ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要掲載論文
  2. 北見工業大学研究報告
  3. Vol.21

重回帰モデルを用いた負荷予測 (第1報) : 一般負荷の変化と予測に関する基礎的考察

https://kitami-it.repo.nii.ac.jp/records/6652
https://kitami-it.repo.nii.ac.jp/records/6652
f796371c-748a-4ba8-bba3-00dff188a2f8
名前 / ファイル ライセンス アクション
21-2-1.pdf 21-2-1.pdf (3.9 MB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2007-04-09
タイトル
タイトル 重回帰モデルを用いた負荷予測 (第1報) : 一般負荷の変化と予測に関する基礎的考察
言語 ja
言語
言語 jpn
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ departmental bulletin paper
その他のタイトル
その他のタイトル Load Forecasting using The Multiple Regression Model (Part l): Fundamental Considerations for Load Variation and Load Forecast
言語 en
著者 中村, 陽一

× 中村, 陽一

WEKO 33588

ja 中村, 陽一

Search repository
宮本, 衛市

× 宮本, 衛市

WEKO 33589

ja 宮本, 衛市

Search repository
著者別名
識別子Scheme WEKO
識別子 33590
姓名 Yoichi, NAKAMURA
言語 en
著者別名
識別子Scheme WEKO
識別子 33591
姓名 Eiichi, MIYAMOTO
言語 en
抄録
内容記述タイプ Abstract
内容記述 Since it is difficult to store and keep electric energy, the supplier of electric power must try to generate just the right amount required by the consumers. A power station cannot change its output easily, because very big equipment must be controlled, for example a boiler, a turbine, a generator etc. Consequently, forecasting electric load becomes important. According to our survey, the forecasting error of existing or developed methods is almost 3% of the load. This error is sometimes bigger than a copacity of a power unit in many power systems. We wanted to improve the precision by developing a new load-forecasting method. This report describes our fundamental investigations concerning our new method. The shapes of the load curve not only for Saturday and Sunday but also for Monday were different from the shapes of other weekdays. The load for Tuesday to Friday deviated about 100 MW from the average taken over other such weekdays with the same temperature and at the same time of day. Considering days with a temperature change from the previous day of a given value, the deviation of the load increment was about 50 MW from the average of such days. This means that the forecast error should be 5 or 10% if the electric load is forecasted only by temperature or temperature increase. We forecast the load using the multiple regression method. We attempted to forecast the load with various combinations of data. These data include past and present temperature and past load values. 0ne example of a combination of data used was load levels of 48 and 24 hours ago and the previous day’s temperature and the forecasted temperature for the following day. The load forecast errors of the result were about 1%. Because we forecasted the load only for the previously described weekdays (Tuesday to Friday) in only June and July of 1986, this error cannot be claimed to be small but we plan to apply artificial intelligence techniques to improve this proposed method.
言語 en
書誌情報 ja : 北見工業大学研究報告

巻 21, 号 2, p. 209-218, 発行日 1990-03
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
言語 en
値 publisher
出版者
出版者 北見工業大学
言語 ja
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 06:49:15.798727
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3