ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  1. 学術雑誌論文
  2. 洋雑誌

Vision-Based Moving Obstacle Detection and Tracking in Paddy Field Using Improved Yolov3 and Deep SORT

https://kitami-it.repo.nii.ac.jp/records/2000438
https://kitami-it.repo.nii.ac.jp/records/2000438
e678bf59-d49b-4958-9e31-defeb5eabb9c
名前 / ファイル ライセンス アクション
sensors-20-04082.pdf sensors-20-04082.pdf (4 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2023-07-20
タイトル
タイトル Vision-Based Moving Obstacle Detection and Tracking in Paddy Field Using Improved Yolov3 and Deep SORT
言語 en
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Zhengjun Qiu

× Zhengjun Qiu

en Zhengjun Qiu

Search repository
Nan Zhao

× Nan Zhao

en Nan Zhao

Search repository
Lei Zhou

× Lei Zhou

en Lei Zhou

Search repository
Mengcen Wang

× Mengcen Wang

en Mengcen Wang

Search repository
Liangliang Yang

× Liangliang Yang

en Liangliang Yang

Search repository
Hui Fang

× Hui Fang

en Hui Fang

Search repository
Yong He

× Yong He

en Yong He

Search repository
Yufei Liu

× Yufei Liu

en Yufei Liu

Search repository
抄録
内容記述タイプ Abstract
内容記述 Using intelligent agricultural machines in paddy fields has received great attention.
An obstacle avoidance system is required with the development of agricultural machines. In order to
make the machines more intelligent, detecting and tracking obstacles, especially the moving obstacles
in paddy fields, is the basis of obstacle avoidance. To achieve this goal, a red, green and blue (RGB)
camera and a computer were used to build a machine vision system, mounted on a transplanter.
A method that combined the improved You Only Look Once version 3 (Yolov3) and deep Simple
Online and Realtime Tracking (deep SORT) was used to detect and track typical moving obstacles,
and figure out the center point positions of the obstacles in paddy fields. The improved Yolov3 has
23 residual blocks and upsamples only once, and has new loss calculation functions. Results showed
that the improved Yolov3 obtained mean intersection over union (mIoU) score of 0.779 and was
27.3% faster in processing speed than standard Yolov3 on a self-created test dataset of moving
obstacles (human and water buffalo) in paddy fields. An acceptable performance for detecting and
tracking could be obtained in a real paddy field test with an average processing speed of 5–7 frames
per second (FPS), which satisfies actual work demands. In future research, the proposed system could
support the intelligent agriculture machines more flexible in autonomous navigation.
言語 en
書誌情報 en : Sensors

巻 20, 号 15, p. 4082-4082, 発行日 2020-07
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/s20154082
権利
言語 en
権利情報 c2020 by the authors. Licensee MDPI
出版者
出版者 MDPI
言語 en
著者版フラグ
言語 en
値 publisher
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-20 00:47:36.928397
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3