ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学術雑誌論文
  2. 洋雑誌

Fundamental Issues of Concept Mapping Relevant to Discipline-Based Education: A Perspective of Manufacturing Engineering

https://kitami-it.repo.nii.ac.jp/records/2000235
https://kitami-it.repo.nii.ac.jp/records/2000235
19ee3b4c-098f-4482-8a96-ae340d119461
名前 / ファイル ライセンス アクション
education-09-00228.pdf education-09-00228.pdf (1.4 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2022-05-25
タイトル
タイトル Fundamental Issues of Concept Mapping Relevant to Discipline-Based Education: A Perspective of Manufacturing Engineering
言語 en
言語
言語 eng
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 AMM Sharif Ullah

× AMM Sharif Ullah

en AMM Sharif Ullah

Search repository
抄録
内容記述タイプ Abstract
内容記述 This article addresses some fundamental issues of concept mapping relevant to
discipline-based education. The focus is on manufacturing knowledge representation from the
viewpoints of both human and machine learning. The concept of new-generation manufacturing
(Industry 4.0, smart manufacturing, and connected factory) necessitates learning factory (human
learning) and human-cyber-physical systems (machine learning). Both learning factory and
human-cyber-physical systems require semantic web-embedded dynamic knowledge bases, which are
subjected to syntax (machine-to-machine communication), semantics (the meaning of the contents),
and pragmatics (the preferences of individuals involved). This article argues that knowledge-aware
concept mapping is a solution to create and analyze the semantic web-embedded dynamic knowledge
bases for both human and machine learning. Accordingly, this article defines five types of knowledge,
namely, analytic a priori knowledge, synthetic a priori knowledge, synthetic a posteriori knowledge,
meaningful knowledge, and skeptic knowledge. These types of knowledge help find some rules
and guidelines to create and analyze concept maps for the purposes human and machine learning.
The presence of these types of knowledge is elucidated using a real-life manufacturing knowledge
representation case. Their implications in learning manufacturing knowledge are also described.
The outcomes of this article help install knowledge-aware concept maps for discipline-based education.
言語 en
書誌情報 en : Education Sciences

巻 9, 号 3, p. 228, ページ数 14, 発行日 2019-08
ISSN
収録物識別子タイプ EISSN
収録物識別子 2227-7102
DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.3390/educsci9030228
権利
言語 en
権利情報 © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
出版者
出版者 MDPI
言語 en
著者版フラグ
言語 en
値 publisher
出版タイプ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2022-05-25 07:48:56.993607
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3