WEKO3
アイテム
A Method of Supplementing Reviews to Less-Known Tourist Spots Using Geotagged Tweets
https://kitami-it.repo.nii.ac.jp/records/2000441
https://kitami-it.repo.nii.ac.jp/records/2000441b9af2384-2bcc-4ca0-b529-d2c6c7c56590
名前 / ファイル | ライセンス | アクション |
---|---|---|
applsci-12-02321-v2.pdf (4.9 MB)
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-07-21 | |||||||||||
タイトル | ||||||||||||
タイトル | A Method of Supplementing Reviews to Less-Known Tourist Spots Using Geotagged Tweets | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
アクセス権 | ||||||||||||
アクセス権 | open access | |||||||||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||||||
著者 |
Victor Silaa
× Victor Silaa
× Fumito Masui
× Michal Ptaszynski
|
|||||||||||
抄録 | ||||||||||||
内容記述タイプ | Abstract | |||||||||||
内容記述 | When planning a travel or an adventure, sightseers increasingly rely on opinions posted on the Internet tourism related websites, such as TripAdvisor, Booking.com or Expedia. Unfortunately, beautiful, yet less-known places and rarely visited sightspots often do not accumulate sufficient number of valuable opinions on such websites. On the other hand, users often post their opinions on casual social media services, such as Facebook, Instagram or Twitter. Therefore, in this study, we develop a system for supplementing insufficient number of Internet opinions available for sightspots with tweets containing opinions of such sightspots, with a specific focus on wildlife sightspots. To do that, we develop an approach consisting of a system (PSRS) for wildlife sightspots and propose a method for verifying collected geotagged tweets and using them as on-spot reviews. Tweets that contain geolocation information are considered geotagged and therefore treated as possible tourist on-spot reviews. The main challenge, however, is to confirm the authenticity of the extracted tweets. Our method includes the use of location clustering and classification techniques. Specifically, extracted geotagged tweets are clustered by using location information and then annotated taking into consideration specific features applied to machine learning-based classification techniques. As for the machine learning (ML) algorithms, we adopt a fine-tuned transformer neural network-based BERT model which implements the information of token context orientation. The BERT model achieved a higher F-score of 0.936, suggesting that applying a state-of-the-art deep learning-based approach had a significant impact on solving this task. The extracted tweets and annotated scores are then mapped on the designed Park Supplementary Review System (PSRS) as supplementary reviews for travelers seeking additional information about the related sightseeing spots. |
|||||||||||
言語 | en | |||||||||||
書誌情報 |
en : Applied Sciences 巻 12, 号 5, p. 2321-2321 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | EISSN | |||||||||||
収録物識別子 | 2076-3417 | |||||||||||
DOI | ||||||||||||
識別子タイプ | DOI | |||||||||||
関連識別子 | https://doi.org/10.3390/app12052321 | |||||||||||
権利 | ||||||||||||
言語 | en | |||||||||||
権利情報 | c 2022 by the authors. Licensee MDPI | |||||||||||
出版者 | ||||||||||||
出版者 | MDPI | |||||||||||
言語 | en | |||||||||||
著者版フラグ | ||||||||||||
言語 | en | |||||||||||
値 | publisher | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | VoR | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |