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Chapter 1. CT reconstruction technology 

1.1. Principle of CT Reconstruction  

Dr. J. Radon proved that “Any object can be reconstructed to two-dimensional or three-

dimensional image with projection data of its own.” This is the mathematical basis of the 

reconstruction of CT projection image.[1] 

Collection of projection data of CT is shown in Fig. 1, where r stands for position of 

parallel movement, θ stands for angle of rotation. X ray source and X detector are placed on 

the two sides of scanned object. The X-ray tube rotates by scanned object, and horizontal 

movement is also made in perpendicular to the rotation axis. X ray is attenuated during 

passing through scanned object, and detectors, after collecting data collection set ρ(θ，r), 

sends these data to computers for image reconstruction to get CT images of scanned object. 

 ρ（θ，r）is taken as the projection of f(x,y), and is called “sinogram” as shown in figure 

2. During the process, the transformation of f(x,y) to  ρ（θ，r）is called “Radom 

transformation”. The calculation process of getting the value of f(x,y) by solving out the 

solution to ρ(θ，r) is called “Image Reconstruction” (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

1.2 Back projection reconstruction  

The simplest method for image composition is the back projection calculation of 

projection data, which is called “Back-Projection” (Fig. 3). “Back-Projection” is a process 

where each pixel point passing through X ray is assigned, along the projection direction, the 

same projection value using acquired projection data. Image acquired by summation of back 

projection value along a projection direction is termed as a back projection image. The whole 

back projection process is shown in Fig. 3. The back projection’s verification is conducted by 

choosing a known 2*2 matrix and projection samples got by angles 0, 45, 90 and 135. At first, 

projection data along the corresponding direction is got by the summation of two elements in 

the horizontal direction of a prior image, and then the back projection is conducted towards a 

new matrix along the same projection direction using acquired data until the projection is 

Fig.1 Principle of CT Reconstruction Fig.2 Projection and reconstruction schematic 
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ended.  

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 3, the projection value g(x,y) gotten after iteration by the angle of 135 

degree is inconsistent with f (x,y) of the prior image with significant difference. The prior 

image f(x,y) and reverse projection matrix g(x,y) can be represented using a point spread 

function.  

 

 

Chapter 2. CT reconstruction algorithm  

2.1 Image acquisition 

With the approval of IRB, two CT images of the maxilla in a single series were used for 

the study (Fig. 4: A and B). A spiral CT scanner, Somatom(TM) Plus 4 Volume Zoom 

(Siemens, Erlangen, Germany) was utilized. Exposure conditions were as follows: 120kV, 130 

mAs, 0.5mm slice thickness. The size of a CT image is 512 x 512. The image data sets were 

processed by means of the manipulation of the projection data to simulate difference in data 

quantity and distribution. 

Projection data acquisition was carried out as described in previous reports [2-5]. Each 

pixel of the image has a CT number, which is proportional to X-ray’s transparency. The shape 

of each pixel is a trapezoid, depending on the angle between the projection and each pixel 

square. During the detectability calculation, the pixel value is accumulated by adding the 

respective pixels’ CT numbers. If the shape of the projection is not square, the detectability 

will be divided by the center of the detector element and neighboring elements. The image 

matrix contained 512 pixels. The projection data were acquired in 360 directions at 1° 

intervals, so the pixel number was 512 x 360. Details were described in previous report, Dong 

et al. 2014.[5]  

Fig.3 Inverse projection iteration process 
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The projection data to be used for the CT image reconstruction was adjusted by selective 

removal of data. First, data intervals were increased from 1° to 2° or 4°, the number of 

projection data being reduced from 360 to 180 and 90, respectively. Second, sampling range 

of projection data was reduced from 0° - 360° to 0° - 180°. Third, limited sampling range was 

combined with increased data intervals. Fourth, further projection data elimination was tried 

by using the total variation minimization method applying compressed sensing. For this, both 

45 and 36 were set for the number of projection data in the range of 0° to 180° (4° and 5° 

intervals respectively). Settings utilized are summarized in Table 1 and individual projection 

data are shown as sinograms are illustrated in Fig. 5. 

 

 

Fig.4 Two original images:Left(image A),a slice on 

maxilla level,Right(image B),a slice on maxillary 

sinuse level. 

Fig. 5: Projection data (sinogram) of image A (top row) and image B (bottom row). 

Sampling range and the number of projections are, 0°-360° & 360, 0°-360° & 180,  

0°-360° & 90, 0°-180° & 180, and 0°-180° & 90, respectively, from left to right. 
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2.2 Algebraic reconstruction 

ART is an algebraic image reconstruction method[6-8], converting the problem of image 

reconstruction into a linear equation (2). The formula is the equation between image and 

projection; f = (f 1,  f2…. fm)T, a set of pixel values (vector space); p = (p1, p2…..pn)
T, a set of 

observed projection data (vector space); W={wmn}, M x N dimension matrix of coefficients; 

wmn, crossing length on a pixel(n-th) and X-ray projection (m-th). 

The formulation of the ART algorithm is described as follows: 

   𝑓𝑗
(𝑘+1)

= 𝑓𝑗
(𝑘)

+
𝑃𝑖−∑ 𝑤𝑖𝑛𝑓𝑛

(𝑘)𝑁
𝑛=1

∑ 𝑊𝑖𝑛
2𝑁

𝑛=1
𝑤𝑖𝑗                   (1) 

 

 

Chapter 3. Reconstruction algorithm based on compressed sensing 

3.1 Sparse representation of image 

The compressed sensing [9] theory proposed by D. Donoho et al. [10] in 2006 

provided a theoretical and technical basis for CT image reconstruction in the condition of 

incomplete data acquisition. The theory suggested that the original signal could be restored by 

an appropriate optimization if the signal is sparse (or can be indicated sparsely) and the data is 

sampled at a lower rate than the Nyquist frequency derived from Shannon's theorem. 

Based on the compressed sensing theory, CT images have sparse properties; however, 

medical images are actually not sparse. Under general circumstances, pixel can have a value 

other than zero. By means of a transformation, it is possible to enable that most image pixels to 

tend to zero. As a result, assuming that pixel values in the same texture in CT images are the 

same and changes in pixel values only occur at edges of the texture, the image can be 
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transformed by using the gradient magnitude of the CT image to become approximately sparse 

(Fig. 6). This process is “Discrete Gradient Transformation”.[11-14] 

          ‖𝑓‖
TV

= ∑ ∑ ((𝑓𝑚+1,𝑛
𝑁
𝑛=1

𝑀
𝑚=1 − 𝑓𝑚,𝑛)2 + (𝑓𝑚,𝑛+1 − 𝑓𝑚,𝑛)2)

1

2 ≈ ‖𝛻𝑓𝑚𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗‖

𝑙1
 (2) 

 

The matrix, (m ,n) represents the coordinate on image in horizontal and vertical directions, and 

fm, n represents the gray value of pixel, which indicates the degree of change in concentration 

according to equation (2). 

 

3.2 CT image reconstruction algorithm based on total variation (ART-TV) 

In 2006, Sidky et al. [14-15] proposed a so-called ART-TV method, which is based on the 

minimization of TV, and transformed the CT reconstruction problem into a constrained 

optimization problem. Its reconstructed image model is expressed as 

   𝑚𝑖𝑛𝑇𝑉(𝑓)     𝑠. 𝑡.   𝑊𝑓 = 𝑃                .             (3) 

In Eq. (6), W denotes the projection coefficient matrix, P the projection value, and f the image 

pixel. The total variance definition of image f is 

           𝑇𝑉(𝑓) = |𝛻𝑓| = ∑ √(∇𝑥𝑓)2 + (∇𝑦𝑓)
2

+ 𝜀𝑖,𝑗 .                   (4) 

where fi,jrefers to the gray value of the image F at the pixel point  (i, j), and 𝜀 is a small 

positive constant that avoids discontinuities. The gradient descent method is generally adopted 

to solve the minimum TV value, and its iterative equation is expressed as 

                         𝑓𝑖,𝑗
(𝑘+1)

= 𝑓𝑖,𝑗
(𝑘)

− 𝛼
𝜕𝑇𝑉(𝑓𝑖,𝑗

(𝑘)
)

𝜕𝑓
𝑖,𝑗
(𝑘)                      (5) 

 

3.3 Prior-image-constrained compressed sensing 

In 2008, Chen et al. [16-17] proposed a reconstruction method of prior-image-constrained 

Fig.6: Two images, corresponding to original images in Fig.4,transformed by 

using the gradient magnitude.  
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compressed sensing for low-dose CT reconstruction. The high-quality CT image obtained from 

the patient pre-scans is used as a prior image (PI) of the current scan, and the average pixel 

values of homogeneous material in the prior image are extracted to form a prior value set, which 

will be introduced into the reconstructed image objective function to constrain the image to be 

reconstructed, so that the quality of the reconstructed image can be greatly improved. The 

mathematical model of the PICCS algorithm is expressed as 

          min  𝛼𝑇𝑉(𝑓) + (1 − 𝛼)𝑇𝑉(𝑓 − 𝑓𝑝𝑟)         𝑠. 𝑡        𝑊𝑓 = 𝑃   (6) 

where   𝑓𝑝𝑟 refers to the prior image, and α refers to weight factor, with a value in the 

range from 0 to 1. If 𝛼 = 1, the algorithm is equivalent to the traditional TV algorithm. 

The procedure for the PICCS algorithm is as follows: 

(1) Initialize the reconstruction image f = 0, and relevant parameters; 

(2) Using initial value u and projection data, use ART technique reconstruction once, and 

obtain an upgraded u; 

(3) Obtain f* after minimization solution for equation (1) using a GDT;  

(4) Go back to step (2), repeat f* as an ART reconstructed initial image, and execute step (2) 

and repeatedly until convergence is met. 

 

 

Chapter 4. The influence of successive approximation and compressive sensing  

on the reduction of projection data of  X-ray CT image reconstruction 

4.1 Summary 

CT (computed tomography) imaging technology has achieved shorter scanning times for 

each section and enabled simultaneous acquisition of multiple sections. Three-dimensional 

image processing and visualization techniques have been developed to support clinical 

demands. Greater use of CT technology, however, has resulted in delivering increased 

absorbed doses to patients. Statistical reconstruction methods used for CT image 

reconstruction have been applied clinically. Over the past decade, this development has 

brought new standards for reducing radiation exposure while achieving clinically acceptable 

image quality. 

Computed tomography scanning (computed tomography, CT) plays a more and more 

important role in people's life. Now the algorithms used in CT reconstruction includes two 

types: analytic algorithm and iterative algorithm. The representative algorithm of analytic 

algorithm is filtered back projection (FBP) reconstruction method, its principal is: firstly, the 
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projection data is filtered, then projected back to the original image by the original path, and 

the projection data of all angles are superimposed to obtain the required fault image. The 

advantage of this algorithm is that it is simple, the reconstruction speed is fast, and the edge of 

the image will appear vague or star shaped artifacts. The iterative algorithm includes algebraic 

iterative method and statistical iterative method. Algebraic iteration is an algorithm based on 

the theory of solving equations, and the representative algorithm is Algebraic Reconstruction 

Technique (ART). But it has large amount of calculation with long construction time. The 

statistical iteration method takes the statistical properties of projection data into account, and 

represents Maximum Likelihood Expectation Maximization (ML-EM), etc. Under the 

assumption that projection data obeys Poisson distribution, the ML-EM algorithm establishes 

the imaging model, and its advantage is that the reconstructed image quality is better than the 

FBP algorithm, and the disadvantage is that the convergence speed is slow. 

The sparse modeling theory permits fewer acquisition data to be used for complete 

reconstruction of signal, image, and audio processing. Compressed sensing is a solution for 

ill-posed inverse problems in image reconstruction, such as the sparse-view/under-sampling 

problem and noise removal from projection data. Total variation (TV) regularization is a key 

technology in determining the uniqueness of the solution.  

The purposes of this study were to (1) examine the effect of statistical reconstruction 

algorithms and compressed sensing during TV regularization; (2) retain image quality despite 

projection data elimination; (3) explore the number and distribution of projection data needed 

to maintain adequate image quality; and (4) apply weighted TV values with prior image 

constraints. 

Two CT images of the maxilla in a single series were used. Projection data acquisition was 

carried out. The projection data to be used for CT image reconstruction were adjusted by 

selective data removal. First, data intervals were increased from 1° to 2° or 4° and the number 

of projection data reduced from 360 to 180 and 90, respectively. Second, the sampling range 

was reduced from 0°–360° to 0°–180°. Third, the limited sampling range was combined with 

increased data intervals. Fourth, further projection data elimination was attempted using the 

TV regularization. For this step, the number of projection data were set at 45 and 36 in 0°–

180° (at 4° and 5° intervals, respectively). 

CT images were reconstructed following elimination of the projection data using the four 

methods. Whether the original image quality was maintained was evaluated in previous 

studies [Dong, J, et al. 2014, etc.]. It had been assumed that the use of 360 projection data 

collected in the range of 0°–360° at 1° intervals was sufficient to reproduce the original 
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quality. We aimed to investigate the possibility of further projection data manipulation in 

combination with statistical reconstruction algorithms. An algebraic reconstruction technique 

(ART) and the maximum likelihood-expectation maximization (ML-EM), an iterative 

restoration technique, were examined and compared with the traditional filtered back-

projection (FPB), a standard inverse-Fourier transfer. 

The compressed sensing theory proposed by Donoho, DL (2006) provided a theoretical and 

technical basis for CT image reconstruction under the condition of incomplete data 

acquisition. The theory suggested that, if the signal is sparse and the data are sampled at a 

lower rate than the Nyquist frequency, the original signal could be restored by appropriate 

optimization. Sidky, EY, et al. (2006) proposed the ART-TV technique based on TV 

regularization, which transforms the CT reconstruction issue to a constraint optimization 

problem. 

When the sampling range was 0°–360°, image degradation by radial streak lines was 

apparent in the case of 4° intervals and 90 projections. But it is to a lesser extent on ART- and 

ML-EM-reconstructed images. When the range was 0°–180°, image degradation by radial 

streak lines was apparent, but the degradation was not as severe as the above case. The 

degradation on ART- and ML-EM-reconstructed images was less marked. When the ART-TV 

was applied for the combinations of 4° with 45 and 5° with 36 in 0°–180°, the image 

degradation was minimal despite the reduced projection data. When weighted TV values with 

prior image constraints were applied, images were reconstructed using sparse projection data 

without degradation. 

The root-mean-square error and signal-to-noise ratio values both decreased with the 

reduced projection data, but the quality of the reconstructed images was best when using the 

ART-TV. Both ART and ML-EM required heavier calculation loading than FPB. Those for 

ART and ART-TV were compatible. 

In conclusion, incomplete projection data due to either limited angle collection (from 360° 

to 180°) or thinning of the projection data (from 1° to 5° intervals) permit radiation dose 

reduction while sustaining image quality. It is achievable with the combination of statistical 

reconstruction algorithms and the compressed sensing method with TV regularization and 

prior image constraints. Despite heavier computational calculation loading, these methods 

should gain greater acceptance as computer calculation power continues to expand. 

 

4.2 Materials and image 

Original MDCT images processed in this study are the same as those used in previous 
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articles[2-3]. With Institutional Review Board approval, a CT image of the human maxilla was 

used for the study. The parameters of the X-ray CT machine and exposure conditions were as 

follows: machine, SomatomTM Plus 4 Volume Zoom (Siemens, Erlangen, Germany), 120kV; 

130 effective mAs; 0.5mm in slice thickness; 512×512 pixel matrix. The original image datasets 

were processed by means of the manipulation of the projection data for purposes of this study. 

The processing was executed using MATLAB software (Matlab R2015a version, MathWorks 

Japan, Tokyo) and C-language. The computer used was as follows: Intel Core i7-3770k CPU 

running at 3.50GHz, RAM: 32.0GB, Windows 7 (Microsoft Corporation, Redmond, WA, USA). 

 

4.3. Image noise 

In addition to a subjective and qualitative analysis of the image quality, Root-mean-square 

error (RMSE) and signal noise ratio (SNR) values were replenished to carry out quantitative 

and objective measurements of image noise. 

The equations for calculating root-mean-square error and signal to noise ratio are as follows 

respectively: 

𝑅𝑀𝑆𝐸 =  
1

𝑀×𝑁
∑ (𝑓𝑛,𝑚 −  𝑓 ∗𝑛,𝑚0≤𝑛≤𝑀

0≤𝑚<𝑁 
)2 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔 (
∑(𝑓𝑛̅,𝑚 − 𝑓𝑛.𝑚

∗ )
2

∑(𝑓𝑛.𝑚 − 𝑓𝑛.𝑚
∗ )2

) 

Where, M,N is the length and width of the image, fm,nindicates the pixel value of original 

image, fn̅,m indicates the average of pixel values of original image, fm,n
∗ indicates the image 

pixel value to evaluated.  

RMSE is used to judge the degree of distortion of reconstructed image from original image. 

The smaller RMSE value indicates that reconstructed image is closer to original image. SNR 

reflects the difference of noise level between original and reconstructed images in dB unit. A 

larger SNR value indicates better quality for the reconstructed image. 

 

4.4 Comparison of algorithm based on sparse projection reconstruction 

Reconstructed CT images using ART and ML-EM algorithms are shown (Figs. 7-9). The 

number of iteration were set at 100, 150 and 200, and restricted due to calculation loading. Only 

images after 100 times iterative processing are shown in this section. 

Images shown in Fig. 7 are reconstructed CT images using projection data collected in the 

range of 0° to 360°. Sampling intervals and the number of projections are 2°, 180 and 4°, 90. 

In the case of 4° intervals and 90 projections, image degradation by radial streak lines was 
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apparent. This is clearly observed on FBP-reconstructed images and to a lesser extent on ART- 

and ML-EM-reconstructed images. 

Images shown in Fig.8 are reconstructed CT images using projection data collected in the 

range of 0° to 180°. Sampling intervals and the number of projections are 1°, 180 and 2°, 90. 

Image degradation by radial streak lines was apparent in both cases, but are not as severe 

compared with the case of 4° intervals and 90 projections in Fig. 4. Their appearances on ART- 

and ML-EM-reconstructed images were less marked in comparison with those seen on FBP-

reconstructed images. 

 

Fig. 7: Reconstructed CT images using projection data collected in the 

range of 0° to 360°. Sampling intervals and the number of 

projections are 2°&180 and 4°&90. Three kinds of 

reconstruction methods, FBP. ART and ML-EM were applied. 
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Images shown in Fig. 9 are reconstructed CT images using projection data collected in the 

range of 0° to 180°. Sampling intervals and the number of projections are 4°, 45 and 5°, 36. 

Only the ART combined with TV regularization (ART-TV ) was applied. Compared with 

ART-reconstructed images, the image degradation by some radial streak lines became 

minimum in spite of the reduced number of projection data and ART-TV reconstructed images 

kept the image quality despite the highly reduced projection data utilized. 

Results of subjective noise measurement are indicated in Figs.10 and 11. In Fig. 10, values 

of RMSE and SNR for different reconstruction methods, such as FBP, ART and ML-EM, result 

Fig. 9: Reconstructed CT images using projection data collected in the range of 0° to 180°. Sampling 

intervals and the number of projections are 2°&90, 4°&45 and 5°& 36. Two kinds of 

reconstruction methods, ART only and ART combined with total variation regularization 

(ART-total variation) were applied. 

Fig. 8: Reconstructed CT images using projection data collected in the range of 0° to 180°. 

Sampling intervals and the number of projections are 1°&180 and 2°&90. Three kinds 

of reconstruction methods, FBP. ART and ML-EM were applied. 
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in the images shown in Figs. 4 and 5. In Fig. 1, values of RMSE and SNR in the ART with and 

without TV regularization result in the images in Fig. 4. Both RMSE and SNR values decreased 

with the reduction of projection data, but the image quality constructed by ART-TV was the 

best. Image noise in reconstructed images varied with sampling range when the same number 

of projection data were obtained at different sampling intervals. The bigger the interval the 

worse the quality was. The quality of reconstructed image is the best by using ART algorithm 

with TV regularization in the study. 

 

 

Fig. 10: RMSE and SNR values in images, which are corresponding to those in Fig. 8, reconstructed by three kinds of 

methods, FBP, ART and ML-EM. For example, “0-360-2” means that the projection data was collected in the 

range of 0° to 360° and the sampling interval is 2°. Symbols: A: image A, B: image B, which are same with 

those in Fig. 4. 
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Fig. 11: RMSE and SNR values in images, which are corresponding to those in Fig. 9, reconstructed by two kinds of 

methods, ART only and ART combined with total variation regularization (ART-TV). The range of projection 

data collection was fixed at 0° to 180° . The number of projections were set at 90, 45 and 36. These are keys in 

the figure. Simultaneously these means that sampling intervals were set at 2°, 4° and 5°. Symbols: A: image A, 

B: image B, which are same with those in Fig. 4. 
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Tables 2 and 3 present calculation loadings (calculation times (s, min or hr/min) for 

processing a single CT slice). In comparison with FPB, both ART and ML-EM needed heavy 

calculation loadings (Table 2). Those of ART and ART-TV were compatible (Table 3). 

 

4.5 Discussion 

Image reconstruction from sparse view or noisy projection data has been studied previously 

for oral and maxillofacial radiology [20, 21]. Decreasing the number of projection views is 

regarded as an effective method for patients’ dose reduction. The present study applied 

statistical reconstruction algorithms and compressed sensing methods in an attempt to provide 

a new solution to the problem. 

Compared with the traditional FBP method, statistical reconstruction algorithms, ART and 

ML-EM, make possible the use of markedly reduced projection data, which in turn could 

results in dose savings. Fig. 4 and 5 show that the great difference found between FBP and 

statistical methods. In addition, the combination of intervals of the sampling changed from 1° 

to 4° and ranges of projection data (0° to 360° or 0° to 180°) affected outcomes. The 

reconstruction at 90 projections from 0° - 180° (Fig. 5) showed the much better objective 

image quality than that at 90 projections from 0° - 360° (Fig. 4). Figure 6 shows that the 

ART-TV regularization implemented method showed good image quality compared to ART 

alone. 

To reduce the projection data, the thinning-out method with equal intervals was used. 

However, it is possible that equal interval need not always be used. This would provide for 

the possibility in future to choose the projection data distribution which is optimized for an 
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individual CT examination. For example it is thought that the thinning-out method with 

unequal intervals would be taken for avoiding metal-induced artifacts. 

Image degradations that appeared on some images (Fig. 4 -6) were radial streak lines. 

Reducing these radial lines makes it possible to reduce the projection data further. Additional 

methods, such as nonlinear filtering, nonlinear sparsifying transform and edge-preserving 

method were recently proposed by researchers [22-25]. These methods give the possibility to 

reduce the projection data for CT image reconstruction in oral and maxillofacial imaging. 

The drawback of statistical reconstruction is high and heavy calculation loadings as shown 

in Tables 2 and 3. If the ML-EM is replaced with the OS-EM (Ordered Subset-Expectation 

Maximization), the calculation loading is dramatically reduced. GPGPU (general purpose 

graphic processing unit) machine is also becoming less costly. These were proven in a limited 

way by our previous researches [4, 5]. 

In conclusion, incomplete projection data due to either limited angle collection (from 360° 

to 180°) or thinning of the projection data (from 1° to 5° intervals) can permit radiation dose 

reduction while sustaining image quality. This is achievable with the combination of 

statistical reconstruction algorithms, ART and ML-EM and the compressed sensing method 

with TV regularization. In spite of heavier computational calculation loadings, these methods 

should gain greater acceptance as computer calculation power continues to expand.   
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Chapter 5. CT Reconstruction algorithm based on weighted total variation 

5.1 Summary 

TV_POCS（total variation projections Onto Convex sets）algorithm (in 2006, it was raised 

by Sidky and X. Pan [14-15]) and Prior Image Constrained Sensing, PICCS reconstruction 

method (in 2008, it was raised by Chen [16-17]). Under the condition of sparse projection, the 

quality of the reconstructed image is very good. All the above algorithms use Total Variation 

(TV) transform as the sparse transform of the images. That is, using operators in two directions 

of horizontal and vertical to sparsely represent images. The TV algorithm has the possibility of 

improvement, as it does not make full use of other information in the image. 

In this paper, a weighted total variation sparse transform is proposed. The weight of the 

operators are measured by facilitating the gray scale difference and space distance between the 

pixels in the image, so as to make the reconstructed CT images obtain more accurate sparse 

expression. 

 

5.2 Modified weighted total variation 

Conventional TV uses local information and assigns a weighted penalty at a constant rate. 

The modified weighted TV modified (Liu et al. 2012[26]) considers the gray values of adjacent 

pixels and carries out comparison with associated pixels in succession. Pixels that differ less 

are assigned a greater weight (larger differences receive smaller weight). σ are standard 

deviations based on gaussian function, representing  image brightness weight coefficient 

parameter respectively, In this experiment we define that σ=0.09 so that it can lead to the best 

effect of image. 

 The specific WTV expression is as follows: 

 

‖𝑓‖𝑊𝑇𝑉 = ∑ √ 𝑊𝑚−1,,𝑛(𝑓𝑚,𝑛−𝑓𝑚−1,𝑛)
2

+𝑊𝑚,,𝑛−1(𝑓𝑚,𝑛−𝑓𝑚.𝑛−1)
2

𝑚,𝑛

 

    Where, 𝒘𝒎−𝟏,𝒏＝𝐞𝐱𝐩 [− (
𝑵(𝐟)𝒎,𝒏−𝑵(𝐟)𝒎−𝟏,𝒏

𝛔
)

𝟐

] 

and  𝒘𝒎,,𝒏−𝟏＝𝐞𝐱𝐩 [− (
𝑵(𝐟)𝒎,𝒏−𝑵(𝐟)𝒎,𝒏−𝟏

𝛔
)

𝟐

] 

The calculation formula for the first order derivative of WTV is: 

∂‖f‖WTV

∂fm,n
≈

2wm−1,n(fm,n − fm−1,n) + 2wm,n−1(fm,n − fm,n−1)

√ε + wm−1,n(fm,n − fm−1,n)
2

+ wm,n−1(fm,n − fm,n−1)
2
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−
2wm+1,n(fm+1,n − fm,n)

√ε + wm+1,n(fm+1,n − fm,n)
2

+ wm+1,n(fm+1,n − fm+1,n)
2
 

                        −
2𝑤𝑚,𝑛+1(𝑓𝑚,𝑛+1 − 𝑓𝑚,𝑛)

√ε + 𝑤𝑚,𝑛+1(𝑓𝑚,𝑛+1 − 𝑓𝑚,𝑛)
2

+ 𝑤𝑚−1,𝑛+1(𝑓𝑚−1,𝑛+1 − 𝑓𝑚,𝑛)
2
 

 

5.3  ART-WTV algorithm 

High-quality images similar to the structure of the reconstructed image were used as a 

prior image. Prior experience was used to limit the range of reconstructed pixel values to [0, 1]. 

Calculating the TV minimization aimed for employing the improved weighted total variation 

in the above text.   

The mathematical expression of the proposed technique is as follows: 

𝑓 = argmin (‖𝑓‖WTV+β*U(𝑓𝑚,𝑛,fp-median )PI) 

Where,     𝑈(𝑓𝑚,𝑛, 𝑓𝑝−𝑚𝑒𝑑𝑖𝑎𝑛)
PI

  =  exp [− (
|𝑓𝑚,𝑛−𝑓𝑝−𝑚𝑒𝑑𝑖𝑎𝑛|

σ𝑟
)

2

] 

where fmedian
p

 represents the value of the element closest to the prior image pixel and the 

element to be reconstructed fm,n. We use a neighbor pixel of pixels to be reconstructed to sort 

according to pixel values, and then use either the median or mean. β , and σd represent the 

weight factor, and in this experiment we define that σr = 0.15，and β = 0.25, which can lead 

to the best effect on image. For convergence with a successive approximation, after finding TV, 

the convergence reconstruction is obtained using a linear combination to obtain fART
k+1 from 

pixel values of this fART
k  and the last fART

k−1which will be used as an initial value for iteratively 

updating the next cycle, where the initial value of tk is 1. 

The algorithm is summarized below:        

Step 1: Read in the image and initialize the image to be estimated. 

Step 2: Reconstruct the image with an ART algorithm. 

𝑓𝐴𝑅𝑇
𝑘+1 = 𝑓𝐴𝑅𝑇

𝑘 + 𝑤(𝑖)
𝑃(𝑖) − 𝑤(𝑖)𝑓𝐴𝑅𝑇

𝑘

𝑤(𝑖) ∗ 𝑤(𝑖)
 

Step 3: Based on the prior image, set the range of pixel values [min, max] for the image, 

and carry out correction  to the variable in Step 2. 

𝑓𝐴𝑅𝑇
𝑘 = {

𝑚𝑖𝑛, 𝑓𝐴𝑅𝑇
𝑘 < 𝑚𝑖𝑛

𝑚𝑎𝑥, 𝑓𝐴𝑅𝑇
𝑘 ≥ 𝑚𝑎𝑥

 

Step 4: If the Euclidean distance between the pixel of the image processed with of the ART 
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reconstruction method and the pixel before processing the image meet 

  
‖fk+1−fk‖

‖fk‖
> 𝜀 (ε is a smaller positive number set artifically, take 

8=10 

),  

proceed to Step 5. Otherwise go to end. 

Step 5: Solve weight  function w,m−1,n,n 

Step 6: fp−median
K = median {fm,n

k ; (m, n) ∈ Ω } 

Step 7: Function U(fm,n, fp−median)derivation :
∂   U(fm,n,fp−median)

PI

∂fm,n,
  

Step 8: Solve the minimization of  WTV function. 

                                  𝑓𝑊𝑇𝑉
𝑘,𝑙 = 𝑓𝑊𝑇𝑉

𝑘,𝑙−1 − 𝜆 ∗ 𝑑𝑎 ∗
𝜐𝑊𝑇𝑉

𝑘,𝑙−1

‖𝜐𝑊𝑇𝑉
𝑘,𝑙−1‖

 

                                  𝑓𝑊𝑇𝑉
𝑘 =   𝑓𝑊𝑇𝑉

𝑘 +  𝛽 ∗  𝑈(𝑓𝑚,𝑛, 𝑓𝑝−𝑚𝑒𝑑𝑖𝑎𝑛)
𝑃𝐼

′
 

                                   𝑓𝐴𝑅𝑇
𝑘+1 ← 𝑓𝑊𝑇𝑉

𝑘  

Step 9: Linear combination acceleration. 

                                    𝑓𝐴𝑅𝑇
𝑘+2 = 𝑓𝐴𝑅𝑇

𝑘+1 +
𝑡𝑘 − 1

𝑡𝑘
(𝑓𝐴𝑅𝑇

𝑘+1 − 𝑓𝐴𝑅𝑇
𝑘 ) 

                                   tk+1 =
1 + √1 + 4 ∗ (tk)2

2
 

                                      tk ← tk+1 

 

5.4  Comparison of Algorithm Based on Incomplete Projection Reconstruction 

5.4.1. Reconstruction Algorithm of CT with Sparse Projection 

The projection data collection was restricted at 90°, 60° and 45° view directions at the 

sampling range of 0° -180° and reconstructed image quality was compared between FBP, ART-

TV, EM-TV and our proposed technique. The iterations were set at 100, 200, 300, 500 and 

1,000. Differences in reconstructed images were not so large for  iteration times of larger than 

100, so that iteration times for all processing algorithms were set at 100. For ART-TV and EM-

TV algorithms, λ value was set at 0.5.  

Fig. 12 shows reconstructed images by various reconstruction algorithms and their settings. 

Fig. 4 shows that streak-like artifacts significantly appeared reconstructed on images 

reconstructed by the FBP algorithm and such artifacts were slightly appeared on images 

processed by ART-TV and EM-TV algorithms at reduced view directions (60° and 45°) at the 

sampling range of 0° -180°. However, our proposed methods suppressed such streak-like 

artifacts.  
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Fig. 12 shows an image noise index, normalized mean square error (NMSE). Results 

showed lower values at EM-TV and lower values at reduced view directions, 45°.  

 

 

 

5.4.2 Reconstruction Algorithm of CT with Incomplete Projection 

Figs. 14 and 15 shows reconstructed images by various reconstruction algorithms and their 

settings, especially varying the angle range (less than 180°) of the projection data collection. 

Fig. 12: Reconstructed images from the original image, which is shown in Fig. 4, left. The projection 

data were collected in the range of 0° to 180°. The number of projection data were 90 (top row), 60 

(middle row), 45 (bottom row) since sampling intervals were set at 2°, 3°, 4° by equal thinning. 

Reconstruction algorithms were, FBP, ART-TV, EM-TV, and our proposed method, from far left 

column to far right column, respectively. 

Fig. 13: Image noise index, NMSE, corresponding to different reconstruction methods and settings in 

Fig. 2. Three values, 90, 60 and 45 on the axis of abscissas are the number of projection data. ART-

WTV-PI is our proposed method. 
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Figs. 14 and 15 reconstruction images with 90 view projection direction. 

 

 

 

 

 

 

 

As shown in Fig. 14, when the angle range of the projection data collection were changed 

from 0° to 110°, 0° to 130°, 0° to 150° to 0° to 170°, all reconstructed images keep the quality 

Fig. 14: Reconstructed images from the original image, which is shown in Fig. 4, left. The projection 

data were collected in the angle range of 0° to 110°, 0° to 130°, 0° to 150°, 0° to 170°, from far left 

column to far right column, respectively. Reconstruction algorithms were, ART-TV (top row), EM-TV 

(middle row), and our proposed method (bottom row).   

Fig. 15: Reconstructed images from the original image, which is shown in Fig. 4, left. The 

projection data were collected in the angle range of 5°-175°, 15°-165°, 25°-160°, 35°-155°, from 

far left column to far right column, respectively. Reconstruction algorithms were, ART-TV (top 

row), EM-TV (middle row), and our proposed method (bottom row).  
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at the range, 0° to 170°, only. In addition, both the EM-TV and our proposed methods also 

provided the high quality at 0° to 150°. These images have comparative image quality with the 

original image, which is shown in Fig.6, left. On other images, severe blurring and slight 

distortion on the right maxilla and right mandibular ramus regions were observed. 

As shown in Fig. 15, when the angle range of the projection data collection were changed 

from 5° to 175°, 15° to 165°, 25° to 160° to 35° to 155°, reconstructed images became blurring 

except for those at 5° to 175° (far left column) for all three reconstruction algorithms. However, 

on other images severe blurring and slight distortion were observed. 

 

5.5 Discussion 

This is a study to explore the optimized X-ray CT reconstruction algorithms for the sparse 

projection data at various settings. Our proposed method was a modified algorithm for the X-

ray CT image reconstruction to improve the quality of restored images. Our proposed method 

was essentially made of the combination with a weighted TV (WTV) algorithm (Liu et al. 

2012[26]) and PICCS (Chen et al. 2008; Nett et al. 2008[16-17]) as described in the Method 

section. 

Algebraic Reconstruction Technique based on the TV regularization pattern has confirmed 

the effectiveness on the X-ray CT reconstruction using sparse projection angles. However, the 

traditional TV pattern doesn’t take the differences between pixels into consideration, applying 

the same and even weighing on pixels, and making the edge of pictures too smooth. By contrast, 

the method put forward in this paper, through the complete search of neighboring pixels, 

increases the uneven weighing on the similarity of neighboring pixels and integrates the 

limitation of prior image. Thus, it is restraining the strip artifact more effectively while keeping 

the details of pictures, achieving reconstructed image with higher precision. 

The examination was carried out using a clinical dento-alveolar CT slice (MDCT slice in 

maxilla). As shown in Fig. 14, the sparse projection data collection, such as 60 and 45 view 

directions at the sampling range of 0° -180°, streak-like artifacts are not avoidable with the FPB 

algorithm. Artifacts were significantly suppressed by ART-TV, EM-TV and our methods. 

However, weak streak-like artifacts are also observed on reconstructed images by the ART-TV 

and EM-TV algorithms. But, such artifacts are not shown on the image processed by our 

proposal method, which is shown at the bottom of the far right column in Fig. 4. 

Image noise index, NMSE, was shown in Fig. 15. Our proposed method does not always 

show the good performance in comparison with the EM-TV algorithm, but it was compatible 

with the ART-TV algorithm. However, on the other hand, the occurrence of the streak-like 
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artifacts was dramatically changed between reconstruction algorithms. We thought that the 

recognition of fine anatomical structures was not seriously affected by the noise level difference 

in artifact-free images in the study. 

Figs. 14 and 15 show quality changes in reconstructed images by various reconstruction 

algorithms and their settings, especially varying the angle range (less than 180°) of the 

projection data collection. As shown in Fig. 4, by increasing the angle range of the projection 

data collection were changed from 0° to 110° to 0° to 170°, all reconstructed images showed 

better quality. Especially both the EM-TV and our proposed methods provided the high quality 

at 0° to 150° in addition to 0° - 170°. These images have comparative image quality with the 

original image (Fig. 4, left). As shown in Fig. 5, the production of high-quality images was 

archived at 5° to 175° for  three reconstruction algorithms. The blurring images in Fig. 4 and 

5 indicates that the optimization in our proposal method is necessary. However, the trial to use 

the reduced angle range of the projection data collection, less than 180°, seems to be novel, and 

got good image quality at 170° (0° - 170° and 0° - 170°) and at 0° to 150° .  

Results of the EM-TV algorithm showed a good performance as similar as that of our 

proposed method in Figs. 14 and 15. The change the limitation of data consistency in the TV-

pocs algorithm to the expectation maximization and putting forward the expectation 

maximization-total variation (EM-TV) algorithm was indicated as an application to PET 

imaging (Sawatzky et al. 2008; Yan et al. 2011[27-28]). 

The total variation regularization based on the compressed sensing theory makes possible 

keep the X-ray CT image quality high even if the low dose exposure to patients were carried 

out. We studied the possibility of the combination of a prior image constrained compressed 

sensing (PICCS) reconstruction method (Chen et al. 2008; Nett et al. 2008[16-17]) and a 

weighted TV (WTV) algorithm (Liu et al. 2012[26]) and the application on a clinical CT image 

on maxilla. Our proposed method apparently outperformed the ART-TV algorithm in streak-

like artifact reduction and signal-to-noise ratio. Compared with the TV conversion, the amount 

of calculation increased due to the following reasons: (1) Search range in the calculation of 

weighting function is increased. (2) In order to achieve the balance between image quality and 

calculation amount, the search range can be limited to 7×7 pixels around each pixel. (3) 

Calculation of limiting prior image is added. (4) Although the linear accelerated calculation is 

added, the effect is not very obvious. 

 

5.6 Conclusion 

X-ray CT reconstruction using various sparse projection data was examined with ART-TV, 
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EM-TV, and our proposed method, which is the combination of a prior image constrained 

compressed sensing reconstruction method and a weighted TV algorithm. Our proposed method 

was always outperformed the ART-TV and EM-TV algorithms in streak-like artifact reduction 

and compatible in signal-to-noise ratio characteristics. With restrained projection, similar 

quality images with the original image were reconstructed using projection data in a sampling 

range of 0° to 170° and 5° to 175°. However, ART-TV and EM-TV algorithms caused serious 

blurring. Therefore, our strategy seems  to be a solution to provide high-quality X-ray CT 

image reconstructed from incomplete projection data. 

 

Chapter 6. Research summary 

With the development of CT technology, traditional CT reconstruction algorithms such as 

FBP，ART and ML_EM can not reconstruct images to be used in clinical diagnosis on the 

condition of sparse projection . Compressed sensing principle has solved this problem and thus 

becomes the research focus in the field of CT Imaging. If the image is sparse or can be sparsely 

showed, the original image can be accurately recovered through appropriate optimization with 

data less than full sampling. 

Since the compressed sensing theory was raised in 2006, CT algorithms based on 

Compressed Sensing have made great progress. And CT reconstruction algorithm based on 

Total Variation has received attention due to its simple operation and good effect. However, 

there are some deficiencies in this algorithm. We performed some researches to solve these 

problems. After comparing the reconstruction effects of CT reconstruction algorithm with 

incomplete projection, we found the existing reconstruction method based on Prior Image 

Constrained Sensing(PICCS) may provide an improved reconstruction quality based on 

experimental results. 

The main research results of this paper include: 

1. The comparison of reconstruction results between traditional CT reconstruction algorithm, 

and the study of ART_TV algorithm in the condition of sparse projection. Experiment results 

show that reconstruction done by algebraic iterative method got best results, among all the 

traditional reconstruction algorithms in the condition of sparse projection. But the improvement 

was limited due to the long running period. Compared to traditional CT reconstruction 

algorithms, ART_TV’s reconstructed images have higher imaging quality with excellent 

contrast even if it is under 36 projection data. 

2. Methods of Prior Image Constrained Sensing, PICCS, reconstruction are studied. We 
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found that sparse transformation conducted on image of Total Variation, TV, transformation 

would make edge of the image too smooth. We may make full use of the center point of the 

region, and the brightness difference and distance of adjacent pixels to calculate the weight of 

TV more accurately. Thus, we proposed an improved CT image reconstruction algorithm 

combining WTV and PICCS to guarantee that the reconstructing CT image would become more 

sparse. Experiment results show that CT image of a higher quality can be reconstructed in the 

condition of sparse projection. This is more suitable for the reconstruction of sparse projection 

data, and images of high quality can still be reconstructed in the condition of limiting the 

reconstruction of projection data with a projection range of 5 to 175 degrees,  

Generally, our research demonstrates that CT reconstruction algorithm based on Compressed 

Sensing has important academic and practical values in reducing X-ray radiation on patients 

during CT scan, and improving the quality of CT images. 
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