ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  1. 学術雑誌論文
  2. 洋雑誌

Adapting multilingual speech representation model for a new, underresourced language through multilingual fine-tuning and continued pretraining

https://kitami-it.repo.nii.ac.jp/records/2000562
https://kitami-it.repo.nii.ac.jp/records/2000562
9d7f859e-5bd9-4d68-bd47-4a30ad5eca91
名前 / ファイル ライセンス アクション
2301.07295.pdf 2301.07295.pdf (524 KB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2024-02-28
タイトル
タイトル Adapting multilingual speech representation model for a new, underresourced language through multilingual fine-tuning and continued pretraining
言語 en
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Karol Nowakowski

× Karol Nowakowski

en Karol Nowakowski

Search repository
Michal Ptaszynski

× Michal Ptaszynski

en Michal Ptaszynski

Search repository
Kyoko Murasaki

× Kyoko Murasaki

en Kyoko Murasaki

Search repository
Jagna Nieuważny

× Jagna Nieuważny

en Jagna Nieuważny

Search repository
抄録
内容記述タイプ Abstract
内容記述 In recent years, neural models learned through self-supervised pretraining on large scale multilingual text or speech data have exhibited promising results for underresourced languages, especially when a relatively large amount of data from related language(s) is available. While the technology has a potential for facilitating tasks carried out in language documentation projects, such as speech transcription, pretraining a multilingual model from scratch for every new language would be highly impractical. We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language, focusing on actual fieldwork data from a critically endangered tongue: Ainu. Specifically, we (i) examine the feasibility of leveraging data from similar languages also in fine-tuning; (ii) verify whether the model’s performance can be improved by further pretraining on target language data. Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language and leads to considerable reduction in error rates. Furthermore, we find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance when there is very little labeled data in the target language.
言語 en
書誌情報 en : Information Processing & Management

巻 60, 号 2
ISSN
収録物識別子タイプ PISSN
収録物識別子 0306-4573
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1016/j.ipm.2022.103148
権利
言語 en
権利情報 c2023 Elsevier Ltd. All rights reserved.
出版者
出版者 Elsevier
言語 en
著者版フラグ
言語 en
値 author
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2024-02-27 23:58:31.455887
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3