@article{oai:kitami-it.repo.nii.ac.jp:00008865, author = {Xu, Weifeng and Ding, Guochang and Yokawa, Ken and Balu?ka, Franti?ek and Li, Qian-Feng and Liu, Yinggao and Shi, Weiming and Liang, Jiansheng and Zhang, Jianhua}, issue = {1}, journal = {Scientific Reports}, month = {}, note = {Arabidopsis thaliana is a widely used model plant for plant biology research. Under traditional agar-plate culture system (TPG, traditional plant-growing), both plant shoots and roots are exposed to illumination and roots are grown in sucrose-added medium. This is not a natural environment for the roots and may cause artifact responses. We have developed an improved agar-plate culture system (IPG, improved plant-growing) where shoots are illuminated but roots are grown in darkness without sucrose addition. Compared to TPG, IPG produced plants with significantly less total root length, lateral root length and root hair density, although their primary roots were longer. Root gravitropism, PIN2 (an auxin efflux carrier) abundance, H+ efflux or Ca2+ influx in root apexes, were weaker in IPG-grown roots than those in TPG-grown roots. We conclude that IPG offers a more natural way to study the root growth and response of Arabidopsis thaliana.}, title = {An improved agar-plate method for studying root growth and response of Arabidopsis thaliana}, volume = {3}, year = {2013} }