WEKO3
アイテム
Development of a Dynamic Operational Scheduling Algorithm for an Independent Micro-Grid with Renewable Energy
https://kitami-it.repo.nii.ac.jp/records/7469
https://kitami-it.repo.nii.ac.jp/records/746913aae283-f4e4-4e19-a27d-d4e9114a8666
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2010-04-08 | |||||||
タイトル | ||||||||
タイトル | Development of a Dynamic Operational Scheduling Algorithm for an Independent Micro-Grid with Renewable Energy | |||||||
言語 | en | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Micro-Grid | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Operation Planning | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Energy Storage | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Renewable Energy | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Neural Network | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Weather Prediction | |||||||
資源タイプ | ||||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||||
タイプ | journal article | |||||||
アクセス権 | ||||||||
アクセス権 | open access | |||||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||
著者 |
OBARA, Shinya
× OBARA, Shinya
|
|||||||
著者別名 | ||||||||
識別子Scheme | WEKO | |||||||
識別子 | 44843 | |||||||
識別子Scheme | KAKEN | |||||||
識別子URI | https://nrid.nii.ac.jp/ja/nrid/1000010342437 | |||||||
識別子 | 10342437 | |||||||
姓名 | 小原, 伸哉 | |||||||
言語 | ja | |||||||
抄録 | ||||||||
内容記述タイプ | Abstract | |||||||
内容記述 | A micro-grid with the capacity for sustainable energy is expected to be a distributed energy system that exhibits quite a small environmental impact. In an independent micro-grid, "green energy," which is typically thought of as unstable, can be utilized effectively by introducing a battery. In the past study, the production-of-electricity prediction algorithm (PAS) of the solar cell was developed. In PAS, a layered neural network is made to learn based on past weather data and the operation plan of the compound system of a solar cell and other energy systems was examined using this prediction algorithm. In this paper, a dynamic operational scheduling algorithm is developed using a neural network (PAS) and a genetic algorithm (GA) to provide predictions for solar cell power output. We also do a case study analysis in which we use this algorithm to plan the operation of a system that connects nine houses in Sapporo to a micro-grid composed of power equipment and a polycrystalline silicon solar cell. In this work, the relationship between the accuracy of output prediction of the solar cell and the operation plan of the micro-grid was clarified. Moreover, we found that operating the micro-grid according to the plan derived with PAS was far superior, in terms of equipment hours of operation, to that using past average weather data. | |||||||
書誌情報 |
Journal of Thermal Science and Technology 巻 3, 号 3, p. 474-485, 発行日 2008 |
|||||||
DOI | ||||||||
識別子タイプ | DOI | |||||||
関連識別子 | http://doi.org/10.1299/jtst.3.474 | |||||||
フォーマット | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | application/pdf | |||||||
出版者 | ||||||||
出版者 | 日本機械学会 | |||||||
言語 | ja | |||||||
著者版フラグ | ||||||||
言語 | en | |||||||
値 | publisher | |||||||
出版タイプ | ||||||||
出版タイプ | VoR | |||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |