ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 洋雑誌

A Method of Supplementing Reviews to Less-Known Tourist Spots Using Geotagged Tweets

https://kitami-it.repo.nii.ac.jp/records/2000441
https://kitami-it.repo.nii.ac.jp/records/2000441
b9af2384-2bcc-4ca0-b529-d2c6c7c56590
名前 / ファイル ライセンス アクション
applsci-12-02321-v2.pdf applsci-12-02321-v2.pdf (4.9 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2023-07-21
タイトル
タイトル A Method of Supplementing Reviews to Less-Known Tourist Spots Using Geotagged Tweets
言語 en
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Victor Silaa

× Victor Silaa

en Victor Silaa

Search repository
Fumito Masui

× Fumito Masui

en Fumito Masui

Search repository
Ptaszynski, Michal

× Ptaszynski, Michal

en Ptaszynski, Michal

Search repository
抄録
内容記述タイプ Abstract
内容記述 When planning a travel or an adventure, sightseers increasingly rely on opinions posted on
the Internet tourism related websites, such as TripAdvisor, Booking.com or Expedia. Unfortunately,
beautiful, yet less-known places and rarely visited sightspots often do not accumulate sufficient
number of valuable opinions on such websites. On the other hand, users often post their opinions
on casual social media services, such as Facebook, Instagram or Twitter. Therefore, in this study, we
develop a system for supplementing insufficient number of Internet opinions available for sightspots
with tweets containing opinions of such sightspots, with a specific focus on wildlife sightspots. To
do that, we develop an approach consisting of a system (PSRS) for wildlife sightspots and propose
a method for verifying collected geotagged tweets and using them as on-spot reviews. Tweets
that contain geolocation information are considered geotagged and therefore treated as possible
tourist on-spot reviews. The main challenge, however, is to confirm the authenticity of the extracted
tweets. Our method includes the use of location clustering and classification techniques. Specifically,
extracted geotagged tweets are clustered by using location information and then annotated taking
into consideration specific features applied to machine learning-based classification techniques. As
for the machine learning (ML) algorithms, we adopt a fine-tuned transformer neural network-based
BERT model which implements the information of token context orientation. The BERT model
achieved a higher F-score of 0.936, suggesting that applying a state-of-the-art deep learning-based
approach had a significant impact on solving this task. The extracted tweets and annotated scores are
then mapped on the designed Park Supplementary Review System (PSRS) as supplementary reviews
for travelers seeking additional information about the related sightseeing spots.
言語 en
書誌情報 en : Applied Sciences

巻 12, 号 5, p. 2321-2321
ISSN
収録物識別子タイプ EISSN
収録物識別子 2076-3417
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/app12052321
権利
言語 en
権利情報 c 2022 by the authors. Licensee MDPI
出版者
出版者 MDPI
言語 en
著者版フラグ
言語 en
値 publisher
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-21 05:37:50.458723
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3