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In plants, growth of roots and root hairs is regulated by the fine cellular control of pH
and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one
of the Good’s buffers has broadly been used for buffering medium, and it is thought to
suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of
MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown
that, in nature, roots require different pH values on the surface of specific root apex
zones, namely meristem, transition zone, and elongation zone. Despite the fact that
roots always grow on a media containing buffer molecule, little is known about impact
of MES on root growth. Here, we have checked the effects of different concentrations
of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of
MES significantly inhibited root growth, the number of root hairs and length of meristem,
whereas 0.1% promoted root growth and root apex area (region spanning from the
root tip up to the transition zone). Furthermore, superoxide generation in root apex
disappeared at 1% of MES. These results suggest that MES disturbs normal root
morphogenesis by changing the ROS homeostasis in root apex.
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INTRODUCTION

Good et al. (1966) selected and reported buffers with less toxicity and less reactivity to biological
compounds. Since then, these buffers were introduced to enormous amount of laboratory-based
experiments. Since eighties of the last century, many studies using plant hydroponic culture
have been reporting the availability of MES molecule for buffering pH in liquid culture media.
Imsande and Ralston (1981) demonstrated that 1–2mMof MES solution has an excellent buffering
capacity and it shows neither inhibition of nodulation nor lowering of nitrogen fixation in soybean
hydroponic culture. Bugbee and Salisbury (1985) reported that MES did not significantly decrease
growth as measured by the seven growth parameters in any of the five species. 5 mM of MES was
shown no impact on growth or uptake of most nutrients. Potassium uptake was even enhanced by
the MES buffer in non-nodulated seedlings of soybean (Schuttler, 1987).

MES, 2-(N-morpholino)ethanesulfonic acid, is one of broadly used Good’s buffers. This is
broadly used to regulate pH value for plants culture medium, reagent solution, and physiological
experiments. Since the pKa value of MES is 6.15 at 20◦C, it is thought to be suitable for
plant growth in terms of nutrient uptake, e.g., for Arabidopsis at pH 5.8. Besides MES, HEPES,
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PIPES andMOPS are also well-known Good’s buffers as synthetic
zwitterionic buffers utilizes for culture of living organisms both
for animals and plants.

Meanwhile, some studies have been reporting considerable
problems caused by a chemical reaction between buffermolecules
and other compounds in the media. In the presence of high
concentrations of MES and PIPES, the polymerization of purified
tubulin was observed using electron microscope (Waxman et al.,
1981). For plant experiments, MES was reported to lower
nitrogen fixation and plant growth in white clover (Rys and
Phung, 1985). Medeiros et al. (1993) reported that 2 mM
MES in hydroponic culture reduced shoot and root dry matter
yields in maize (Zea mays L.) and increased accumulation of
N, Ca, Mg, Mn, and Zn in shoot. Miyasaka et al. (1988)
reported that Mg, Mn, and Zn uptake was decreased in
winter wheat. MES was reported to perturb normal growth
of cucumber in hydroponic condition, because MES oxidizes
Mn2+ to Mn3+ and precipitates it from the nutrient solution,
and thus nutrient uptake was inhibited due to this direct
chemical reaction (Stahl et al., 1999). Importantly, 4 mM
MES cannot maintain pH value for long period in hydroponic
condition. The pH was decreased from 6.5 to 4.0 just for
5 days (Nicholas and James, 1993). It was also reported
that MES inhibits the adventitious root formation from apple
stem disks at 10 mM of concentration (De Klerk et al.,
2008).

In addition to compounds prepared in media such as
nutrients, there are numerous biomolecules in living organisms
which interact with these buffers. Reactive oxygen species (ROS)
and reactive nitrogen species (RNS) are considered as important
primary signaling molecules playing a role in the propagation
of cellular physiological information. As an interaction with
RNS, Lomonosova et al. (1998) found out the production of
hydrogen peroxide in the presence of peroxynitrite (ONOO−;
one of RNS) and HEPES buffer. HEPES was also shown to
consume superoxide (one of ROS) and nitric oxide (NO)
(Keynes et al., 2003). Very intriguingly, the combination of
HEPES and riboflavin, often added as vitamin, in the culture
medium drastically reduced NO content under the laboratory
light environment (Keynes et al., 2003). Light-activated riboflavin
accelerated the reaction mediated by HEPES (Keynes et al.,
2003). In fact, piperazine ring-based buffers such as HEPES and
PIPES have the ability to form radicals (Grady et al., 1988).
These findings suggest that such buffers potentially interferes
cellular ROS/RNS homeostasis. In this respect, a biochemical
study demonstrated that a normal peroxidase activity for
oxidizing phenolics was strongly interfered in the presence of
MES at concentrations of 5 mM in the solution, due to the
replacement of target substrate with MES molecule (Baker et al.,
2007).

Surprisingly, 2.5–10 mM (ca. 0.05–0.2% w/v) of MES has
been used as a proper concentration for culture media since
Arabidopsis has been introduced as model plant several decades
ago. It implies that plant peroxidase, one of main functions is
to compose cell wall, might be affected as roots always contact
to buffer-containing media. Roots require precise control of pH
value and ROS homeostasis for their normal morphogenesis in

different specific zones (namely; root tip, meristematic zone,
transition zone, and elongation zone). Therefore, the effect of
buffer, which potentially modifies the culture environments, must
be assessed. Here, we observed the followings using roots of
Arabidopsis seedlings, (1) MES enhanced the root growth as well
as the number of root hairs at 0.01% (w/v) and 0.1%, whereas
1% inhibited, (2) MES enhanced the root waving phenotype, (3)
MES promoted the enlargement of meristem at 0.1%, (4) 1%MES
depleted apical root meristems. Less superoxide accumulation
at the root apices was found in the MES-exposed roots when
compared to the control roots.

MATERIALS AND METHODS

Plant Growth Condition
Seeds of Arabidopsis thaliana were sterilized with 2% NaClO
(ROTH, Karlsruhe, Germany) containing 0.1%Triton-X (ROTH,
Karlsruhe, Germany) for 5 min. These seeds were washed in
water for four times. Seeds were planted on 1/2 MS media
(Duchefa, Haarlem, The Netherlands) containing 1% (w/v)
sucrose (pH 5.8 with KOH) solidified with 0.4% (w/v) phytagel
(Sigma, Steinheim, Germany). Each concentration of MES
(Duchefa, Haarlem, The Netherlands) was added to 1/2 MS
media before autoclaved. The petri dishes were incubated at 4◦C
for 1 day for imbibition and were put vertically at 23–25◦C in
16 h light/8 h dark (light intensity: ∼120 µmol/s/m2, humidity:
∼50%). At the time point of 3 and 6 days, pictures of the seedlings
were taken with EOS Kiss X7 (Canon, Tokyo). Root lengths were
measured by ImageJ software (ver. 1.43u for Mac OSX1). The
number of waves were counted and compared in 6 day-old roots
grown in different MES concentrations.

Microscopic Observation
Images of root hairs were taken through 0.8× objective lens of
a stereomicroscope Leica MZFLIII (Solms, Germany). Images
of root apices were taken through 10× objective lens of a light
microscope Leica DM750 (Solms, Germany). Root hairs and
distances between root tip to root growth were measured by
ImageJ software.

Histochemical NBT Staining for
Superoxide Detection
To detect the presence of superoxide in root apex grown
in different concentrations of MES, 6 day-old seedlings were
incubated for 5 min in the staining solution of 300 µM nitroblue
tetrazolium salt (NBT; Fluka, Germany) dissolved in 0.1 M Tris-
HCl, 0.1 M NaCl, 0.05 MMgCl2 (pH = 9.5). Seedlings were then
observed and imaged under a light stereomicroscope.

Statistical Analysis
All numerical data obtained here were analyzed and tested
in appropriate statistical methods. Tukey’s HSD (honestly

1http://imagej.nih.gov/ij/

Frontiers in Plant Science | www.frontiersin.org 2 February 2016 | Volume 7 | Article 79

http://imagej.nih.gov/ij/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Kagenishi et al. MES Buffer Affects Root Growth

significant difference) was applied to test a level of significance
at p < 0.05 using R software (R for Mac OS X Cocoa2).

RESULTS

Effect of MES Buffer on Root Growth
ArabidopsisCol-0 seedswere germinated and grown on the media
containing four different concentrations of MES (0, 0.01, 0.1, and
1%). The MES-containing media at this range of concentration
showed no effect on seed germination (data not shown). The root
length was then measured at the time point of 3 and 6 days after
germination.

Three days after germination, the average of root lengths
showed significant different among 0, 0.01, 0.1, and 1% MES
treatments. As Figure 1B shows, 0.01 and 0.1% ofMES promoted
the growth whereas 1% of concentration inhibited. Similarly,
6 days after germination, both 0.01 and 0.1% of MES still
promoted the root growth (Figures 1A,C). These data indicates
low MES concentration (in the range from 0.01 to 0.1%) in 1/2
MS phytagel enhances root growth from early developmental
stage of seedlings, however, 1% MES inhibited. In addition to the
growth, we observed the effect of MES on root growth behavior,
so-called waving phenotype, which is known to reflect a root
tropic growth affected by several physical factors such as gravity,
light, touch etc. (Okada and Shimura, 1990; Simmons et al.,
1995). Therefore, the frequency of root waving on each MES
containing plate was also assessed. In the result, waving frequency
was enhanced as MES concentration increased (Figures 1A,D).

As we described in the introduction part, pH and ROS have
an important role for root growth. The formation of root hair
also requires fine control of those parameters. Here the impacts
of MES on root hairs in 6 days after germination seedlings were
compared. Images of roots were taken through 0.8× objective
lens of a stereomicroscope. As Figure 1E shows, 1% of MES
drastically inhibited normal root hair formation. Lengths of five
root hairs from five different roots (n = 25) in each treatment
were measured and averaged. In the result, MES increased the
length of root hairs when it is at 0.01% (p < 0.05) compared
to control, but not at 0.1%. Interestingly, 1% MES strongly
suppresses the formation (Figure 1E). The total number of
root hairs did not show significant differences among four MES
concentrations (data not shown).

Root Morphology in Apex Region in the
Presence of MES
As we observed, the presence of MES changed the root growth
and its tropic behavior. Next, we have focused on root apex region
in roots grown in different MES concentrations. This region is
known to play an important role for polar auxin transport, which
controls root tropic behaviors, and it is most sensitive part of
roots to external environments. Figure 2A shows a scheme of
root apices. Cells with asterisks indicate the typical cells in the
transition zone. In this study, we have defined borders between
transition zone and elongation zone as following morphological

2http://www.R-project.org

category: the cell lengths obtain values which are two times higher
as the cell widths (Baluška et al., 2010). Arrows in Figure 2B
indicate positions of the border between transition zone and
elongation zone. A dashed horizontal line indicates the position
of root tips. As depicted in Figures 2B,C, the treatment of
MES resulted in altering the size of root apex region including
transition zone. MES at 0.1% concentration significantly enlarged
the size of area, whereas 1% minified. We observed that only
the number of cells in root apex region (from the root tip to
the elongation zone) was affected by MES exposure, not cell size,
namely 10–15 µm of longitudinal cell length (growth direction)
in the region was observed in all MES treatments. Interestingly,
the abnormality in cell shape in root apex was observed in
1% MES growth condition (also shown Figure 3). It suggests
that high MES condition might interfere with the overall root
morphogenesis similarly to root hair formation (Figure 1E)

Superoxide Localization in Root Apex
As we have described in the introduction part, MES was reported
to interact or interfere with biological redox machineries. Many
studies have already revealed that proper control of redox
homeostasis or ROS signaling are ultimately essential for root
growth and root tropisms. Here we tried to detect the distribution
of superoxide in roots of Arabidopsis using a histochemical
staining method, NBT staining. When NBT compound reacts
with superoxide, formazan visualized as blue precipitation in
cells is immediately formed. Superoxide is known as one of
ROS existing in apex region, which controls cell proliferation
(Tsukagoshi et al., 2010). As shown in Figure 3, NBT staining
pattern in root apex region was observed in control, 0.01 and
0.1% MES condition. However, it completely disappeared in the
1%MES growth condition. It means that superoxide required for
normal root growth in apex region is continuously diminished by
1%MES in growth media during culture on a plate for 6 days.

DISCUSSION

MES Effect to pH and ROS Homeostasis
Because of the pKa value in acidic region, MES compound has
been used for pH buffer by adding to plant culture media in
terms of nutrient uptake. In Arabidopsis research, MES was also
introduced to buffer pH value in agar-solidified plate culture.
In this study, we have demonstrated that the effect of MES on
Arabidopsis root growth, morphogenesis and tropic behavior.
Furthermore, staining superoxide in root apex indicated that
MES strongly interferes with ROS homeostasis at 1% of MES, but
not at 0.1%, which has an important role for root growth.

Foreman et al. (2003) demonstrated that superoxide produced
by plasma membrane-associated NADPH oxidase is necessary
for intracellular Ca2+ elevation leading to root hair formation
and cell expansion. The treatment of diphenylene iodonium
(DPI), inhibitor for flavo-proteins including NADPH oxidase,
resulted in suppressing ROS accumulation and lacking root
hairs (phenocopy of rhd2 mutants; Foreman et al., 2003). The
inhibitory effect of 1% of MES on root growth and root hair
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FIGURE 1 | Root growth and morphology in different concentrations of MES. (A) Appearances of seedlings at 6-day old. The seeds were germinated on 1/2
MS medium containing each concentration of MES. Black marks indicate positions of root apices at 3-day old. (B) Root lengths at 3-day after germination on each
concentration of MES. Error bars indicate standard deviation of the mean (n = 62–72). (C) Root lengths at 6-day after germination old on each concentration of
MES. Error bars indicate standard deviation of the mean (n = 34–65). (D) The number of waves of the roots. Error bars indicate standard deviation of the mean
(n = 17). (E) Root hair formation affected by MES. Lengths of root hairs were measured at position where long root hairs emerge, because the distance from the tip
varies under different MES treatments. Five root hairs were measured from five seedlings. Error bars indicate standard deviation of the mean (n = 25). Different letters
indicate significant difference (Tukey’s HSD test, P < 0.05).
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FIGURE 2 | Comparison of the root apex lengths. (A) A scheme of the root apex. Cells with asterisks indicate the typical cells in transition zone. In this study, we
define the border between transition zone and elongation zone as following morphological category: the cell lengths obtain values which are two times higher as the
cell widths (Baluška et al., 2010). (B) Microscope images of the root apices. Tips of black triangulates indicate positions of the end of transition zone. A dashed
horizontal line indicates the position of root apices. (C) Lengths of the root apices (from the root tip to the end of the transition zone). Error bars indicate standard
deviations of the mean (n = 9–11). Different letters indicate significant difference (Tukey’s HSD test, P < 0.05).

formation can be concluded as the result of disruption of
superoxide production (Figure 3).

Besides ROS homeostasis, pH is also important factor for
cell expansion and root growth regulation. It was already
reported that root hair formation requires acidification of cell
wall (Bibikova et al., 1998), interplay between extracellular pH
and ROS production (Monshausen et al., 2007). Therefore, the
interruption of root hair initiation observed here might be
interpreted due to a high buffering capacity of MES at 1%
concentration in the phytagel media. On the other hand, 0.01
and 0.1% MES treatment significantly enhanced root growth
(Figures 1A–C), and 0.1% MES enhanced root hair length
(Figure 1E) compared to control conditions. This is probably
because of modest buffering ability at this range of concentrations
(0.01–0.1%) support continuous acidification required for root
hair tip growth as well as for the root growth.

MES Impacts on Transition Zone and
Tropism of Roots
In this study, we found out that 0.1% MES increased the
area of apex region including from root tip to the border
between transition zone and elongation zone (Figure 2). With
stereomicroscope, the increase of cell numbers in this root apex
region was observed. Transition zone of the root apex plays an
important role for all root tropic behaviors based on polar auxin
transport, which is accomplished via endocytic vesicle recycling
as found in cells of this region (Baluška et al., 2010). As we
have observed, the enlargement of the region in the presence of
0.1% MES (Figure 2) enhances waving phenotype of growing
roots (Figure 1D). This root waving phenotype is known as a
result of root tropic response of physical contact to agar surface
(Okada and Shimura, 1990; Simmons et al., 1995). It was also
reported that this phenotype became stronger if roots grown
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FIGURE 3 | Light Stereomicroscope pictures of NBT staining for
superoxide detection. Seedlings were grown in different concentrations of
MES for 6 days. These were incubated for 5 min in NBT. The representative
picture is shown here (n = 5).

in light condition (Okada and Shimura, 1990). In addition,
root growth pattern (waving and skewing) was also reported
to change by the hardness of agar medium. 1.5% agar medium
show stronger slanted-growth than 0.8% or 3% (Rutherford and
Masson, 1996). Huang et al. (1995) showed that the rigidity of
phytagel was altered by pH or the concentrations of nutrient
components in media. Since root growth patterns depend on
environmental factors (e.g., light and gravity) as well as physical
contacts to media, high buffer contents are possibly changing
physical properties of agar, affecting root growth on solidified
plates. Very interestingly, the size of root apex correlates with the
waving frequency (Figures 1D and 2), suggesting that the MES-
induced enlargement of this root apex region results in changing
root tropic behavior.

Tsukagoshi et al. (2010) reported that UPBEAT1, a
transcription factor, regulates the expression of peroxidase
in root apex, determining the borderline between transition zone
and elongation zone. There are two different ROS types present
in these two root apex zones playing distinct roles, hydrogen
peroxide in elongation zone and superoxide in transition zone is
for cell differentiation and is for cell proliferation, respectively.
In response to environmental conditions, roots regulate mode
of growth by modulating the position of this borderline via
UPBEAT1 regulation.

Possible reasons for MES-altered the area of transition zone
can be considered as follows. (1) Indirect effect due to MES
buffering ability. Similar to ROS in roots, pH must also be
controlled in different zones in roots (He et al., 2015). Therefore,
roots changed the morphology as a result of an attempt to
recover pH homeostasis or escape from such a situation. (2)
Direct interaction of MES with peroxidases. It was already
reported in a biochemical study as aforementioned. Because of
the molecular structure of MES, it interferes with peroxidase
activities oxidizing phenolic compounds (Baker et al., 2007).
Peroxidases in root apex region might be affected in the

FIGURE 4 | A schematic diagram of MES effects on root growth. MES
disturbs ROS-generating pathway in the root apex, possibly via enzymes
(e.g., peroxidases), affecting the root apex zonation. The ROS (O2

•− ) is
involved in root hair formation, root growth and root tropisms.

presence of MES. It was reported that the appropriate control
of ROS homeostasis by cell wall peroxidase is essential to
regulate root cell elongation (Liszkay et al., 2004). As Figure 3
shows, since superoxide in transition zone was completely
disappeared at 1% concentration, it is likely that MES disturbs
ROS-generating pathway, possibly via enzymes (peroxidases)
or direct scavenging. A schematic summary is shown in
Figure 4.

MES for Laboratory-based Experiments
In addition to extracellular interaction of MES and biological
compounds, it is likely that MES compound is also taken up by
roots and transported to other tissues in plant body such as leaves.
This suggests that incorporated MES molecule in cellular space
might cause lasting reactions interfering with many extracellular
and intracellular signalingmolecules. For example, HEPES buffer,
structurally analogous to MES, drastically consumes endogenous
NO in the presence of riboflavin under laboratory light condition
(Keynes et al., 2003). Culturing plants under light in a growth
chamber needs great caution if growth media contain such
buffers. Impacts of light on growing Arabidopsis roots have
been reported recently. Under illuminated condition, roots alter
their physiological conditions, growth rate, tropisms (Yokawa
et al., 2011, 2013, 2014; Wan et al., 2012; Kagenishi et al.,
2015; Mo et al., 2015; Novák et al., 2015). Importantly, roots
are evolutionarily optimized to grow in darkness in nature.
Light activates root photoreceptors, or probably other light-
absorbing compounds in root cells. In this regard, light may
even bring unexpected results through a reaction with buffer
compounds inside or outside of root cells as already discussed
above (Keynes et al., 2003). Moreover, as we have noted in the
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introduction part, 4 mM of MES (approximately 0.1%)
could not maintain pH value for 5 days in liquid media.
The pH was gradually decreased from 6.5 to 4.0. Potential
problems with MES were pointed out previous study (Nicholas
and James, 1993). All this suggests that the long-term
experiments (longer than a day), that require fine pH control
in liquid or solidified media, must be interpreted with a great
care.

Growth conditions, buffers, other supplemental compounds
such as riboflavin (vitamins) have been chosen to grow
Arabidopsis as a model plant for laboratory-based experiments,
wemust take into account such artificial environments for further
root research.
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