ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 洋雑誌

Deep Learning for Information Triage on Twitter

https://kitami-it.repo.nii.ac.jp/records/2000449
https://kitami-it.repo.nii.ac.jp/records/2000449
3e9adac4-7dd9-439b-8b54-6610c8699d69
名前 / ファイル ライセンス アクション
applsci-11-06340-v2.pdf applsci-11-06340-v2.pdf (4.5 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2023-07-25
タイトル
タイトル Deep Learning for Information Triage on Twitter
言語 en
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Ptaszynski, Michal

× Ptaszynski, Michal

en Ptaszynski, Michal

Search repository
Fumito, Masui

× Fumito, Masui

en Fumito, Masui

Search repository
Yuuto, Fukushima

× Yuuto, Fukushima

en Yuuto, Fukushima

Search repository
Yuuto, Oikawa

× Yuuto, Oikawa

en Yuuto, Oikawa

Search repository
Hiroshi, Hayakawa

× Hiroshi, Hayakawa

en Hiroshi, Hayakawa

Search repository
Yasunori, Miyamori

× Yasunori, Miyamori

en Yasunori, Miyamori

Search repository
Kiyoshi, Takahashi

× Kiyoshi, Takahashi

en Kiyoshi, Takahashi

Search repository
Shunzo, Kawajiri

× Shunzo, Kawajiri

en Shunzo, Kawajiri

Search repository
抄録
内容記述タイプ Abstract
内容記述 In this paper, we present a Deep Learning-based system for the support of information
triaging on Twitter during emergency situations, such as disasters, or other influential events, such
as political elections. The system is based on the assumption that a different type of information
is required right after the event and some time after the event occurs. In a preliminary study, we
analyze the language behavior of Twitter users during two kinds of influential events, namely,
natural disasters and political elections. In the study, we analyze the credibility of information
included by users in tweets in the above-mentioned situations, by classifying the information into
two kinds: Primary Information (first-hand reports) and Secondary Information (second-hand reports,
retweets, etc.). We also perform sentiment analysis of the data to check user attitudes toward the
occurring events. Next, we present the structure of the system and compare a number of classifiers,
including the proposed one based on Convolutional Neural Networks. Finally, we validate the
system by performing an in-depth analysis of information obtained after a number of additional
events, including an eruption of a Japanese volcano Ontake on 27 September 2014, as well as heavy
rains and typhoons that occurred in 2020. We confirm that the methods works sufficiently well
even when trained on data from nearly 10 years ago, which strongly suggests that the model is
well-generalized and sufficiently grasps important aspects of each type of classified information.
言語 en
書誌情報 en : Applied Sciences

巻 11, 号 14, p. 6340-6340
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/app11146340
権利
言語 en
権利情報 c2021 by the authors. Licensee MDPI
出版者
出版者 MDPI
言語 en
著者版フラグ
言語 en
値 publisher
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-25 01:53:02.537962
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3