのプロセスを統計的決定問題として厳密に定式化した点がある.従来のモデルを一般化することで,マルコフ決定過程モデルを用いた推薦手法の適用領域が拡大され,かつ,推薦する目的に対して最適な推薦が行えるようになった.人工データを用いた評価実験により,提案する推薦手法の有効性を確認した.In this paper, we propose a general markov decision process model for the recommendation system. Furthermore, by using historical data, we derive the optimal recommendation lists from the proposed model based on bayesian decision theory. In the recommendation research area, there were little studies that considered both the purchased items and the past recommended items within a given period. In these circumstances, markov decision process based recommend method that can take these two things into account has been proposed. Our method also uses both things as with the previous method. Here, the unique thing about this paper is not only that we generalize the existing model, but also that we formulate the process to get the recommendation lists as the statistical decision problem. As a result, we can obtain the most suitable recommendation lists with respect to the purpose of the recommendation for a wide variety of recommendation scene. By using artificial data, we show the experimental results that our method can obtain more rewards than the conventional method gets. | |||||
書誌情報 |
ja : 情報処理学会論文誌数理モデル化と応用(TOM) 巻 6, 号 1, p. 20-30, 発行日 2013-03 |
|||||
出版者 | ||||||
出版者 | 一般社団法人 情報処理学会 | |||||
著者版フラグ | ||||||
値 | publisher | |||||
出版タイプ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |