WEKO3
アイテム
Vibration‐based structural state identification by a 1‐dimensional convolutional neural network
https://kitami-it.repo.nii.ac.jp/records/2000035
https://kitami-it.repo.nii.ac.jp/records/2000035bb4e5bb0-2412-444e-ab5f-6c31646835ce
名前 / ファイル | ライセンス | アクション |
---|---|---|
https://kitami-it.repo.nii.ac.jp/record/2000035/files/Comput Aided Civ Inf. 2019, 34, 822? 839.pdf (1.8 MB)
|
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-04-26 | |||||||||||
タイトル | ||||||||||||
タイトル | Vibration‐based structural state identification by a 1‐dimensional convolutional neural network | |||||||||||
言語 | en | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
アクセス権 | ||||||||||||
アクセス権 | open access | |||||||||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||||||||
著者 |
ZHANG, YOUQI
× ZHANG, YOUQI× 宮森, 保紀
WEKO
280
× 三上, 修一× 齊藤, 剛彦 |
|||||||||||
抄録 | ||||||||||||
内容記述タイプ | Abstract | |||||||||||
内容記述 | Deep learning has ushered in many breakthroughs in vision‐based detection via convolutional neural networks (CNNs), but the vibration‐based structural damage detection by CNN remains being refined. Thus, this study proposes a simple one‐dimensional CNN that detects tiny local structural stiffness and mass changes, and validates the proposed CNN on actual structures. Three independent acceleration databases are established based on a T‐shaped steel beam, a short steel girder bridge (in test field), and a long steel girder bridge (in service). The raw acceleration data are not pre‐processed and are directly used as the training and validation data. The well‐trained CNN almost perfectly identifies the locations of small local changes in the structural mass and stiffness, demonstrating the high sensitivity of the proposed simple CNN to tiny structural state changes in actual structures. The convolutional kernels and outputs of the convolutional and max pooling layers are visualized and discussed as well. | |||||||||||
言語 | en | |||||||||||
書誌情報 |
en : Computer‐Aided Civil and Infrastructure Engineering 巻 34, 号 9, p. 822-839, 発行日 2019-09 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | EISSN | |||||||||||
収録物識別子 | 1467-8667 | |||||||||||
DOI | ||||||||||||
識別子タイプ | DOI | |||||||||||
関連識別子 | https://doi.org/10.1111/mice.12447 | |||||||||||
権利 | ||||||||||||
言語 | en | |||||||||||
権利情報 | This is the peer reviewed version of the following article: Zhang, Y, Miyamori, Y, Mikami, S, Saito, T. Vibration‐based structural state identification by a 1‐dimensional convolutional neural network. Comput Aided Civ Inf. 2019; 34: 822? 839., which has been published in final form at https://doi.org/10.1111/mice.12447. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. | |||||||||||
出版者 | ||||||||||||
出版者 | Wiley | |||||||||||
著者版フラグ | ||||||||||||
値 | author | |||||||||||
出版タイプ | ||||||||||||
出版タイプ | AM | |||||||||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa | |||||||||||
リンク |
Yorozugawa Bridge Database 1/6 State_0
Yorozugawa Bridge Database 2/6 State_1 Yorozugawa Bridge Database 3/6 State_2 Yorozugawa Bridge Database 4/6 State_3 Yorozugawa Bridge Database 5/6 State_4 Yorozugawa Bridge Database 6/6 State_5 |