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Abstract 

The material(s) used to produce a component or product often determine(s) its 

economic, functional, and sustainable characteristics. On the other hand, there 

are different types of materials (metals and alloys, composites, natural materials, 

plastics, ceramics, and foams), and each type consists of a large number of 

members. Therefore, selecting an optimal material for a given component or 

product is not only an important problem but also a difficult one to solve. 

Usually, the entities called material indices (MI) are used to solve a material 

selection problem. MI is a function that consists of some of the material 

properties (mechanical properties, electrical properties, magnetic properties, and 

sustainability properties) and applicable only to a machine element (e.g., beam). 

In real-life, a component cannot be characterized by a single machine element; it 

is a combination of several machine elements (e.g., a combination of beam, 

plate, and column). Therefore, there is uncertainty regarding the material indices 

themselves while selecting an optimal material in a real-life setting, i.e., a 

material index-free procedure makes a material selection process a more 

pragmatic one. In addition, the data regarding a material property (e.g., data 

regarding the tensile strength) exhibits a great deal of variability. Therefore, 

uncertainty associated with the data of material properties needs to be quantified 

before starting the process of selecting an optimal material either by a material 

index-based procedure or by any other means. Based on the abovementioned 

contemplation, one of the objectives of this thesis is to shed some light on the 

uncertainty quantification of material properties. The other objective is to 

develop a material selection model that does not depend on any material indices. 

Accordingly, the following chapters have been incorporated in this thesis. 

Chapter 1 describes the background of the thesis and reports a literature review 

on the uncertainty, material selection methods. It also describes the experimental 

works for determining the properties of the relevant materials. Chapter 2 

describes the mathematical entities needed to define the uncertainty in statistical, 
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probabilistic, and possibilistic means. In addition, the mathematical entities 

needed for the formal computation while selecting a material is also described. 

Chapter 3 shows the experimental results regarding the mechanical properties, 

namely, tensile strength, modulus of elasticity, and stain to failure of a natural 

material called Jute. The uncertainty associated with the properties mentioned 

above has been quantified by using the statistical, probabilistic, and possibilistic 

approaches. It has been found that out of the three approaches, the possibilistic 

approach quantifies the uncertainty more reliably. Therefore, when one uses a 

material property for making a decision, its uncertainty can be put into the 

formal computation using a possibility distribution (e.g., a triangular fuzzy 

number) rather than using a probability distribution (e.g., Weibull distribution) 

or statistical approach. Based on this conclusion, the uncertainties associated 

with the tensile strength, modulus of elasticity, density, CO2 footprint, recycle 

fractions, and water usages of 197 types of Aluminum alloys, 45 types of 

Titanium alloys, and 30 types of Magnesium alloys are represented by 

possibility distributions, as reported in Chapter 4. In addition, a decision model 

is also developed in Chapter 4 to select an optimal material out of the three 

alternatives namely, Aluminum, Titanium, and Magnesium alloys. In this 

decision model, the objective functions (e.g., maximize tensile strength, 

minimize CO2 footprint, and so on) are set by the possibility distributions, too. 

Three of the possibility distributions (i.e., objective functions) are for 

maximizing the tensile strength, modulus of elasticity, and recycle fractions, 

respectively, and the other three are for minimizing the density, CO2 footprint, 

and water usages. The compliance between the possibility of distribution of a 

material property of a type of alloys (e.g., possibility distribution of the tensile 

strength of Aluminum alloys) and the possibility distribution of the 

corresponding objective function (e.g., possibility distribution of maximizing the 

tensile strength) are used to make a decision. It is found that the decision model 

selects an optimal material even though the material properties are uncertain and 

the underlying material indices are not known. In Chapter 5 discusses the 

implications of this study in eco-product development. It also describes how the 
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stakeholders (research organizations and researchers, designers, producers) 

should interact centering the material related decision making processes. Finally, 

Chapter 6 provides the concluding remarks of this thesis. 
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Chapter 1: Introduction 

The notion of uncertainty has earned a great deal of attention from the 

researchers belonging to various academic disciplines. In this study, the 

uncertainty in the material properties is considered and its application, 

particularly, the material selection for developing a product has been 

investigated. The remainder of the chapter is structured as follows: General 

Background, Core Idea, Scope, Objectives, Literature Review, and the Thesis 

Structure. 

 

1.1 General Background  

Engineering materials and their properties, the concept of sustainability, 

uncertainty and their categories, uncertainties in product development 

particularly material selection are described in this subsection. 

 

1.1.1 Materials and their Properties 

In this artificial world, there are many products. Each product has components 

and each component consists of materials, has a specific shape, performs a 

specific function, and is a part of a system in the product. The materials can be 

metals and alloys, ceramics, polymer, rubber, natural material, composite or any 

other combination. Engineering materials are evolving day by day, that means 

the number of engineering materials is uncertain. Therefore, material selection is 

one of the important issues in product development. For example, consider a 

product called a bag as schematically illustrated in Figure 1.1. It has a chamber, 

handle, zipper, and lock. When we develop a bag, we need to define the 

materials for the chamber, handle, zipper, and lock. This also means that we 
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know how to select the optimal materials for each component mentioned in the 

above, from a large number of alternatives. 

 

Figure 1.1: Dependency of a product on different elements. 

In 1945, there were only four categories of engineering materials, namely, 

Metals and Alloys, Polymers and Elastomers, Ceramics and Glasses, and 

Natural Materials. Now, there are two more categories, namely, Foams and 

Composites, resulting more than 80,000 members in the Universe of Materials. 

Refer to (Mousavi-Nasab and Anvari, 2017) and (Ashby, 2007) for more details 

regarding the types of materials. Therefore, material selection is a difficult 

problem to solve. Usually, the material is selected using a function called 

Material Index, MI (Ashby, 2007). The material selection procedure is briefly 

described as follows. 

Consider an object schematically shown in Figure 1.2. Depending on the shape, 

support, and loading condition, it can be considered a Column, Plate, Tie, Beam, 

or Panel or any combinations. It is made from a material, which has different 

properties such as mechanical, chemical, optical, thermal, sustainable, electrical, 

magnetic, atomic, and manufacturing properties.  

 

Product Component

handle

zipper chamber

Shape

Material

Function

System



Introduction 

 

3 

 

 

Figure 1.2: Schematic diagram of a mechanical object under load and torque.  

From the sustainable manufacturing point of view for a mechanical object along 

with other material properties, sustainable properties are important. In this study, 

mechanical and sustainable properties are emphasized. The mechanical 

properties include tensile strength (TS), modulus of elasticity (E), hardness, 

density (ρ), endurance limit (σe), fracture toughness, and compressive strength. 

On the other hand, the sustainable properties (Ashby, 2007) include Carbon 

dioxide (CO2) Footprint, Water usage, Recycle fraction, Cost, Reservation, 

Safety, and Environmental damage. Consider a case, to select materials for a 

mechanical object ‘tie’. Nowadays, while selecting materials, the sustainability 

is taken as one of the key considerations by engineers and researchers. The idea 

of sustainability is described in the following section.  

 

1.1.2 Sustainability  

In this section, the concept of sustainability is enhanced. Sustainability means 

fulfilling the present-day needs without jeopardizing the potential of fulfilling 

the future needs (N.N, 1987; Ullah, et al., 2014). The salient point of 

sustainability is schematically illustrated in Figure 1.3. As seen in Figure 1.3, 

two worlds, artificial (marked as 1) and natural worlds (marked as 2), 

simultaneously exist around us, and they must be synergistic to each other. The 

concept of ‘sustainability’ deals with issues related to the coexistence of natural 

and artificial worlds (Umeda, et al., 2009; Ullah, et al., 2017). In particular, the 

natural world consists of natural resources (water, air, land, ore, biomass, and 

F
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F
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hydrocarbon) whereas the artificial world consists of products (car, road, 

building, plane, train, pen, computer, paper, and many more). Using the natural 

resources, primary energy and materials are produced. Afterward, the primary 

energy and materials are used to produce products and support their lifecycles 

(marked as 4). The artificial world is full of man-made products; each product 

has a life cycle. A lifecycle means the chronological stages of a product, namely, 

conceptualization, design, manufacturing, use, recycle, and landfill. To obtain 

primary materials and energy, resources (marked as 3) are required which are 

obtained from the natural world. If a product (or its lifecycle) needs a large 

amount of energy and materials, it puts burden on the natural resources, and, 

thereby, on the natural world. This means the natural world is exhausted to 

enrich the artificial world by producing and maintaining products. 

 

Figure 1.3: The concept of the life cycle from the viewpoint of the primary 

energy. 

This means that the sustainability is jeopardized if the demands of primary 

energy and materials are not kept within the stipulated limits. Numerous studies 

have shown that the types and usages of materials in the products (i.e., the 

constituents of the artificial world) heavily affect the sustainability (Ullah, et al., 

2014; Ullah, et al., 2013; Shahinur and Ullah, 2017). However, for 

Sustainability
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sustainability, both these worlds must coexist, and we must not overburden the 

natural world as well as fulfill the needs of the artificial world.  

Many strategic goals have been set to achieve sustainability of the environment, 

one important goal is to reduce the global CO2 Footprint by half, by the year 

2050 (Allwood, et al., 2010) schematically shown in Figure 1.4.  

 

Figure 1.4: Important strategy to maintain the sustainability. 

Effective CO2 reduction requires the simultaneous attainment of efficiency in 

terms of materials, energy, and components of products (Allwood, et al., 2010; 

Milford, et al., 2013; Allwood, et al., 2011; Ullah, et al., 2013; Ullah, et al., 

2014). Improving material efficiency means increasing the use of environmental 

friendly materials, increasing material yields, and making lightweight products 

(Allwood, et al., 2010; Milford, et al., 2013; Allwood, et al., 2011; Ullah, et al., 

2013; Ullah, et al., 2014). Energy efficiency denotes deploying renewable 

energy sources, and decreasing energy usage (Ullah, et al., 2013; Ullah, et al., 

2014). It has been found that material efficiency is more effective than energy 

efficiency in achieving the strategic goals of sustainability (Allwood, et al., 

2010; Milford, et al., 2013; Allwood, et al., 2011; Ullah, et al., 2013; Ullah, et 

al., 2014). One of the options for achieving material efficiency is to increase the 

amount of usage of natural materials in various products as much as possible 

(Alves, et al., 2010). The natural materials have low density as schematically 

shown in Figure 1.5 and require low energy for the primary material 

productions. Thus, natural materials are better option for sustainability of the 

product compared to other materials.  

100%
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Figure 1.5: Importance of natural materials on the view point of eco-product 

(Ashby, 2007). 

In this study, a widely used natural material, ‘jute’ has been selected, which 

grows mainly in Bangladesh, India, and China (Anon., 2017). The motivation 

behind selecting the jute fiber is due to their abundant availability in the nature 

followed by cotton and bamboo (Barth and Carus, 2015). It is a natural fibrous 

material having good mechanical (Xia, et al., 2009), thermal (Pandey, et al., 

1993), and sustainable properties. For instance, jute exhibits excellent weight per 

strength ratio compared to the metal. Many researchers have gained interest in 

jute for the sustainable product due to its biodegradable and nontoxic nature. 

However, the knowledge of the natural material is uncertain to take a decision 

on the eco-product manufacturing. The concept of uncertainty is explained in the 

following section. 

 

1.1.3 Uncertainty 

Uncertainty is often understood (semantics) by classifying it into different 

categories, (Booker and Ross 2011; Ross et al., 2013) as follows: 

a) Aleatory uncertainty,  

b) Epistemic uncertainty,  
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c) Reducible uncertainty,  

d) Irreducible uncertainty, and  

e) Inference uncertainty  

In general, aleatory uncertainty refers to uncertainty due to random variability or 

stochastic processes. In case of aleatory uncertainty, distribution is known at the 

beginning and the data vary due to that distribution as schematically illustrated 

in Figure 1.6(a).  

 

Figure 1.6: The variability of data due to different uncertainties. 

Epistemic uncertainty refers to uncertainty due to lack of knowledge or 

imprecision associated with the data and information. In case of epistemic 

uncertainty, it is not known which distribution data will follow as shown in 

Figure 1.6(b). The possibility distribution is generally used to quantify the 

epistemic uncertainty and it is the neutral representation of the uncertainty 

(Ullah and Shamsuzzaman, 2013; Ullah, 2016). The mathematical procedure 

related to this distribution is described in Appendix-A.  

Reducible uncertainty refers to the uncertainty that can be reduced by applying 

different conditions as shown in Figure 1.6 (c). Irreducible uncertainty refers to 
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uncertainty due to natural variability that can be quantified but cannot be 

reduced. In such case, the variability or uncertainty in the data cannot be reduced 

or controlled by physical means (for example chemical modification, x-ray, and 

radiation) as shown in Figure 1.6 (d).  

Inference uncertainty refers to predicting the future from the past, inferring the 

population behavior from a sample, and inferring the system behavior from its 

subsystems. In such case, infinite estimation can be made from finite world as 

shown in Figure 1.6 (e).  

To compute uncertainty in a formal manner (syntax), theories have been 

developed, for example, probability theory, imprecise probability theory, 

evidence theory, possibility theory, and random interval theory (Dempster, 1968; 

Walley, 1991; Walley 2000; Shafer, 1976; Klir, 1990; Zadeh, 1978; Dubois and 

Prade, 1988; Joslyn and Booker, 2004). In certain cases, the theories are based 

on different categories of uncertainty. For example, the probability theory deals 

mainly with the aleatory uncertainty, whereas the possibility theory deals with 

the epistemic uncertainty. Certain theories can deal with multiple categories of 

uncertainty, e.g., imprecise probability theory can deal with aleatory uncertainty 

and the epistemic uncertainty associated with the probabilities of events. 

Nevertheless, the uncertainty of a category can be interpreted in terms of the 

uncertainty of a different category as schematically shown in Figure 1.7 (Klir, 

1999; Dubois et al., 2004; Ullah and Shamsuzzaman 2013).  

Uncertainty in the data can be reduced by physical means (treated by chemical, 

thermal and etc.) as schematically shown in Figure 1.7 and marked as 1. 

Reducible or irreducible uncertainty can be transformed into inference 

uncertainty after application of some theory such as probability, possibility and 

evidence as schematically illustrated in Figure 1.7. 
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Figure 1.7: One types of uncertainty can be transformed into other uncertainty. 

Again, when the distribution of reducible and irreducible uncertainty is not 

known, they become as epistemic uncertainty marked as 3 as schematically 

shown in Figure 1.7 As it is discussed before the epistemic uncertainty can be 

quantified by using previously mentioned theory. Moreover, if the distribution is 

known (probability distribution) they are named as aleatory uncertainty and can 

be quantified using probability theory as shown in Figure 1.7 marked as 4. 

That means the aleatory uncertainty, epistemic uncertainty, and any other 

uncertainty are different from each other in the sense of semantics, but all these 

uncertainties are somewhat same in the computational science, and, thereby, can 

be integrated while developing systems for making decisions under uncertainty 

irrespective of its category. There is uncertainty regarding the material selection 

method, MI, is discussed below.  
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1.1.4 Uncertainty in Material Selection  

Material is an important issue for a component of the product and needs to be 

considered in selecting material. Thus, to select a material for an object from the 

Material Universe, it is required to differentiate one material from other 

materials. Usually, to select a material for a component of the product, a 

function termed as, MI, (Ashby, 2007) is used. The general formula for MI 

(particularly for stiffness and strength limited design for an object) is given by 

equation (1.1).  

cbaETSMI   (1.1) 

The MI is related to three mechanical properties, namely TS, E and ρ which are 

important in selecting a material. In case of optimal material selection, the 

maximum value of the MI should be considered (Ashby, 2007). For example, if 

a tie is considered, it will bear only tensile load and the values of the 

exponentials of the equation (1.1) are a = 1, b = 0, and c = -1. Therefore, the MI 

(one types of knowledge) for tie can be defined using the equation (1.2) (Ashby, 

2007). 



TS
MI   (1.2) 

There are uncertainties in selection of materials using MI. These issues are 

discussed in next section. 

 

1.1.4.1 Uncertain Material Properties 

Knowledge of the material properties comes from experimental investigations 

(e.g., tensile tests, flexural tests, hardness tests, etc.). Let Table 1-a shows the 

mechanical properties (TS and ρ) and MI of a tie for two different materials, A 

and B. It shows that B has higher MI compared to A material. Thus, B material 

is selected for a tie. To select a material based on MI, the material properties are 
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required. The mechanical properties of the tie are determined through the tensile 

test, by applying the tensile load on a sample. Thereafter calculation, the results 

of TS and ρ are found. The procedure is repeated for different samples. The 

experimental results vary from sample to sample. Therefore, it can be inferred 

that there is uncertainty in the data of material properties. As the data of material 

properties are uncertain, it is tough to judge a material according to MI.  

Table 1-a. Data of the material properties of A and B for tie regarding MI. 

 

Material 

Properties 

TS ρ 𝑴𝑰 = 𝑻𝑺
𝝆⁄  

A 300 100 3 

B 200 50 4 

 

1.1.4.2 Uncertainty in MI Calculation 

There is uncertainty in the MI itself. Suppose, there is a ‘Table’ (as shown in 

Figure 1.8) where the top of the ‘Table’ is considered as a plate, two sides of the 

‘Table’ are considered as column and base of the ‘Table’ is considered as a 

beam. That means a product is a combination of multiple components. 

Moreover, the MI of each component is different. Though the MI of the column 

(
𝐸

1
2

𝜌
), beam (

𝐸

𝜌
) and plate (

𝐸
1
3

𝜌
) (Ashby, 2007) are known, however, it is difficult to 

know what will be the MI of the ‘Table’.  

 

Figure 1.8: A mechanical object (‘Table’) is a combination of multiple 

components. 
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Generally, the shapes of the mechanical components are more complex. 

Therefore, it is difficult to calculate the MI of the complex shape. Therefore, MI 

itself is uncertain or cannot be derived. Even though MI can be calculated for the 

different machine elements, MI cannot be calculated for a given product. As MI 

is uncertain, an alternative option for selecting material is required. 

 

1.1.4.3 Uncertainty in MI Method 

There is uncertainty in the material selection using MI method. Consider the 

material selection procedure using MI, from the Material Universe, for a 

mechanical object ‘tie’. As discussed in the previous section, MI of a tie is the 

ratio of TS and ρ. Now if the straight line is drawn in the engineering Material 

Universe plot as schematically shown in Figure 1.9, the value of the slope of the 

straight line will represent the MI of the tie. 

 

Figure 1.9: Various types of materials under same slope line (Ashby, 2007). 

The equation of straight line is 𝑦 = 𝑚𝑥 + 𝑐, where x = ρ, y = TS, m = MI, and c 

= 0. To select an optimal material, MI should always be maximized. From 

Figure 1.9, it can be informed that the materials which lie on MI = 1 are better 

material than those having MI = 0.1 and MI = 0.01. All materials correspond to a 

single slope line, say M1, M2, and M3 of MI are equivalent. That means there are 
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many good materials which can be selected for a tie under MI =1 alone. Now, 

which good material can be selected for the tie? It is difficult to choose a 

material for the tie even though the MI is known. Therefore, it can be inferred 

that MI does not guarantee the selection of a single material.  

From the above description, it is clear that there is uncertainty, (epistemic), in 

the data of material properties, uncertainty in the MI. When MI is uncertain it 

cannot give a guarantee of a single material selection. Thus, it is hard to compare 

one material with another and to make the list of preference of materials. 

Furthermore, sustainable properties cannot be incorporated in the material 

selection procedure under MI. Therefore, it is essential to deal and manage these 

types of uncertainty to ensure the selection of material for the sustainable 

product.  Furthermore, what will be the tool to deal these types of uncertainties? 

It is an important issue.   

 

1.1.5 Objectives or Requirement 

At the early stage of the product development, objectives are partially known. 

These objectives are the customer requirements and it is referred as ‘zero stage’ 

of a solution. For example, if a strong material is required then objective is to 

have a material with high TS. For structural integrity, TS and ρ are needed to be 

maximized and minimized, respectively. For sustainability, CO2 Foot print, 

Water usages, Environmental damage are needed to be minimized whereas the 

Recycle fraction and Safety are needed to be maximized. Therefore, there are 

some conflicting objectives regarding the material selection. Furthermore, if the 

structural integrity is maximized, then it may create a conflict with the 

environmental impact. Furthermore, the shape of the objective function (e.g. 

linear and nonlinear) for a specific requirement is also unknown. As such, how 

to define and manage these conflicting objectives is an important issue. 
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1.2 Core Idea/ How to Deal with Different Uncertainties 

This section describes the core idea to deal with uncertainty of the material 

properties, uncertainty in the MI regarding the selection of material.  

 

1.2.1 Uncertainty Quantification 

As described in Section 1.1.4.1 the raw data of material property (for example 

TS) is not a single value and it varies a lot. In this study, this type of variation in 

material property means a kind of uncertainty, so material cannot be selected 

based on this uncertainty. Therefore, quantification and maintenance of the 

uncertainty for selection of material is a vital issue. Quantification of the 

uncertainty can be done by different approaches. Through literature review, it is 

found that three quantification approaches such as statistical, probabilistic and 

possibilistic are most widely used. The quantified data of the material properties 

can be represented by statistical range or probabilistic form or possibilistic form 

as schematically shown in Figure 1.10. From these three methods which one will 

be used for uncertainty quantification and which is reliable method to quantify 

the uncertainty, is an important issue. In this study, a reliable approach to 

quantify the uncertainty is investigated. 

 

Figure 1.10: Quantification of the uncertainty using three approaches. 

 

Raw Data of 
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1.2.2 Tool for Material Selection  

At the initial stage of product development, MI is unknown and objectives are 

partially known. As the information is not known or partially known, they can 

be represented by a fuzzy function. In this study, two types of possibility 

objective functions have been proposed, namely, maximization and 

minimization as shown in Figure 1.11. Possibility Objective function is selected 

based on requirement and common sense. The maximization function will be 

selected, when a high value of a criterion (say TS) is required as schematically 

depicted in Figure 1.11(a) and vice versa. 

  

(a) (b) 

Figure 1.11: Conflicting objectives representation by (a) Maximization and (b) 

Minimization function 

The membership value of the possibility objective function lies between 0 and 1. 

Therefore, to build the objective function one must consider the range of x-axis, 

named as support. The support as shown in Figure 1.11 is derived from the 

Material Universe. It may be local, semi-local, deterministic or global (detail in 

Chapter 2). If minimum and maximum values of a property are plotted, support 

will be the range of the values of the x-axis. 

Suppose designer’s objective is to have a strong as well as light material for a 

product (like a vehicle body).  There are two objectives in designer 

requirements, such as strong material and light material. High TS is required for 

strong material and low ρ is required for light material. Therefore, for strong 
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material, TS needs to be maximized whereas, for light material, ρ needs to be 

minimized. Thus, the objective function for TS will be maximization function as 

shown in Figure 1.11(a). However, the objective function for ρ will be 

minimization function as shown in Figure 1.11(b). In Figure 1.11 x-axis 

represents the TS and ρ, y-axis represents the degree of belief (DoB).  

 

1.2.3 Compliance 

MI (related with shape and size) of a product is customer dependent (Sharif 

Ullah et al., 2016) or unknown, MI is itself uncertain, and it does not guarantee 

the selection of a single material. Thus, an alternative method to select a material 

is essential. The objectives are known and they are conflicting in nature, which 

can be represented by proposed possibility objective functions. Based on the 

conflicting objectives (general requirements) this section describes the 

alternative way to rank the materials. Consider, the previous example of Section 

1.2.2 where, the two requirements are represented by two objectives functions, 

minimization, and maximization, as shown in Figure 1.11. The value of the 

material property (TS) is assumed as a single value. Now if anyone wants to 

know the material A will fit with the required objective function or not. If fit 

how much fit? Furthermore, how will it be possible to know? To take a decision 

or select a strong material interaction is required between the material properties 

(TS) and objective function. This type of interaction is termed as compliance 

(discuss in Chapter 2). The value of the compliance lies between 0 and 1. The 

physical meaning of the compliance is how much far or close the material 

properties from the ideal condition or objective function. 
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(a) (b) 

Figure 1.12: Compliance between material properties and (a) maximization and 

(b) minimization function. 

It is assumed that there are two materials A and B and their corresponding 

degree of believe (DoB) for TS are 0.8 and 0.4, respectively as shown in Figure 

1.12(a). It can be inferred that material A is a better option than B for strong 

material. Similarly, for light materials selection, the objective is to minimize the 

ρ which can be represented in Figure 1.12(b). From Figure 1.12(b), it can be 

inferred that B material (DoB = 0.7) is better than A for a lighter material.  

Therefore, a strong, as well as light material can be selected using possibility 

distribution function without MI. Thus, using the possibility objective function 

one can represent ones feeling. Furthermore, one can also represent one’s 

requirement through these types of functions. Using compliance one can make a 

ranking of the materials and finally, can select a single material for product 

development. Therefore, MI can be replaced by Compliance calculation between 

the possibility objective function and the data of material property (or criteria). It 

can be said that it is an alternative representation of the MI.  

However, when the data of the material properties is uncertain, the compliance 

calculations are different. According to literature, the uncertainty can be 

represented by statistical range, probabilistic form, and possibilistic form. In the 

previous example of Section 1.2.2, the two requirements are represented by two 
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objectives functions, minimization, and maximization, as shown in Figure 1.11. 

Let, the uncertainties of material properties (TS and ρ) are represented by 

possibility distributions as shown in   Figure 1.13. To obtain a strong material 

between A and B, interaction is required between the maximization objective 

functions (Figure 1.13(a)) and the possibility distributions of TS for 

corresponding materials. 

  

(a) (b) 

Figure 1.13: Compliance between (a) maximization and (b) minimization 

function uncertain (possibility distribution) material properties.  

Now, if the values of compliances of two materials A and B for TS are 0.75 and 

0.39, respectively, it can be inferred that material A is a better option than B for 

strong material. Similarly, for light materials selection, the objective is to 

minimize the ρ which can be represented in Figure 1.13(b). Let the values of 

compliance of A and B are 0.4 and 0.85, respectively. Thus, it can be inferred 

that material B is better than A for a lighter material based on the calculated 

compliances values.   

Similarly, when the uncertainty of the data is represented by statistical range the 

interaction between the objective function and the uncertain data for ρ and TS 

are shown in Figure 1.14. For this type of uncertainty, the compliance means the 

ratio of objective function area and the data range. Material ranking is made 
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based on the compliance calculation (detail in Chapter 2) and finally, a material 

is selected base on the importance of designer on the individual criteria. 

  

(a) (b) 

Figure 1.14: Compliance between (a) minimization and (b) minimization 

function uncertain (range) material properties. 

Now a new approach has been developed for material selection, conflicting 

objectives are represented by two types of possibilistic objective functions, and 

the uncertainty in the data of material properties are quantified and investigate a 

reliable method for quantification. Using compliance analyses between the 

objective functions and the decision-relevant information (quantified data), one 

can compare one material with other materials (using our proposed method). 

Finally, a preference list of materials can be made and a decision can be taken 

based on the preference of criteria as schematically shown in Figure 1.15. In this 

study, this whole method is proposed as a decision model (discuss in Chapter 4).  
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Figure 1.15: Dealing with epistemic uncertainty. 

To produce a component of the product, material selection is required and to 

select the optimal material, specific MI is needed. However, a degree of 

uncertainty is associated with the MI, data of material properties as well as 

material selection method. Therefore, uncertainty quantification is an important 

aspect of product manufacturing. Without uncertainty quantification, product 

development processes may not provide the reliability, durability, quality, and 

functionality of the product. As quantification of uncertainty is necessary, one of 

the objectives of this study is to quantify the uncertainty in the data of material 

properties, particularly mechanical and sustainable properties, and to identify a 

reliable method to quantify the uncertainty. After that, using the quantified data, 

an optimal material will be selected. Basically, now the designers are giving 

importance to the function and shape of the product not emphasizing the 

material. For example, for a long time, there has not been any change in the 

selection of material for the car body. However, the same car is being used in 

cold region as well as in the warm region. If the designer considered the 

materials which would be suitable for both cold and warm weather, a car may 

become more user-friendly and more efficient. Nevertheless, 80% cost of the 

product depends on the materials. Furthermore, researchers are now giving 

emphasize on the material in terms of sustainability. GRANTA with other two 
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companies tries to incorporate the material selection at the beginning of the 

sustainable product designing. Nevertheless, they are not considering the 

uncertainty of the MI, material selection, and the data of material properties. In 

that sense, this study has a good impact on the sustainable product development 

sector. 

 

1.3 Scope of the Work 

Quantification is necessary to select an optimal material for a component of the 

product. Material selection is required for a product to maintain the complexity 

of the production system as well as reliability, durability, sustainability, energy, 

and cost of the product. 

 

1.4 Objectives of the Work 

Objectives of this study are laid below: 

1. To quantify the uncertainty of material properties  

2. To develop a decision model to select a material under uncertainty. 

 

1.5 Literature Review 

In the life cycle of a product, most of the energy consumption (Stoffelsa, et al., 

2017) is due to the material. The materials have been considered as a key factor 

for managing the complexity while designing engineering products (McDowell 

et al., 2010). To achieve a sustainable future, the reduction and diversification of 

material usages (i.e., materials efficiency) are considered as more effective than 

other measures (e.g., energy efficiency) (Allwood et al., 2011; Ullah et al., 2013; 

Ullah et al., 2014). Mayyas et al. (2012a-b) and Poulikidou et al. (2015) have 

shown that the environmental impact of a product depends heavily on the 

materials used in different elements. In addition, materials are limited and some 
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of the materials will not be available after a certain time. Therefore, it is 

important to select proper material for a product, otherwise, sustainability may 

be hampered, and this may be a critical issue for next generation. Therefore, if a 

designer has a clear idea about the appropriateness of a set of materials for 

making the parts of a product at the early stage of the design process, then it 

would be easy for the designer to control the complexity of the subsequent 

design activities (McDowell et al., 2010; Omar, 2011).   

There are different types of tools, used by different researchers to select 

material. Some of them are conventional method (AL-Oqla and Salit, 2017), the 

famous Ashby chart (Ashby, 2007) are procedure based tools. Some of the 

researchers select material using advanced material selection tool and technique 

using based on artificial intelligent (AL-Oqla and Salit, 2017; Gul, et al., 2017) 

system like fuzzy MCDM (Fuzzy VIKOR, fuzzy TOPSIS, and fuzzy 

ELECTRE) PROMETHEE (Gul, et al., 2017), and so. The researchers have 

selected the materials from small component to large and sophisticated product 

for example automotive instrumental panel (Lorenzo, et al., 1995), for high 

entropy alloy (Fu, et al., 2017), sustainable products (Stoffelsa, et al., 2017), 

nuclear machinery (Hosemanna, et al., 2017), for products development. Some 

of the researchers have developed the model for a specific field, while some 

researchers have developed a system which is suitable for material selection and 

not for calculation. However, the developed method or models are complicated, 

mathematical operation, and not efficient, it is necessary to develop an efficient 

method to select the optimal material for uncertain data. 

For environmental performance, materials are highly important (Prendeville, et 

al., 2014). To maintain the sustainability aimed at reduction of the energy 

consumption, material selection is required. For example, to produce light-

weight product and the optimal selection of the material (for sustainability) low 

dense material i.e.  Natural materials (according to engineering material) are the 

better option compared to other materials. There are different types of researches 

on the natural material characterization (Biswas, et al., 2013; Biswas, et al., 
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2011; Hossain, et al., 2014), modification (Shahinur, et al., 2017; Jafrin, et al., 

2009), and eco-product development.  

Development of product using materials requires an understanding of their 

material properties (Alves, et al., 2010). To understand the properties of natural 

fiber based products, two types of experiments have been performed. The first 

type deals with the characterization of composites, where one natural fiber and 

other natural/artificial fiber are used as reinforcing materials (Jawaid, et al., 

2011; Li, et al., 2015; Matějka, et al., 2013; Prachayawarakorn, et al., 2013; 

Shanmugam and Thiruchitrambalam, 2013; Vijaya Ramnath, et al., 2013). The 

main concern of these studies is to elucidate the efficacy of methods for 

improving the material properties of composites. The following issues have been 

studied: improving the dynamic mechanical properties of a jute composite 

(Katogi, et al., 2016) improving the adhesion between a matrix and fibers using 

chemically treated fibers (Ahmed, et al., 2007; Rawal and Sayeed, 2014) 

improving the performance of a composite by changing the weight percentages 

of fibers (Rawal and Sayeed, 2014; Aggarwal, et al., 2013), improving the 

performance of a composite by changing the fiber length (Hu, et al., 2010; Zhou, 

et al., 2013) and orientation (Abdellaoui, et al., 2015; Vijaya Ramnath, et al., 

2014), improving the performance of a composite through lamination (Ahmed, 

et al., 2007; Abdellaoui, et al., 2015; Vijaya Ramnath, et al., 2014; Sabeel 

Ahmed, et al., 2012; Santulli, et al., 2013), improving the performance of a 

composite by mixing natural fibers with other natural or artificial fibers (Vijaya 

Ramnath, et al., 2014; Jawaid, et al., 2011; Li, et al., 2015; Matějka, et al., 2013; 

Prachayawarakorn, et al., 2013; Shanmugam andThiruchitrambalam, 2013; 

Vijaya Ramnath, et al., 2014), etc. Here, "improving performance" means 

improving the mechanical, thermal, environmental degradability, and durability 

properties of a composite. 

The other type of experiments performed on natural materials (including jute) 

have aimed to determine the properties of raw or chemically treated fibers 

collected from various segments of the respective plants. Some studies have 



Introduction 

 

24 

 

determined the different properties such as mechanical (Biswas, et al., 2013; 

Biswas, et al., 2011; Shahinur, et al., 2015), thermal (Ray, et al., 2002; Ouajai 

and Shanks, 2005; Tomczak, et al., 2007; Nechwatal, et al., 2003; D’Almeida, et 

al., 2006) of raw fiber. There are other studies that have determined the 

properties of chemically treated fibers (Jafrin, et al., 2014; Jafrin, et al., 2009), as 

well as the fibers collected from various segments of plants (Shahinur, et al., 

2015). Under the mechanical properties some of them have worked on the 

method or process development (Biswas, et al., 2013; Biswas, et al., 2011; 

Hossain, et al., 2014) and some of them are on theoretical model development or 

product development (Shahinur, et al., 2017). There are many types of 

researches on the thermal properties including other properties (Shahinur and 

Ullah, 2017; Anon., 2017; Ahmed, et al., 2007; Rawal and Sayeed, 2014; 

Aggarwal, et al., 2013) of the natural fibers. The thermal studies emphasize on 

DTG, DSC (Ray, et al., 2002; Shahinur, et al., 2015) gas chromatography 

(Ranganathan, et al., 2008), fire resistance (Pandey, et al., 1993), thermal 

stability (Shahinur, et al., 2017; Ray, et al., 2002), activation energy (Ouajai and 

Shanks, 2005) of natural and treated natural materials like jute (Pandey, et al., 

1993; Ray, et al., 2002; Shahinur and Ullah, 2017; Shahinur, et al., 2013) hemp, 

bamboo (Biswas, et al., 2015), coir (Biswas, et al., 2013), banana, sisal 

(Oliveira, et al., 2017; Mariano, et al., 2016), okra (Hossain, et al., 2013), silk 

and other natural materials. 

The goal of these types of studies has been to gain scientific knowledge of the 

natural fiber itself, which can then be applied in designing (natural fiber based 

composite products) eco product. For example, see (Alves, et al., 2010) to 

understand how the material properties of natural fibers have been used to 

develop an engineering component used in automobiles. In such engineering 

practices, it may not be wise to rely solely on the material properties of a natural 

fiber only. Because most of the time jute based products are produced from jute 

yarns. However, the natural materials, as well as other materials, have 

uncertainty in their material properties. 
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This uncertainty is more noticeable in natural material. The properties of natural 

materials along with other materials vary significantly as the microscopic 

structures of a naturally growing material cannot be tightly controlled (Fidelis, et 

al., 2013). This causes variability in the underlying properties of a natural 

material. Therefore, understanding natural materials require a clear 

understanding of the uncertainty associated with each relevant material property 

(Shahinur and Ullah, 2017) that means quantification is necessary. Otherwise, it 

would not be possible to make design and manufacturing decisions that might 

ensure the functionality, quality, reliability, and durability of natural material-

based products. For this reason, the reliability, durability, quality, and 

sustainability of the design decision may be uncertain.  

To compute uncertainty in a formal manner (syntax), numerous theories have 

been developed, e.g., (to name a few) probability theory (Dempster, 1968), 

imprecise probability theory (Walley, 1991; Walley 2000), evidence theory 

(Shafer, 1976; Klir, 1990), possibility theory (Zadeh, 1978; Dubois and Prade, 

1988), and random interval theory (Joslyn and Booker, 2004).  

Information regarding quantification of natural material can be extracted from 

the works of numerous authors. There are many studies have been conducted to 

quantify the uncertainty exhibited by the material properties of natural materials 

using a probability distribution called a Weibull distribution. For example, Silva 

et al. (2008) quantified the variability in material properties of sisal fibers using 

a Weibull distribution and correlated sisal microstructures with tensile strength. 

Defoirdt et al. (2010) used a Weibull distribution to explain variability in the 

tensile properties of jute, bamboo, and coconut fibers. Fidelis et al. (2013) 

examined the morphology of the natural fibers and correlated their mechanical 

properties with their morphology using a Weibull distribution. Hossain et al. 

(2014) created a histogram for the morphological structures of natural fiber 

cross-sectional areas and provided ranges for their material properties. In these 

studies (Fidelis, et al., 2013; Silva, et al., 2008; Defoirdt, et al., 2010; Hossain, et 

al., 2014), significant variability was observed for the respective material 
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properties studied. Most of the researchers quantify the data using statistical 

analysis.  

Information regarding quantification of data can be extracted from the works of 

several authors. The Statistical approach is widely used to quantify the data. 

Though this approach has problem and limitation, this approach is familiar due 

to quick and easy access. Some of the common application of the statistical 

approach is robotics (Birglen and Schlicht, 2018), clinical application (Andy, et 

al., 2017), environmental (Jorge, et al., 2017), mechanical, physical (Lewis, et 

al., 2017), electrical engineering (Zhao, et al., 2017) and metallurgical 

engineering sector (Mir, et al., 2013) to quantify the data. Therefore, it is an 

important issue to check the through this method. 

As there are different approaches to quantify the uncertainties, estimated values, 

and the assumption are different from each other. Thus, it is an important issue 

to select a reliable approach to quantify the uncertainty for a product 

development. Now fuzzy method is widely used to quantify the uncertainty to 

take the decision in every sector. This approach is linguistically representable; 

any problem can be transformed into linguistically and solved by fuzzy number. 

The use of a fuzzy number to deal the uncertainty is increasing day by day. 

Hence, it is important to quantify the uncertainty of natural material using 

possibilistic approach 

Numerous academic communities, engineering design community has also 

recognized the theorization (syntax) and categorization (semantics) of 

uncertainty, and developed numerous models and tools for making design 

decisions under uncertainty (Antonsson and Otto 1995; Huang and Jiang, 2002; 

Nikolaidis et al., 2003; Nikolaidis et al., 2004; Youn and Choi, 2004; Gurnani 

and Lewis, 2005; Ullah, 2005a-b; Ullah and Harib, 2008; Sharif Ullah and 

Tamaki, 2011; Achiche and Ahmed-Kristensen, 2011; Matsumura and Haftka, 

2013; Ullah and Shamsuzzaman 2013; Jiang et al., 2015; Rezaee et al., 2015). 

The methods and tools for dealing with uncertainty bring benefits for solution-

based design and problem-based design. In particular, the aleatory uncertainty-
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based measures (e.g., probability distributions and Bayesian inferences) are 

useful for the solution-based design, where the robustness or reliability of a 

given design solution is enhanced, without making any drastic changes in the 

geometric and material specifications of the given design solution. On the other 

hand, in the case of problem-based design, the geometric and material 

specifications are not clearly defined or known; rather numerous problems are 

introduced and solved (determining customer needs, concept selection, materials 

selection) by using the epistemic uncertainty-based measures (e.g., possibility 

measures and fuzzy numbers). The goal here is to transform a problem-based 

design to a solution-based design. Some authors have integrated both aleatory 

uncertainty and epistemic uncertainty based measures to make the design 

decision-making process an even more robust and user-friendly process (e.g., 

see the works of Nikolaidis et al., 2003; Sharif Ullah and Tamaki, 2011; Ullah 

and Shamsuzzaman, 2013).  

At the initial case of the product development, there is epistemic uncertainty. 

The optimum material selection is required from this epistemic uncertainty, due 

to limited information at the early stage of the designing.  Therefore, the goal of 

this study is to transform a problem-based design to a solution-based design. 

There are researches on product development and uncertainty quantification as 

well as decision tools. However, there is limited research on the combination of 

these three. In this study, the under uncertainty, a material is selected using a 

compliance. 

 

1.6 Thesis Structure 

Thesis structure is organized as follows. Chapter 2 describes the mathematical 

entities needed to define the uncertainty in statistical, probabilistic, and 

possibilistic means. In addition, the mathematical entities needed for the formal 

computation while selecting a material is also described. Chapter 3 and 4 

describe the findings and outcome of this study. 
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Chapter 3 shows the experimental results regarding the mechanical properties, 

namely, tensile strength, modulus of elasticity, and stain to failure of a natural 

material called Jute. The uncertainty associated with the properties mentioned 

above has been quantified by using the statistical, probabilistic, and possibilistic 

approaches. It has been found that out of the three approaches, the possibilistic 

approach quantifies the uncertainty more reliably. Therefore, when one uses a 

material property for making a decision, its uncertainty can be put into the 

formal computation using a possibility distribution (e.g., a triangular fuzzy 

number) rather than using a probability distribution (e.g., Weibull distribution) 

or statistical approach.  

Based on this conclusion, the uncertainties associated with the Tensile Strength, 

modulus of elasticity, density, CO2 Footprint, Recycle fractions, and Water 

usages of 197 types of Aluminum alloys, 45 types of Titanium alloys, and 30 

types of Magnesium alloys are represented by possibility distributions, as 

reported in Chapter 4. In addition, a decision model is also developed in Chapter 

4 to select an optimal material out of the three alternatives namely, Aluminum, 

Titanium, and Magnesium alloys. In this decision model, the objective functions 

(e.g., maximize tensile strength, minimize CO2 Footprint, and so on) are set by 

the possibility distributions, too. Three of the possibility distributions (i.e., 

objective functions) are for maximizing the tensile strength, modulus of 

elasticity, and Recycle fractions, respectively, and the other three are for 

minimizing the density, CO2 Footprint, and Water usages. The compliance 

between the possibility of distribution of a material property of a type of alloys 

(e.g., possibility distribution of the tensile strength of Aluminum alloys) and the 

possibility distribution of the corresponding objective function (e.g., possibility 

distribution of maximizing the tensile strength) are used to make a decision. It is 

found that the decision model selects an optimal material even though the 

material properties are uncertain and the underlying material indices are not 

known.  
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Chapter 5 discusses the implications of this study in eco-product development. It 

also describes how the stakeholders (research organizations and researchers, 

designers, producers) should interact centering the material related decision 

making processes.  

Finally, Chapter 6 provides the concluding remarks of this thesis.



 

 

 



                                                                     Mathematical Settings 

 

31 

 

Chapter 2: Mathematical Settings 

This section deals with the mathematical settings used in this study. In 

particular, the following mathematical concepts are defined: Probability 

Distribution, Mean, Variance, Weibull Distribution, Average, Standard 

Deviation, Ranges of Mean and Variance, Possibility Distribution or Fuzzy 

Number, Trapezoidal Fuzzy Number, Triangular Fuzzy Number, Ramp Up 

Fuzzy Number, Ramp Down Fuzzy Number, Degree of Compliance, Degree of 

Compliance of Crisp Value, Degree of Compliance of Range, and Degree of 

Compliance of Possibility Distribution. Besides providing the definitions, the 

relevant usages of the concepts regarding to this thesis have also been described. 

 

2.1 Probability Distribution 

Let x be a random variable associated with a physical parameter and it takes 

values in the interval x  [1,2]  . If Pr(x) be the probability of x, then 

following conditions hold: Pr(x)  0, Pr([1,2]) = ∫ 𝑃𝑟(𝑥)
𝜋2

𝜋1
𝑑𝑥 = 1. The 

cumulative distribution of x denoted as F(x) is given as follows: 

𝐹(𝑥) = ∫ 𝑃𝑟(𝑥)
𝑥

𝜋1
𝑑𝑥         (2.1) 

The expected value or mean of the x denoted as  is given as follows: 

𝜇 =
∫ 𝑃𝑟(𝑥)

𝜋2
𝜋1 𝑥𝑑𝑥

∫ 𝑃𝑟(𝑥)
𝜋2

𝜋1 𝑑𝑥
=  ∫ 𝑃𝑟(𝑥)

𝜋2

𝜋1
𝑥𝑑𝑥       (2.2) 

The variance of x denoted as  
2
 is given as follows: 

𝜎2 = 𝜇(𝑥 − 𝜇(𝑥))
2
         (2.3) 

There are different types of probability distributions, e.g., Normal distribution, t-

distribution, chi-square distribution, Poisons distribution, Binomial distribution, 
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Degenerate distribution, Skellam distribution, Gamma distribution, and Weibull 

distribution (Figliola and Beasley, 2000). In this study, Weibull distribution is 

used to represent the uncertainty in the material properties. Weibull distribution 

has many forms. However, in this study the Weibull distribution refers to a 

probability distribution f(x), which is given by the following equation (Defoirdt 

et al., 2010; Trujillo E. , et al., 2014). 

   
1

)(

m
xm

w e
xm

xf




















 


        (2.4) 

Here, x  [0,], m is called the form or shape parameter and λ is called the scale 

parameter. The effects of m and  are shown in Figure 2.1(a). 

  

(a) (b) 

Figure 2.1:Weibull (a) density function and (b) cummulative 

distribution for different shape and scale factor. 

The cumulative Weibull distribution takes the following form: 

m
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x
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0
       (2.5) 

The shape of Fw(x) is shown in Figure 2.1(b) for different values of shape and 

scale parameters. The expected value and the variance of Weibull distribution 

are given as follows: 
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









m

1
1

          (2.6) 

222 2
1  










m
         (2.7) 

Here, Γ is the gamma function. Confidence interval for μ and σ
2
 at 95% 

confidence is calculated using Mean Time to Failure (MTTF) (Santiago; Lane, 

2017; Sullivan, 2017) method. 

When fw(x) is unknown but a set of data points regarding x is known, i.e., {xi | i 

= 1,…,m} is known, in such case, one can apply a procedure to determine Fw(x) 

first and estimate the shape and scale parameters. This way, one can determine 

the underlying fw(x) associated with the data points of x. There are different 

types of procedures to determine Fw(x) from a set of data points (Kececioglu, 

1994; Weibull, 1992-2018; Wikipidia, 2017). One of the widely used 

procedures, median rank approximations, is described below. 

This cumulative distribution function is a step function that steps up by 1/n at 

each of the n data points. There are different approaches to obtaining the 

empirical distribution function from data. In statistics, an empirical distribution 

function is the distribution function associated with the empirical measure of 

a sample. An empirical measure is a random measure arising from a particular 

realization of a (usually finite) sequence of random variables. In this study, the 

approximation method represented by equation (2.8) is used to calculate the 

empirical distribution function:  

4.0

3.0
)(






n

x
xF i

i  (2. 8) 

For the step by step calculation of mean order number or empirical distribution 

function F (xi), (Kececioglu, 1994) xi is the rank of the data point and n  is the 

number of data points (Wikipidia, 2017). The approximation method is used to 
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find the Weibull cumulative function for different properties and shown in 

Section 3.6.2. 

 

2.2 Average, Standard Deviation and Ranges of Mean and Variance 

Let x(i)  , i = 1,...,m, be the given data points regarding a parameter x where 

m is the number of data points. The average denoted as 𝑥̅ of these data points is 

given by equation (2.9) 

𝑥̅ =
∑ 𝑥(𝑖)𝑚

𝑖=1

𝑚
 

(2. 9) 

 

The average provides the central tendency of the data points and is used for 

statistical analysis of uncertainty, as it is shown in Section 3.6.1. 

The standard deviation denoted as sd of the data points, x(i)  , i = 1,...,m, is 

given as follows: 

 

1

)(

 1

2










m

xix

sd

m

i
 

(2. 10) 

 

The standard deviation represents the dispersion in the data points and is used to 

quantify the uncertainty, as it is shown in Section 3.6.1. 

The ranges of the expected value and variance denoted as  and 2
, respectively, 

of a given set of data points, x(i)  , i = 1,...,m, are given as follows:  

     , 
2

1 










m

sd
tx   (2. 11) 
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In equations (2.11)(2.12),  is the degree of freedom equal to m−1,  is the 

significance level, 𝑡1−𝛼 2⁄ ,𝜈 is the critical value of a Student's t-distribution for a 

two-sided test, 𝜒𝛼 2⁄ ,𝜈
2 , and 𝜒1−𝛼 2⁄ ,𝜈

2  are the lower and upper critical values of a 


2
 distribution for a two-sided test. Refer to (Hiller, Lieberman, Nag, and Basu, 

2005; Montgomery, 2001; Tables for Probability Distributions) for the details of 

the relevant distributions. Note that for a two-sided test, (1−/2)100% is the 

confidence interval. Usually,  = 0.05% or 97.5% confidence interval is used to 

calculate the ranges of  and 2
. The ranges of expected value and variance as 

defined above are widely used in quantifying the uncertainty associated with a 

given set of data points, as it is shown in Section 3.6.1. 

 

2.3 Possibility Distribution or Fuzzy Number 

A fuzzy number, DoB (degree of belief) is a function DoB:  [0, 1], and it 

must follow the following four conditions (Zadeh, 1975; Dubois and Prade, 

1978; Dijkman, et al., 1983)  

a) Normal,  

b) Compactly supported,  

c) Convex, and  

d) Upper semi-continuous 

The function is normal means that there is, at least, one real number f0 for which 

DoB (f0) = 1. It is compactly supported means that the set {f | DoB(f) > 0} is 

bounded. It is convex means that if f1 ≤ f2 ≤ f3, then min (DoB(f1), DoB(f3)) ≤ 

DoB(f2) for all f1, f2, f3. It is upper semi-continuous means that the set {f | 

DoB(f) ≥ α} is closed for each α  [0, 1]. The points corresponding to DoB(.) = 

1 constitutes an interval called core. The closed interval S = [a, b]  beyond 

which the fuzzy number DoB(.) = 0 is called support. As such, DoB(a) = 0 

DoB(a + ) > 0 and DoB(b) > 0 DoB(b) = 0 where  is very small positive 

number. The support is the largest alpha-cut. The concept of alpha-cut is useful 
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when one needs an interval or a set of intervals for a given triangular fuzzy 

number. In this sense, all alpha-cuts belong to the support [a, b].  

To infer the most plausible value and logically consistent ranges, the truth-value 

of the proposition is assumed to equal to its degree of membership which gives 

possibility distribution. It is possible to infer the most plausible value and 

logically consistent ranges of TS using possibility distribution as shown in 

Figure 2.2. 

 

Figure 2.2: A typical nature of fuzzy number. 

In order to infer the most plausible value and logically consistent range, for 

example, the propositions of following form: p (Z, Y, X, Q) = Z of Y jute yarn is 

XQ. Here, Z {TS}, Y {raw}, X, and Q = {MPa}. The truth-value of the 

proposition T (p) is equal to the fuzzy number DoB (.), i.e., T (p) = DoB(X). For 

example, if Z = TS, Y = raw, X = 500, and Q = MPa, then the proposition is as 

follows: TS of raw jute yarn is 500 MPa. The truth-value of this proposition is 

equal to its degree of belief as given by the possibility distribution in Figure 2.2 

i.e., 0.109756098. This means that "TS of raw jute yarn is 500 MPa" is more 

false than true. In addition, if Z = TS, Y = jute yarn, X = 200, and Q = MPa, then 

the proposition is as follows: TS of raw jute yarn is 200 MPa. The truth-value of 

this proposition is equal to its degree of belief as given by the possibility 

distribution in Figure 2.2 i.e., 1. This means that "TS of raw jute yarn is 200 

MPa" is true and there is no doubt about it. The above explanation implies that 

TS [MPa]

D
o

B
 (

T
S

)

0 400 800

0

0.2

0.4

0.6

0.8

1

1.2
TS = 200 MPa

TS = 500 MPa



                                                                     Mathematical Settings 

 

37 

 

the value of Z corresponding to DoB(.) = 1 is the most plausible value. The 

range of values of Z corresponding to DoB(Z)  0.5 is the logically consistent 

range of values of Z because DoB(.)  0.5 corresponds to the truth-values that is 

more true than false. One can also determine the expected value of Z using the 

centroid method (Ullah and Harib, 2006). 

There are different categories of fuzzy numbers according to the shape of 

function as shown in Figure 2.3. In this study triangular Figure 2.3 (a)), ramp up 

(Figure 2.3 (b)), ramp down (Figure 2.3 (c)), and trapezoidal (Figure 2.3(d)) 

fuzzy numbers are considered. In Figure 2.3, the support of fuzzy numbers is [a, 

b]. 

  

(a) (b) 

  

(c) Ramp up (d) Trapezoidal 

Figure 2.3: Different shapes of the fuzzy numbers(a) triangular (b) ramp up (c) 

Ramp down and (d)trapezoidal. 
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2.3.1 Trapezoidal Fuzzy Number 

For example, Figure 2.4 shows the pictorial representation of membership 

function of a trapezoidal fuzzy number, DoB(x), where [b, c] is the core, [a, d] is 

the support, alpha cut at 50% is partially true and partially false.  

 

Figure 2.4: Trapezoidal fuzzy number. 

The following equation (2.13) represents the function of DoB (x) 
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In this study trapezoidal fuzzy number is used to quantify the uncertainty of 

material properties, TS, as detail is shown in Chapter 3. 

 

2.3.2 Triangular Fuzzy Number 

Membership function of a triangular fuzzy number T is a fuzzy number that has 

a triangularly shaped membership function (DoB) expressed by equation (2.14) 


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In equation (2.14), x, and a < c < b. As such, the support of the triangular 

fuzzy number T is [a, b]. The core of T is c because T(x = c) = 1 as shown in 

Figure 2.5 

 

Figure 2.5: A triangular fuzzy number. 

The function (xa)/(ca) is called the left function and the function (bx)/(bc) 

is called the right function. The alpha-cuts of a triangular fuzzy number are the 

intervals [a + (ca), b (bc)],  (0, 1). Triangular fuzzy number is used 

to quantify the uncertainty of the physical parameter such as modulus of 

elasticity (E) and strain to failure (s) as shown in Chapter 3. 

 

2.3.3 Ramp Up Fuzzy Number 

A ramp up fuzzy number denoted as MAX is also a fuzzy number. It defines a 

possibilistic objective function for maximizing a quantity. The expression of 

MAX is given by equation (2.15): 
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)(  (2. 15) 

The core of MAX is equal to b and the support is equal to [a, b] as shown in 

Figure 2.8(a). MAX linearly increases with the x in the interval of its support. 

Since MAX is for maximizing a quantity, it can be used as maximization 

function and setting its support [a, b] is a critical issue.  
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(a) (b) 

Figure 2.6: (a)  Ramp up and (b) typical pattern of ramp up function. 

The ramp up function is used to define the maximization function as shown in 

Chapter 4. In this study maximization function is used to represent the objective 

function of a criterion which is needed to maximize. Depending on the support 

the area of the MAX is changed as shown in Figure 2.6(b). This issue of support 

is described in Chapter 4 and 5. 

 

2.3.4 Ramp Down Fuzzy Number 

A ramp down fuzzy number denoted as MIN is also a fuzzy number as shown in 

Figure 2.7(a). It is defined as possibilistic objective function for minimizing a 

quantity. The expression of MIN is given by equation (2.16): 

 
 

(a) (b) 

Figure 2.7: (a) Ramp down and (b) typical pattern of ramp down function. 
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The ramp down function is used to define the minimization function is shown in 

Chapter 4. The core of MIN is equal to a, and the support is equal to [a, b]. MIN 

linearly decreases with the increase in x in the interval of its support. Since MIN 

is for minimizing a quantity, it can be used as minimization function and setting 

its support [a, b] is a critical issue (see Figure 2.7(b)), similar to MAX. This issue 

is also described in Chapter 4. In this study minimization function is used to 

represent the objective function of a criterion which is needed to minimize. 

Application of the MIN is shown in Chapter 4 and the critical issue regarding the 

support selection is discussed in Chapter 5. 

 

2.4 Degree of Compliance 

The interaction between the information and objective function is termed as 

compliance. The degree of compliance means how well the information 

complies with the objective functions. Its value lies between 0 and 1. When the 

information fully complies with the objective, the value of the compliance is 1 

otherwise it is less than 1. The degree of compliance calculation is different 

depending on the categories of information or data. There are two broad 

categories of information as listed below: 

a) Crisp information and  

b) Granular information 

A piece of crisp information is referred to a sharp numerical value (e.g., density 

is 10 Mg/m
3
). The other category of information, granular information (Zadeh, 

2005; Khozaimy et al., 2011), is referred to a set of numerical values and has 

numerous forms. The simplest form of granular information is called crisp 

granular information that refers to a numerical range (e.g., density is [10, 15] 
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Mg/m
3
). Probability granular information refers to a piece of information given 

(say) by a probability distribution (e.g., density is normally distributed with 

mean 12 Mg/m
3
 and standard deviation 1 Mg/m

3
). Fuzzy granular information 

refers to linguistically define pieces of information that are often modeled by the 

fuzzy sets or numbers (e.g., density is "low" where low is defined by a triangular 

fuzzy number with core 12 Mg/m
3
 and support [8, 20] Mg/m

3
). The terms called 

triangular fuzzy number, core, and support will be discussed in a moment. There 

are other complex forms of granular information, e.g., fuzzy-probability granular 

information (density is most-likely normally distributed with mean 10 Mg/m
3
 

and standard deviation 1 Mg/m
3
). If the probability distribution is unknown, one 

can model a piece of information using a fuzzy number or possibility 

distribution (Dubois, 2004; Ullah and Shamsuzzaman, 2013). This means that a 

fuzzy number is a general form of granular information that subsumes other 

forms of information. 

In this study, both crisp information and various forms of granular information 

are used. To formally compute the crisp information and various forms of 

granular information in an integrated manner, certain mathematical entities are 

needed. The compliance calculation systems for three different categories 

information, namely, crisp value, granular crisp value, and probability granular 

value are described in the following section. 

 

2.4.1 Degree of Compliance of Crisp Value  

Let d be a point in the support of MAX or MIN, i.e., d [a, b] as shown in Figure 

2.8. Figure 2.8(a) shows the degree of compliance of MAX and Figure 2.8 (b) 

shows the degree of compliance of MIN. The degree of compliance of MAX and 

MIN are denoted as CCMAX and CCMIN, respectively, is its membership value or 

DoB.  
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(a)  (b)  

Figure 2.8: Interaction between crisp value and (a) MAX and (b) MIN fuzzy 

numbers. 

The degree of compliance of MAX is expressed in equation (2.17) and MIN is 

expressed in equation (2.18).  
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  (2. 17) 

ab
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  (2. 18) 

For example, assume [a, b] = [10, 30] for both MAX and MIN. As such, if d = 

15, then CCMAX = 0.25 and CCMIN = 0.75. Needless to say, the nature of CCMAX 

or CCMIN resembles the nature of MAX or MIN, respectively. Higher the value of 

CCMAX or CCMIN, better the d from the viewpoint of maximization or 

minimization, respectively. 

 

2.4.2 Degree of Compliance of Crisp Granular Value or Range 

Let P = [p, q] be an interval in the support [a, b] of MAX or MIN, i.e., p aqb, 

as schematically illustrated in Figure 2.9. 

a bd

1

0

D
o

B
 (

x)
MAX(x)

x a bd

1

0

D
o
B

 (
x)

MIN(x)

x



                                                                     Mathematical Settings 

 

44 

 

  

(a)  (b)  

Figure 2.9: Interaction between crisp granular value and (a) maximization and 

(b) minimization fuzzy number. 

The compliance of P with respect to MAX or MIN denoted as RCMAX or RCMIN, 

respectively, is the average membership value of P with respect to MAX or MIN 

(Ullah, 2008; Rashid, et al., 2011; Shamasuzzaman, et al., 2013). The degree of 

compliance of MAX and MIN are expressed by equation (2.19) and equation 

(2.20) respectively.  
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(2.20) 

As such, RCMAX and RCMIN take a value in the interval [0, 1]. The plot shown in 

Figure 2.10(a) for two arbitrary cases shows the typical nature of RCMAX. Case 1 

corresponds to p = 12 + s, q = 15 + s, s = 0,...,15. The other case corresponds to 

p = 12 + u, q = 20 + u, u = 0,...,10. The range corresponding to the first case is 

relatively slim whereas the other is relatively fat. In both cases, RCMAX linearly 

increases when it approaches the upper limit of the maximization (i.e., b = 30). 

RCMAX becomes unit if it is a point equal to the core of MAX (i.e., p = q = b). 

RCMAX becomes zero if it is a point equal to a, (i.e., p = q = a), otherwise, 
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RCMAX< 1 as shown in Figure 2.10 (a). Higher the value of RCMAX, better the P 

from the viewpoint of maximization. 

  

(a) (b) 

Figure 2.10: A typical nature of (a) RCMAX and (b) RCMIN. 

On the other hand, Figure 2.10(b) shows two arbitrary cases of the typical nature 

of RCMIN. Case 1 corresponds to p = 12 + s, q = 15 + s, s = 0,...,15. The other 

case corresponds to p = 12 + u, q = 20 + u, u = 0,...,10. The range corresponding 

to the first case is relatively slim whereas the other is relatively fat, similar to 

that in RCMAX. In the both cases, RCMIN linearly decreases when it approaches the 

lower limit of minimization (i.e., a = 10). RCMIN is unit if it is a point equal to 

the core of MIN (i.e., p = q = a). RCMIN is zero if it is a point equal to b, (i.e., p = 

q = b), otherwise, RCMIN < 1 as shown in Figure 2.10(b)). Higher the value of 

RCMIN, better the P from the viewpoint of minimization.  This kind of degree of 

compliance is used to calculate the interaction between objective function and 

the material properties (in the form of upper value and lower value) as shown in 

Chapter 4. 

 

2.4.3  Degree of Compliance of Triangular Fuzzy Number/ Possibility 

Distribution 

This sub-section employs the notion of triangular fuzzy number, as defined in 

equation (2.14). Let t1 = a, t2 = b, and t3 = c be three points in the ascending order 
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on the real-line, i.e., t1  t2  t3. Let the interval [t1, t3] and the point t2 be the 

support and core, respectively, of a triangular fuzzy number denoted as D. The 

triangular fuzzy number is expressed by equation (2.21).  
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This kind of degree of compliance is helpful to see the closeness or farness of 

the criteria (data was as a form of uncertainty) from the objective function. The 

application of the compliance is shown in Chapter 4. The compliance of this 

triangular fuzzy number can be calculated as follows: 

 

2.4.3.1 Interaction of D with MAX 

The maximization fuzzy number MAX defined in equation (2.15) and its support 

[a, b]. Assume that the support of D belongs to the support of MAX, i.e., a  t1 

and b  t3. This assumption is illustrated in Figure 2.11(a), where the points of 

intersections of D and MAX are VMAX (VMAXx, VMAXy) and WMAX (WMAXx, WMAXy), 

and are given by equation (2.22) and (2.23). 

  

(a)  (b)  

Figure 2.11: (a) Interaction between the triangular and maximization fuzzy 

numbers and (b) A typical nature of TCMAX. 
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(2.23) 

Let, the area under the function min (D(x), MAX(x)) is AMAX and simplified 

expression is given by (2.24). 
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The maximum possible AMAX is 1

2
(𝑡3 − 𝑡1), which occurs if t1 = a and t2 = t3 = b, 

i.e., if D takes the shape of MAX. Therefore, if AMAX is normalized by the above 

mentioned maximum possible area, then the resulting quantity denoted as TCMAX 

measures the degree of compliance of D with respect to MAX in the interval [0, 

1]. The equation (2.25) is used to express this relationship. 
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A typical nature of TCMAX is shown in Figure 2.11(b) for two arbitrary cases. 

Case 1 corresponds to t1 = 10 + s, t2 = 12 + s, t3 = 15 + s, s = 0,... 15. The other 

case corresponds to t1 = 10 + u, t2 = 15 + u, t3 = 20 + u, u = 0 ..., 10. The 

triangular fuzzy number corresponding to the first case is relatively slim whereas 

the other one is relatively fat. In both cases, an exponential increase in the value 

of TCMAX is observed, if the triangular fuzzy numbers approach the upper limit 

of the maximization (i.e., b = 30). TCMAX becomes unit if D takes the shape of 

MAX (i.e., t1 = a, t2 = t3 = b), otherwise, TCMAX < 1 (see Figure 2.11(b)). The 

more the D resembles MAX, the higher is the value of TCMAX. In other words, the 

higher is the value of TCMAX, the better is the D from the viewpoint of 

maximization. In Chapter 4 using this type of compliance calculation, the 
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ranking of material is made when the requirement was to maximize the criteria. 

The criteria of the material are at first represented by possibility distribution. 

 

2.4.3.2 Interaction of D with MIN 

The minimization fuzzy number MIN is defined by the equation (2.9) and its 

support [a, b]. It is assumed that the support of D belongs to the support of MIN, 

i.e., a  t1 and b  t3. This assumption is illustrated in Figure 2.12(a) where the 

points of intersections between D and MIN are VMIN (VMINx, VMINy) and WMIN 

(WMINx, WMINy), and given by equation (2.26) and (2.27). 
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(a)  (b)  

Figure 2.12: (a) Interaction between a triangular and a minimization fuzzy 

number and (b) Typical nature of TCMIN. 

Let, the area under the function min (D(x), MIN(x)) is AMIN and simplified 

expression is given by (2.28). 
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The maximum possible AMIN is 1

2
(𝑡3 − 𝑡1), which occurs when t1 = t2 = a and t3 = 

b, i.e., when D takes the shape of MIN. Therefore, if AMIN is normalized by the 

above mentioned maximum possible area, then the resulting quantity denoted as 

TCMIN measures the degree of compliance of D with respect to MIN in the 

interval [0, 1]. The expression of TCMIN can be expressed as equation (2.29). 
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The typical nature of TCMIN is shown in Figure 2.12(b) for two different cases. 

Case 1 corresponds to t1 = 10 + s, t2 = 12 + s, t3 = 15 + s, s = 0,...,15. The other 

case corresponds to t1 = 10 + u, t2 = 15 + u, t3 = 20 + u, u = 0,...,10. The 

triangular fuzzy number corresponding to the first case is relatively slim 

compared to that of the other case. In both cases, TCMIN linearly increases if the 

triangular fuzzy number approaches the upper limit of the maximization (i.e., b 

= 30). It is worth mentioning that TCMIN becomes unit if D takes the shape of 

MIN (i.e., t1 = a, t2 = t3 = b), otherwise, TCMIN < 1 as shown Figure 2.12(b)). 

Higher the value of TCMIN, better the D from the viewpoint of minimization. In 

Chapter 4 using this type of compliance calculation, the ranking of material is 

made when the requirement is to minimize the criteria. 

 

2.5 Induction of Fuzzy Number 

This section describes the mathematical entities used to quantify the epistemic 

uncertainty. A possibility distribution is a probability-distribution-neutral 

representation of the uncertainty associated with a physical quantity. In certain 
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cases, the uncertainty associated with a set of numerical data that can be 

represented by a possibility distribution of triangular form i.e., a triangular fuzzy 

number, particularly when the set of numerical data shows a central tendency. It 

can be also represented by other fuzzy numbers (e.g., trapezoidal fuzzy number). 

To create a triangular fuzzy number it is important to develop a transformation 

mechanism based on the probability-possibility consistency principle, which 

states that lessening of the possibility of an event tends to lessen its probability - 

but not vice-versa (Zadeh, 1978 Figure 2.13 illustrates a triangular fuzzy number 

induction process using an arbitrary set of numerical data X = {(i, x(i))  | i = 

0,...,100} (say) and the mathematical procedure is described as follows. 

 

Figure 2.13: Representing the uncertainty of numerical data using a triangular 

fuzzy number. 

The variability associated with a variable X is first represented by a point-cloud 

that is the plot in ordered-pairs {(x(i), x(i+1)) | i = 0,...,99} as shown in Figure 
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2.13. Using a probability-possibility transformation, the point-cloud is 

transformed into a triangular fuzzy number. See Ullah and Shamsuzzaman 

(2013) for detail procedure that transforms a point-cloud to a triangular fuzzy 

number. The induced triangular fuzzy number is used to calculate the degree of 

compliance of the supplied set of data on X with respect to maximization or 

minimization. These issues are described in Section 2.3 and Section 2.4. It is 

worth mentioning that the set of numerical data must lie in the support of MAX 

or MIN, i.e., x(i)  [a, b], i = 0,...,n. Otherwise, the calculation of the degree of 

compliance cannot be performed. In addition, if a variable X takes values from a 

unimodal probability distribution (e.g., from uniform, normal, or triangular 

distribution), then its equivalent possibility distribution (a triangular fuzzy 

number) is used while calculating the degree of compliance in accordance with 

the procedure described in Section 2.4. Ullah and Shamsuzzaman (2013) show 

the equivalent triangular fuzzy numbers for the uniform and normal 

distributions. 

Let x(t)  , t = 0,...,n-1 be n data points, as shown in Figure 2.14 

 

Figure 2.14: A given set of numerical data. 

Let (x(t), x(t+1)), t = 0,...,n-1, be a point-cloud in the universe of discourse X = 

[xmin, xmax] so that xmin < min(x(t)|t{0,...,n}) and xmax > max(x(t)|t{0,...,n}). 

Let A and B are two square boundaries so that the vectors of the vertices of A 

and B (in the anti-clockwise direction) are ((xmin, xmin), (x, xmin), (x, x), (xmin, x)) 
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and ((xmax, xmax), (x, xmax), (x, x), (xmax, x)), respectively, xX. As such, (x, x) is 

their common vertex of A and B. For example, consider the arbitrary point-could 

show in Figure 2.15. As from Figure 2.15, the universe of discourse X = [20, 

80]. Notice the relative positions of boxes denoted by A and B in Figure 2.15. 

The boxes are connected at their common vertices. 

 

Figure 2.15: Relative position of A and B in the point-cloud (x(t), x(t+1)). 

Let PrA(x) and PrB(x) are two subjective probability wherein PrA(x) and PrB(x) 

represent the degrees of chances that the points in the point-cloud be in A and B, 

respectively. As such, these functions are defined by the following mappings: 
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The typical nature of the functions defined in equations (2.30) and (2.31) are 

illustrated in Figure 2.16 using the information of the point-cloud shown in 

Figure 2.15. Note that PrA(x) increases with the increase in x and the opposite is 

true for PrB(x). It is worth mentioning that PrA(x) + PrB(x)  1 for the point-

cloud, though for some cases PrA(x) + PrB(x) = 1 (see Figure 2.16(a)). This 

means that PrA(x) + PrB(x) does not serve the role of "cumulative probability 

distribution." A cumulative probability distribution can be formulated by using 

the information of PrA(x) and PrB(x), as follows: 

  

(a) (b) 

Figure 2.16: (a)The typical nature of PrA(x) and PrB(x) for unimodal quantity and 

(b) Nature of PrA(x)+PrB(x) and min(PrA(x),PrB(x)) for unimodal data 

Consider a mapping that maps x into the minimum of PrA(x) and PrB(x), as 

follows: 
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In equation (2.32), a = 1, if the point-cloud is a point; otherwise, a < 1. Figure 

2.16(b) shows the nature of g(x) for PrA(x) and PrB(x). The area under g(x) is 

given by equation (2.33). 
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 
X

dxxgQ  (2. 33) 

There is no guarantee that Q = 1. Otherwise g(x) could have been considered a 

probability distribution of the underlying point-cloud. However, a function F(x) 

can be defined as follows: 
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Figure 2.17: Nature of cumulative probability distribution of a point-cloud. 

F(x) can be considered a cumulative probability distribution because 

max(F(x))=1, F(x)  F(z) for x  z, F(x)  [0,1], x, z  X. Figure 2.17 shows 

the nature of F(x) derived from g(x) shown in Figure 2.16(b). The cumulative 

probability distribution defined in equation (2.34) produces a probability 

distribution Pr(x). , the following formulation holds: 
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Figure 2.18(a) shows the probability distribution Pr(x) underlying F(x) shown in 

equation (2.34). It is needless to say that, the area under the probability 

distribution Pr(x) is unit and Pr(x) remains in the bound of [0, 1]. 
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Figure 2.18: The nature of (a) probability (b) possibility distribution of a 

unimodal point-cloud. 

From the induced probability distribution Pr(x), a possibility distribution given 

by the membership function I(x)) can be defined based on the heuristic rule of 

probability-possibility transformation that the degree of possibility is greater 

than or equal to the degree of probability. The easiest formulation is to 

normalize Pr(x) by its maximum value, max(Pr(x)| xX). Therefore, 
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Figure 2.18 (b) shows the possibility distribution I(x) derived from the 

probability distribution Pr(x) shown in Figure 2.18(a). The shape of the induced 

probability distribution and the shape of the induced possibility distribution are 

identical, as evident from Figure 2.18(a) and Figure 2.18 (b). Other formulations 

can be used instead of the formation (2.36) as suggested by others. 

However, it is observed that when the point-cloud resembles the point-cloud of a 

bimodal quantity, the induced possibility distribution resembles a trapezoidal 

fuzzy number. In addition, when the point-cloud is a point, the induced 

possibility distribution becomes fuzzy singleton. Moreover, when the point-

cloud resembles the point-cloud of a unimodal data, the induced 

probability/possibility distribution resembles a triangular fuzzy number. To 
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define the membership function of an induced fuzzy number in the form of a 

triangular fuzzy number, the following formulation can be sued. 

Let u, v, and w be three points in the ascending order in the universe of discourse 

X, u v w X. Let the interval [u, w] be the support of a triangular fuzzy 

number and the point v be the core. The following procedure can be used to 

determine the values of u, v, and w from the induced fuzzy number I(x) 

(equation (2.36)): 
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As defined in equation (2.37), u is the point after which the membership value 

I(x) is greater than zero, v is the point corresponding to the maximum 

membership value max(I(x)), and w is the point beyond which the membership 

value I(x) again becomes zero. Therefore, the membership function T(x) of the 

induced triangular fuzzy number is as follows: 
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 (2. 38)  

It is needless to say that this formation is valid only for the point-cloud 

exhibiting the nature of a unimodal quantity. The general detail flow diagram of 

the possibility distribution formulation from numerical data to triangular fuzzy 

number is shown in Figure 2.19. 
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Figure 2.19: Numerical data to Possibility distribution transformation. 

Using this Probability possibility transformation the uncertainty of the material 

properties are quantified as shown in Chapter 3 and Chapter 4.  
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Chapter 3: Uncertainty Quantification of 

Mechanical Properties of Jute Yarn  

Uncertainty quantification in the data of material properties is an important issue 

to select a material for a product development. The objective of this chapter is to 

quantify the uncertainty in the data of mechanical properties and identify a 

reliable approach to quantify the related uncertainty. This chapter is based on the 

work of Ullah et al. (2017) and Shahinur et al. (2017). The remainder of this 

chapter is organized as follows. Section 3.1 and Section 3.2 describe the 

mechanical properties and sustainable properties respectively. Section 3.3 

describes the primary production of jute. Section 3.4 describes the experimental 

description of tensile test performed to measure the mechanical properties of jute 

yarns. Section 3.5 describes the results associated with mechanical properties of 

jute yarn. Section 3.6 describes different types of quantification approaches to 

quantify the data. Furthermore, a comparison is also made to investigate a 

reliable approach for quantification. Section 3.7 draws the concluding remarks. 

 

3.1 Mechanical Properties 

In the strength and stiffness limited design, the MI is related to the mechanical 

properties such as TS, E, and ρ. The uncertainty related to this material 

properties are quantified in this chapter. The uncertainties related to these 

properties are considered for material selection which will be described in 

Chapter 4. 
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3.1.1 Tensile Strength and Modulus of Elasticity 

A modulus of elasticity (E) is defined as the ratio of stress (σ) and strain (ε). 

Suppose the tensile force (F) is applied to a specimen and the instantaneous 

length (l) is recorded. The initial length of the specimen is l0. Then, the strain is 

the change of length as shown in equation (3.1), and stress is the ratio of tensile 

force and area as shown in equation (3.2). Here, r is the radius of a specimen. 

0

0

l

ll 
  

(3.1) 

2 r

F


   (3.2) 

If the stress verses strain graph is plotted, some specimens follow the linear and 

others follow nonlinear pattern. The typical natures of linear and nonlinear 

patterns are illustrated in Figure 3.1(a) and Figure 3.1(b) respectively.  

  

  

(a)  (b)  

Figure 3.1: Data analysis of stress-strain curve for (a) linear and (b) non-linear. 

In both cases, the maximum stress is considered as TS of the specimen. The 

strain corresponding to TS is considered strain to failure (s). In both cases, the E 

is determined by equation (3.3). 

s

TS
E   (3.3) 

TS

σ

(0,0)

σ

ɛ(0,0)
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3.1.2 Density 

A density (ρ) is defined as mass per unit volume. It is mathematically expressed 

by equation (3.4), where m is mass and V is a specific volume. 

V

m
   (3.4) 

From equation (3.4), to have low ρ, either m can be decreased or V can be 

increased. Thus, low-density materials are lighter than high density materials. 

For example, the density of the iron, Fe is 7-8 Mg/m
3 

(here the phrase “Mg” is 

mega gram) whereas the density of Al is 2.5-2.9 Mg/m
3 

(Ashby, 2007). 

Therefore, for light car body, Al will be a better option due to low fuel 

consumption. 

  

3.2 Sustainable Properties 

3.2.1 CO2 Footprint 

CO2 foot print or CO2 emission can be defined as the entire amount of 

greenhouse gases formed directly and indirectly by human activities, usually 

expressed in equivalent tons of carbon dioxide (CO2) (Time for change, 2017). 

When we heat our house with coal, oil, or gas, it will emit CO2. Even when the 

house is heated in cold regions with electricity, generation of the electrical 

power also releases a certain amount of CO2. For each liter of oil heating 

consumption, 13 kg carbon dioxide (CO2) is emitted. For liquid, the unit of the 

CO2 footprint is liter or gallon-CO2/ kg and for a metal it is kg-CO2 / kg. 

 

3.2.2 Recycle fraction 

The Recycle fraction is a measure of the proportion of a material used in 

products which can economically be recycled (Material properties, 2017). 

Recycled fraction is a number that lies between 0 and 1 (or a percentage) and has 
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no units. Re-melted (thermoplastics and metals) or shredded (wood and paper) 

materials are highly recycled. Natural materials are disposable, thus, the recycle 

fraction of natural material per year is 0%. However, the plastic is fully 

recyclable, thus, recycle fraction is 100%. 

 

3.2.3 Water usage  

Water usage or water footprint is the amount of water used for the primary 

production of a given component or crop or the amount allocated for a particular 

purpose (Water foot print network, 2017).  Water usage is measured in cubic 

meters per ton or Kg of production, per hectare of cropland, per unit of currency 

and other functional units. The water usage of a 150 gram soy burger produced 

in the Netherlands is about 160 liters. 

 

3.3 Production of Jute Material 

As mentioned in Chapter 1, jute is one of the most widely used natural materials 

after cotton (Anon., 2017), and is of interest for the development of eco-products 

(Alves, et al., 2010). Accordingly, numerous products are made from jute fibers, 

yarns, fabrics, and composites. Such jute-based products are sacks, bags, 

corrugated sheets, carpets, shoes, sandals, and fabrics are now available in the 

market (Sobhan, et al., 2010). The demand for these products is growing 

significantly, as they are eco-friendly products. Figure 3.2 shows a typical 

scenario of primary production of jute fibers and yarns. As shown in Figure 3.2, 

jute is grown in plantations, where it is collected after it matures. The plants are 

then typically soaked in water so that the fibers can be more easily separated for 

collection. Other processes to collect the fibers without soaking may be used if 

preferred. The jute fibers are then dried and marketed for further processing. The 

jute yarn is often produced from jute fibers. Sometimes, yarns are chemically or 

physically (radiation, and light impose) treated (Jafrin, et al., 2014; Shahinur, et 

al., 2013) to enhance their material properties. 
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Figure 3.2: Primary production jute yarn. 

In this study, the jute yarn is considered because it is more widely used primary 

material in the jute product compared to jute fiber. The mechanical test for jute 

yarn is performed and the data are quantified in a systematic manner (statistics, 

probability, and possibilistic approaches) for taking a decision. Therefore, the 

following section reports on the results of tensile tests were performed on jute 

yarn specimens. 

 

3.4 Description of Experiment 

A tensile test allows the determination of properties: TS, E, and s. Figure 3.3 

schematically demonstrates the experimental procedure to know certain 

mechanical properties of the jute yarn. The procedure consists of the following 

four steps: 

a) Collection of jute yarn and diameter measurement 

b) Specimen preparation with required length 

c) Tensile testing and 

d) Data analysis 

Jute Plantation Matured Jute Plants Plant Collection Fiber Collection

DryingJute Fiber Jute Yarn Chemical Treatment
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Figure 3.3: Schematic diagram of the experiment 

Jute yarn used in this study was collected from the Bangladesh Jute Research 

Institute (BJRI, http://www.bjri.gov.bd/) located in Dhaka (the capital of 

Bangladesh). The yarn count was 10
S
 (single ply) with a diameter of 1.7 mm as 

schematically shown in Figure 3.3. The diameter is measured by an ordinary 

micrometer. The value of the diameter is the average value of several trials 

(rounded to one decimal place). A universal tensile testing machine (Autograph 

AG-X; make: Shimadzu Corporation, Kyoto, Japan) was used to perform the 

tensile tests, as shown in Figure 3.4(a). A set of 15 specimens was prepared, 

each having a length of approximately 1.1 m. The grip-to-grip length of a 

specimen was fixed at 200 mm in the tensile tests, as shown in Figure 3.4(a) and 

(b).  In these tests, the F is applied to each specimen and l is recorded. The 

maximum load (the load just before the failure) is divided by the cross-sectional 

area of the yarn to calculate the TS. The elongation just before the failure is 

divided by the initial length (200 mm) to calculate the s (equation 3.1). The TS 

was divided by the s to calculate the E. The results are summarized in Table 3-a 
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(a) (b) 

Figure 3.4: (a) Experimental equipment and (b) Gripping. 

Finally, the data (F -l) curve are analyzed to determine the material properties 

called TS and E. To obtain TS and E,   the Fl curve is converted into    

curve using equations (3.2) to (3.4). To avoid deflection, a preload of 5 N is 

applied to the specimen. The elongation velocity is set to 100 mm/min in all 

tests. Figure 3.5 shows magnified images (SEM image) of the surface of yarn 

specimen used in this study. 

  

(a) (b) 

Figure 3.5: Magnified (a) front and (b) cross section view of yarn specimen. 

 

200 

mm
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3.5 Results  

The results of the tensile tests and uncertainty in the data of mechanical 

properties on the base of jute yarn specimens are discussed in following 

sections.  

 

3.5.1 Mechanical Properties 

Figure 3.6 shows load versus elongation for the fifteen jute yarn specimens. As 

seen in Figure 3.6, the yarns failed at an elongation of an approximately 10–15 

mm, and a load of approximately 75–115 N.  

 

Figure 3.6: Load versus elongation plots of fifteen jute yarn specimens. 

It is observed that there is a wide range of variation in the load as well as 

elongation before failure. Using equation (3.1) to (3.4), the TS, E, and s of each 

specimen are calculated, and the mechanical properties of jute yarn are 

summarized in Table 3-a. 
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Table 3-a. Mechanical properties of jute yarn. 

Specimen No.              Properties 

TS [MPa] E [GPa] s [%] 

1 42.65 0.68 6.27 

2 38.24 0.67 5.71 

3 48.04 0.68 7.11 

4 44.44 0.68 6.51 

5 44.22 0.64 6.88 

6 46.43 0.72 6.41 

7 45.70 0.71 6.40 

8 37.39 0.65 5.78 

9 39.20 0.73 5.37 

10 33.87 0.67 5.03 

11 42.13 0.62 6.74 

12 44.94 0.61 7.37 

13 41.00 0.72 5.70 

14 37.46 0.64 5.82 

15 39.48 0.73 5.38 

 

3.5.2 Uncertainty in the Mechanical Properties  

This section presents the uncertainty in the data of mechanical properties of jute 

yarn specimens. Figure 3.7 shows the plot of E vs. TS, E vs. s, and s vs. TS, 

which corresponds the variation of TS, E, and s of jute yarn. TS, E, and s of jute 

yarn are hardly correlated with each other. The uncertainty in the data of 

mechanical properties, TS, E, and s are quite high as detected in Figure 3.7. The 

value of TS varies from 25 to 50 MPa whereas s varies from 5 to 7.3%. 

Similarly, the E varies from 0.61 to 0.73 GPa. As there is a lack of consistency 

in the mechanical properties, it is not possible to calculate the MI of jute yarn.  
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(a) (b) (c) 

Figure 3.7: Uncertainty in the mechanical properties (a) TS, (b) E, and (c) s of 

the jute yarn. 

To be benefitted from the experimental results as shown in Figure 3.6 and Figure 

3.7, one needs to quantify the uncertainty associated with TS, E, and s in a 

systematic manner while selection of a material is important for product 

development.  

 

3.6 Uncertainty Quantification 

 As mentioned earlier, degree of uncertainty is associated with the data of 

material properties. This uncertainty is even more prevalent for the material 

properties of natural materials, jute as shown in Figure 3.7. Therefore, 

uncertainty quantification is an important aspect of studying natural material 

properties. Without uncertainty quantification, eco-product development 

processes may not provide the desired outcome. Numerous studies have tried to 

quantify the uncertainty exhibited by the material properties of natural materials. 

In many of these studies (Fidelis, et al., 2013; Silva, et al., 2008; Defoirdt, et al., 

May 2010; Hossain, et al., 2014) significant variability was observed in the 

respective material properties. The remainder of this section uses statistical, 

probabilistic and possibilistic method to quantify the uncertainty in the data of 

mechanical properties of jute yarn.  
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3.6.1 Uncertainty Quantification by Statistical Method 

Table 3-b shows the mechanical properties of the jute yarn for various statistical 

parameters, namely, minimum, maximum, 𝑥̅ , sd, and μ. From Table 3-a, the μ 

and sd of TS, E, and s for jute yarn are calculated using equation (2.9-10). The 

ranges of sd and μ at 95 % level of confidence are calculated using equation 

(2.11-12) and listed in Table 3-b. 

Table 3-b. Statistical uncertainties of jute yarn. 

Parameters Properties 

TS [MPa] E [GPa] s [%] 

Minimum 33.87 0.61 5.03 

Maximum 48.04 0.73 7.37 

Average (𝑥̅) 41.68 0.68 6.17 

Standard Deviation (sd) 4.01 0.04 0.69 

Expected Value () at 95% 

Confidence interval 
[37.76, 45.60] [0.64, 0.72] [5.53, 6.87] 

Standard Deviation (√𝜎2) at 

95% Confidence interval 
[2.94, 6.32] [0.03, 0.06] [0.51, 1.09] 

 

In the case of TS, the upper expected value of TS is 45.60 MPa + 6.32 MPa = 

51.92 MPa, which is quite high, given the maximum value of TS (48.04 MPa). 

The lower expected value of TS is 37.76 MPa − 2.94 MPa = 34.82 MPa, which 

is higher than the minimum value of TS (33.87 MPa). In case of E, the upper 

expected value of E is 0.72 GPa + 0.06 GPa = 0.78 GPa, which is quite high 

given the maximum value of E (0.73 GPa). The lower expected value of E is 

0.64GPa − 0.03 GPa = 0.61 GPa, which is equal to the minimum value of E 

(0.61 GPa). In case of s, the upper expected value of s is 6.87% + 1.09% = 

7.96%, which is quite high given the maximum value of s (7.4%). The lower 

expected value of s is 5.53%  0.51% = 5.02%, which is lower than the 

minimum value of s (5.03%). If the confidence interval is increased and the 

ranges of expected values and variances of the respective material properties are 

recalculated, the ranges of the expected values for all properties become wider 
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compared to those observed in the data points (Table 3-a). On the other hand, if 

the confidence interval is decreased, the range of the expected values of the 

respective material properties becomes narrow compared to those observed in the 

data points (Table 3-a). Therefore, when the uncertainty of a material property is 

quantified using an expected value, for a limited number of data points, there is a 

high possibility to have a strict or loose estimation, depending on the confidence 

interval. 

Even if the above statistical analyses are avoided, and a more straight forward 

approach is used, similar results are obtained. For example, consider the 

following approach: uncertainty associated with x is estimated by 𝑥̅ ± 𝑠𝑑 as 

defined in Equation (2.11). Many authors have adopted this approach, as 

discussed in the literature review of Chapter 1. Based on this contemplation, the 

uncertainty associated with TS is a range [37.67, 44.69] MPa, a highly truncated 

range compared to the range derived from its minimum and maximum values, 

i.e., [33.87, 48.04] MPa. Similarly, the uncertainty associated with E is a range 

[0.64, 0.72] GPa that is highly truncated compared to the range derived from its 

minimum and maximum values, i.e., [0.61, 0.73] GPa. In addition, the 

uncertainty associated with s is a range [5.51%, 6.89%] that is highly truncated 

compared to the range derived from its minimum and maximum values, i.e., 

[5.03%, 7.4%]. 

 

3.6.2 Uncertainty Quantification by Probabilistic Method 

The probability distribution is one of the widely used approaches to quantify the 

uncertainty and many authors have quantified the uncertainty of the natural 

material using this approach. In Chapter 2, the mathematical entities for the 

Weibull distribution have been discussed. This section describes the Weibull 

results of the jute yarn. In this study, Weibull distribution is used to quantify the 

aleatory uncertainty of the mechanical properties (TS, E, and s) of jute yarn. At 

first, the data (from Table 3-a) of TS, E, and s of jute yarn are rearranged in 

ascending order and each datum is indexed as shown in Table 3-c. 
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Table 3-c. Indexing of the TS, E, and s data for jute yarn. 

Index 

Number (xi) 

 

F(xi) 

Properties 

TSi [MPa] Ei [GPa] si [%] 

1 0.045 33.868916 0.610077 5.03% 

2 0.110 37.389838 0.624817 5.37% 

3 0.175 37.458465 0.643132 5.38% 

4 0.240 38.238556 0.64395 5.70% 

5 0.305 39.200715 0.647407 5.71% 

6 0.370 39.478021 0.669835 5.78% 

7 0.435 41.003195 0.67285 5.82% 

8 0.5 42.125016 0.67575 6.27% 

9 0.564 42.654415 0.680621 6.40% 

10 0.629 44.217407 0.682742 6.41% 

11 0.694 44.437294 0.714037 6.51% 

12 0.759 44.944255 0.719315 6.74% 

13 0.824 45.700576 0.724472 6.88% 

14 0.889 46.428834 0.730405 7.11% 

15 0.954 48.036641 0.733295 7.37% 

 

3.6.2.1 Parameter Calculation 

To determine the Weibull parameters, m and λ, the cumulative function (2.9) can 

be written as:  
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(3.5) 

The plot of  𝑙𝑛 (𝑙𝑛 (
1

1−𝐹(𝑥)
)) vs. ln(x) is shown in Figure 3.8. 

 

 

Figure 3.8: Estimation of Weibull parameters. 

It is observed that the plot of 𝑙𝑛 (𝑙𝑛 (
1

1−𝐹(𝑥)
)) vs. ln(x) is a straight line where m 

(the slop of the equation (3.5)) is equal to the shape factor and c = mlnλ. Weibull 

parameter, m and λ can be estimated from Figure 3.8. Moreover, μ and sd can be 

determined using equations (2.12) and (2.14), respectively. However, F(x) is still 

unknown which is calculated using equation (2.8).  

Using the data from Table 3-c, ln(ln(1/1-F(xi))) versus ln(x) plots are drawn for 

TS, E, and s using equations (2.15) and (2.16) and shown in Figure 3.9, where 

xi∊{ TSi, Ei, si} and i = 1,..,15. Where, i is the i
th

 data point, x(i) is the value of 

m

1

ln x

F(x) = ?

Maximum 

likelihood

Median

Variance

.

.

.



Uncertainty Quantification of Mechanical Properties of Jute Yarn 

 

73 

 

the data, and F(xi) is calculated using equation (2.16). In these plots as shown in 

Figure 3.9, x-axis represents ln(x) and y-axis represents ln(ln(1/1-F(xi))). The 

dots of the curve represent the data of mechanical properties namely, TS, E, and 

s.  

   

(a) (b) (c) 

Figure 3.9: ln(ln(1/1-F(xi))) - ln(x) plot for (a) TS, (b) E, and (c) s of jute yarn. 

The least mean square lines of the plots (Figure 3.9) regarding TS, E, and s for 

jute yarn are shown in Figure 3.10. Suppose the equation of the plot for TS is y = 

mx + c, different parameters can be estimated from this straight line. In this 

particular case, slop (m) and intersection (c) are estimated and listed in Table 3-

d.  

 
  

(a) (b) (c) 

Figure 3.10: Least mean square line plots of (a) TS, (b) E, and (c) s for the jute 

yarn. 

Weibull parameter, shape factor (m) for TS, E, and s are estimated from the 

value of slop of the straight line for TS, E, and s, respectively as shown in Figure 
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3.10. The scale factor (λ) can be estimated using c = mlnλ equation by placing 

the value of shape factors of the TS, E, and s. The value of the m for TS is 11.59, 

whereas it is 9.99 for s and 19.13 for E are listed in Table 3-d. As the m  1 for 

TS, E, and s, the shape of the density function will follow the normal distribution 

pattern or hyperbolic. As the m > 1 for TS, E, and s, the failure rate of will 

increase with the time for respected properties as s < TS < E. 

Table 3-d. Weibull parameters for TS, E, and s of jute yarn. 

Parameters Properties 

TS E  s 

Shape factor (m) 11.59 19.13 9.997 

Scale factor (λ) 43.46 697 6.466 

Root mean square 0.97 0.94 0.94 

 

From Table 3-d it is observed that the value of m for E is high compared to TS 

and s.  A high value of m (for E = 19.13) means the low variability in the 

properties. Therefore, the E is varied in the low range compared to other two 

properties (TS and s) as shown in Figure 3.10. The value of the root means 

square is 97.75% for the tensile strength data, which indicates that the tensile 

strength property is linearly good fitted with the Weibull distribution (as shown 

in Table 3-d) compared to other parameters (E and s) for jute yarn.  

The deduced Weibull functions of TS, E, and s from equation (2.4) for jute yarn 

denoted by f(TS), f(E), and f(s), respectively, as given by equations (3.7), (3.8), 

and (3.9). The Weibull distribution function for TS, E, and s are shown in Figure 

3.11. 

59.11][59.1018 ][101984.1)( TS

w eTSTSf   (3.7) 

182.19][132.1854 ][1077449.7)( E

w eEEf   (3.8) 

997.9][997.88 ][1086945.7)( s

w essf   (3.9) 
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(a) (b) (c) 

Figure 3.11: Weibull density functions of the (a) TS, (b) E, and (c) s for jute 

yarn.  

Finally, μ and sd are determined using equation (2.6) and (2.7). Table 3-e 

summarizes the μ, sd, and σ
2 

of TS, E, and s calculated using the data points 

shown in Table 3-b. 

Table 3-e.  Probabilistic uncertainties (Weibull distribution) of jute yarn. 

Parameters Properties 

T      TS [MPa] E [GPa] s [%] 

Expected value (μ) 41.60 0.678 6.151 

Standard deviation (sd) 4.35 0.43 0.704 

μ  at 95%confidence interval  [25.07, 69.00] [0.408, 1.123] [3.7, 10.20] 

sd  at 95%confidence interval  [2.62, 7.21] [0.025, 0.071] [0.44, 1.22] 

 

In case of TS for jute yarn the upper expected value of TS is 76.21 MPa (69.00 

MPa + 7.21 MPa). The lower expected value of TS is 22.45 MPa (25.07 MPa - 

2.2.62 MPa).  In addition, consider the case of E for jute yarn. The upper 

expected value of E is 1.19 GPa (1.123GPa + 0.71GPa). The lower expected 

value of E is 0.38 GPa (0.408 GPa - 0.025GPa).  Finally, consider the case of s. 

The upper expected value of s is 11.43% (10.20% +1.22%). The lower expected 

value of s is 3.26 %( 3.7% - 0.44%). This means when Weibull distribution is 

used to quantify the uncertainty of a material property from a limited number of 

data points, the ranges of the estimated value become wider.  

 

TS [MPa]

f W
(T

S
)

0 20 40 60 78

-0.01

0.02

0.05

0.08

0.11

E [MPa]

f W
(E

)

450 650 850

-0.002

0.003

0.008

0.013

s (%)

 f
W
 (

s)

-0.15 7.85 15

-0.05

0.15

0.35

0.55



Uncertainty Quantification of Mechanical Properties of Jute Yarn 

 

76 

 

3.6.3 Uncertainty Quantification by Possibilistic Method 

Apart from the statistical and probabilistic method to quantify the uncertainty 

associated with a material property of the jute yarn, other alternative is considered. 

As the distribution is not known, the possibility distribution is used to quantify 

the data of uncertainty associated with the material properties of Table 3-a. 

In particular, a probability-possibility transformation is used as defined in (Ullah 

and Shamsuzzaman, 2013) to deduce three fuzzy numbers (or possibility 

distributions) which represent the uncertainty associated with TS, E, and s. The 

deduced membership functions of TS, E, and s from equation (2.17) and (2.18) 

for jute yarn are denoted by DoB(TS), DoB(E), and DoB(s), respectively. The 

possibility distribution functions of TS, E, and s for jute yarn are given by 

equations (3.10), (3.11), and (3.12), respectively. 
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Figure 3.12: Possibility distribution of (a) TS, (b) E, and (c) s of jute 

yarns. 
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From Figure 3.13 it is observed that DoB(E) takes the shape of a triangular fuzzy 

number, whereas the other two (DoB(TS) and DoB(s)) take the shape of 

trapezoidal fuzzy numbers. Using the membership functions defined in 

Equations (3.10) to (3.12), the uncertainty associated with the TS, E, and s of 

jute yarn can be estimated. In this case an operation called alpha cut (Ullah, 

2016), is used i.e., the range corresponding to DoB(.) = alpha  [0, 1]. Some of 

the important alpha cuts are summarized in Table 3-f. 

Table 3-f. Possibilistic parameters of jute yarn. 

 

Alpha cut 

Properties 

TS [MPa] E [GPa] s [%] 

0  [37.2, 46.4] [0.615, 0.73] [3.355, 7.105] 

0.5  [39.1, 44.4] [0.6425, 0.7] [5.585, 6.7475] 

1 [41, 42.4] 0.67 [5.815, 6.39] 

Expected values (centroid 

method) 

41.75 0.67 5.67 

 

The alpha cut at DoB(.) = 0 corresponds to the largest range that is called the 

support of a possibility distribution. Thus, the supports of TS, E, and s are [37.2, 

46.4] MPa, [0.615, 0.73] GPa, and [3.355%, 7.105%], respectively. Note that a 

support does not contain the minimum and maximum values of the data points. 

This means that the deduced possibility distribution considers the extreme data 

points (minimum and maximum values) as outliers and excludes them from the 

uncertainty quantification. Therefore, minimum and maximum values are 

automatically truncated. The most possible value(s) correspond(s) to DoB(.) = 1, 

which is a point for E and are two ranges for the other two properties, as 

shown in Table 3-f. The ranges corresponding to DoB(.) = 0.5 are the logically 

consistent ranges. This means that any propositions made taking a range DoB(.) 

> 0.5 are true more than they are false. For example, the proposition is: "TS of 

jute yarn is 39.5 MPa." The truth-value of this proposition is 0.605263158 = 
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DoB(TS = 39.5) [refer to Equation (3.10)]. This means it is somewhat true that 

the TS of jute yarn is 39.5 MPa. Therefore, this value of TS can be considered 

while designing a product using jute yarns. Consider another proposition: "The 

TS of jute yarn is 38 MPa." The truth-value of this proposition is 0.210526316 = 

DoB(TS = 38). This means that it is somewhat false that the TS of jute yarn is 38 

MPa. Therefore, this value of TS can be avoided, when designing a product 

using jute yarns. In synopsis, when a design range is required for a material 

property of jute yarns, the range corresponding to DoB(.) = 0.5 can be 

considered, because the points included in this range are true more often than 

they are false. In addition, a possibility distribution provides the μ of the 

underlying parameter. In this case, the centroid method (Ullah, 2016) is used. 

Table 3-f also shows the centroid method-based expected values of TS, E, and s 

calculated from the respective possibility distributions. The expected value for 

TS and E lies in the core region whereas it is in the alpha-cut region in case of s. 

When no other details are given or available, one can consider these expected 

values for design and manufacturing decisions. Note that an expected value may 

or may not be a point in the core of the possibility distribution. Here, a core 

means the range or point corresponding to DoB(.) = 1 (i.e., the most possible 

value (s)). The μ of E is same as its core. This is not the case for the other two 

properties (TS and s) as shown in Table 3-f. Moreover, the μ of s is not included 

in its core which is not the case for the other two properties (TS and E). 

 

3.6.4 Comparison among the Different Methods 

This section presents a comparison among the results of the statistical approach, 

probabilistic approach, and possibilistic approach. There are different 

approaches to quantify the uncertainty, namely, statistics, probability (Dempster, 

1968), possibility (Zadeh, 1978; Dubois and Prade, 1988), imprecise probability 

(Walley, 1991; Walley 2000), evidence (Shafer, 1976; Klir, 1990), and random 

interval (Joslyn and Booker, 2004). As there are many methods to quantify the 

uncertainty, which method should be selected?  In this study, uncertainty is 
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quantified using three mostly used approaches and investigated a reliable 

approach to quantify the uncertainty in the data. And it is concluded that, 

possibility distribution is better method and reliable compared to other methods. 

The quantified data using three different methods are listed in Table 3-g.  

Table 3-g. Probabilistic and possibilistic uncertainties of jute yarn. 

Properties Parameters Statistical 

Method 

Distribution 

Weibull Possibility 

 

TS [MPa] 

Expected value (μ) [37.76, 45.60] 41.60 41.75 

Standard deviation (sd) 4.01 4.35  

μ at 95% confidence 

level/ Alpha cut 

[2.94, 6.32] [25.07, 69.00] [39.1, 44.4] 

 

E [GPa] 

Expected Value (μ) [0.64, 0.72] 41.60 41.75 

Standard deviation (sd) 0.04 4.35  

μ at 95% confidence 

level/ Alpha cut 

[0.03, 0.06] [25.07, 69.00] [39.1, 44.4] 

 

s [%] 

Expected Value (μ) [5.53, 6.87] 0.67 0.67 

Standard deviation (sd) 0.69 0.43  

μ at 95% confidence 

level/ Alpha cut 

[0.51, 1.09] [0.408, 1.123] [0.642, 0.7] 

 

In case of statistical approach, the expected values for the TS, E, and s are in the 

form of range [37.76, 45.60], [0.64, 0.72], and [5.53, 6.87], respectively as 

exposed in Table 3-g. For example, the expected value of the TS, E, and s of jute 

yarn are [37.76, 45.6], [0.64, 0.72] and [5.53, 6.87], respectively as shown in 

Table 3-g. As previously explained when there is uncertainty, statistical analyses 

estimate both highly pessimistic and optimistic values of TS, E, and s of jute 

yarns. That means some data are highly emphasized however, all data are not 

equally emphasized. When the uncertainty is represented by the statistical 

method the confidence interval is considered as range. This range may or may 

not be included in the experimental data points. Though, statistical approach is 

easy and familiar, one cannot rely on the statistical approach for such types of 

uncertainty quantification. Moreover, statistical approach deals with finite data, 

however, for infinite series (general assumption) the probability distribution is 
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an alternative option. Last but not least, the true behavior of a variable is 

described by its infinite statistics, finite statistics describe only the behavior of 

the finite data set (Figliola and Beasley, 2000). 

Apart from the statistical approaches to quantify the uncertainty associated with 

material properties, an alternative method (Weibull distribution) is considered. 

Statistical method estimates the expected value as a range. However, the 

Weibull and possibility distributions estimate a specific value for a certain group 

of uncertainty in the data of the TS, E, and s. In addition, probability distribution 

estimated the expected value of the TS is 41.60 MPa, whereas the possibility 

estimated the most possible value (expected value) of TS is 41.75 MPa for of 

jute yarn. Both of the quantification approaches give the same result for TS and 

E except s. Therefore, it can be informed that possibility distribution can 

quantify the data as probabilistic approach. Thus, one can rely on the possibility 

distribution to quantify the uncertainty. Therefore, it can be inferred that 

probabilistic and possibilistic approaches are better compared to the statistical 

method.  

Generally, the Weibull distribution is used to observe the life-cycle of the 

product. The Weibull distribution is one of the special forms of the binomial 

distribution, and follows the binomial theorem. Nevertheless, most of the 

researchers use this distribution to quantify the variability for natural materials. 

However, the Weibull distribution may not be the appropriate approach to 

handle the uncertainty of the natural material. Because before quantifying the 

uncertainty using probability distribution, one needs to know that the data are 

following a distribution. In this study, before calculating the Weibull distribution 

of jute yarn, it is assumed that data of jute yarn properties are following the 

Weibull distribution. In case of the jute fiber from jute growth to fiber 

collection, the growth and collection conditions are unknown because they grow 

naturally and rotted, washed, dried and finally collected by farmers. Thus, it is 

difficult to say which distribution they are following. In engineering practice, it 

is truly impossible to control the operation conditions of the growth in the field 
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naturally, that means the distribution is not known. Therefore, it is difficult to 

consider that jute is following a specific distribution. Thus, Weibull distribution 

above all probability distributions is not appropriate for such types of 

uncertainties quantification. 

Besides, when the distribution is unknown, it is required to check through 

different categories of probability distribution for curve fitting, which is time-

consuming. As possibility distribution deal with the uncertainty, in that sense 

possibility distribution is a better choice to calculate the uncertainty compared to 

other methods. 

In addition, a graphical representation is better for human understanding 

compared to the average value. However, for a small range of the data, it is 

tough to calculate and draw the probability distribution. For drawing histogram 

of the data, it is needed to obtain a minimum number of intervals (K) (Figliola 

and Beasley, 2000; Ashby, 2007) in the range (N) of data shown by equation 

(3.13). 

1)1(87.1 40.0  NK
 

(3.13) 

If the number of data and interval are large, the histogram will be better. 

Therefore, large number data (N) are better or required for probabilistic 

approach. On the other hand, possibility distribution can be used for a small 

number of data as well as big data. This type of evidence is obtained in case of 

Weibull distribution as there is a limited number of data the error estimation is 

higher as shown in Table 3-h. From Table 3-h, it is clear that the error estimation 

is high for TS (10.74), E (17.4), and s (1.57) of the jute yarn. 
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Table 3-h. Error estimation of quantified data for mechanical properties of jute 

yarn. 

Parameters  Properties  

  TS [MPa] E [GPa]     s[%] 

Expected value (μ)  

Standard Error 

41.60 

10.74 

0.677 

17.4 

6.15 

1.58 

Standard deviation (sd) 

Standard Error 

4.35 

1.123 

0.043 

0.011 

0.74 

0.19 

 

As the distribution jute yarn is unknown, possibility distribution may be better 

option to quantify the uncertainty. Moreover, this is one of the better ways to 

handle the uncertainty in the natural material (jute fiber). In possibility 

distribution, it is not mandatory to know that they are following any distribution 

or not. Moreover, a small range of data is able to give us a distribution or 

conclusion in case of possible distribution. Moreover, since the number of data 

points was small (15 data points), error estimation behind the probability 

distribution (i.e., Weibull distribution) becomes high. In fact, when it is unknown 

which distribution should be used to quantify the uncertainty, or even when there is 

insufficient data to deduce a probability distribution, the answer is to use a 

probability distribution-neutral representation (Ullah and Shamsuzzaman, 2013) 

of uncertainty. This was quite relevant to the case in this study, because of the 

limited number of data points (15 data points for each property, as shown in 

Table 3-c). As such, the concept of possibility (Zadeh, 1999) or possibility 

distribution (Dubois, et al., 2004) could be used. A possibility distribution is 

popularly referred as a fuzzy number (see (Ullah, 2016) for a definition). A 

possibility distribution entails a family of probability distributions (e.g., a 

triangular fuzzy number can entail a set of unimodal probability distributions, 

e.g., normal distribution, triangular distribution, and uniform distribution, (Ullah 

and Shamsuzzaman, 2013; Masson and Denœux, 2006)). In addition, a 

possibility distribution can also be deduced from a limited number of data points 



Uncertainty Quantification of Mechanical Properties of Jute Yarn 

 

83 

 

(Ullah and Shamsuzzaman, 2013; Masson and Denœux, 2006). Such a 

distribution also provides a reliable representation of the uncertainty, which is 

compatible with the general concept of uncertainty (Mauris, et al., 2001). 

Therefore, it can be suggested that possibility distribution is better to quantify 

the uncertainty associated with the natural material properties.  

Furthermore, in case of possibilistic approach, the upper limits of the alpha cut 

ranges are greater than the expected value of the respective material properties 

whereas the lower limits of the logically consistent ranges are smaller than the 

values of the respective material properties. This means that the lower limit of a 

logically consistent range is the most conservative estimation of the underlying 

material property. Therefore, one may consider the lower limit of a logically 

consistent range to be the design limit of the material property. 

 

3.7 Conclusion 

The variability or uncertainty associated with the properties of a natural material 

must be known beforehand to ensure the reliability, durability, and sustainability 

of any eco-product. Therefore, the uncertainty associated with the material 

properties of a natural material called jute yarn has been studied. This study 

clearly identified the uncertainty in the mechanical properties, TS, E, and s of 

jute yarns. The variability has been quantified using the conventional approach 

(average, standard deviation, and skewness), probabilistic approach (particularly 

Weibull distribution), and the possibilistic approach. From the statistical method 

and probability distribution, the μ and sd are determined, and the most possible 

and μ of TS, E, and s are determined from the possibility distributions. The 

logically consistent ranges of the TS, E, and s have also been determined. 

In case of probability approach, one needs to consider the distribution at the 

beginning. However, it is not an important issue in case of possibility 

distribution. Using the possibility distribution one can easily set the lower limit 

as a design limit at 50% alpha-cut because at this alpha cut the truth value is 
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partially true and partially false. As the possibility distribution (especially 

trapezoidal) has sharp value, one can easily find the range from the distribution 

without checking the log book. 

Possibility distribution is more reliable than other quantification methods. 

Because, in case of possibility distribution, initially, it is not necessary to know 

the distribution, that means there is aleatory uncertainty. Furthermore, possibility 

distribution can handle a small amount of data. As both of these issues are 

available in natural jute material possibility distributions is used and recommend 

this distribution to quantify the aleatory uncertainty. 

The lower range of the alpha cut is partially true and partially false, as well as 

below the alpha cut, the membership functions are more false than true. 

Therefore, it can be inferred that, the lower ranges of TS and E for jute yarn can 

be used as the design limits for a jute product. 
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Chapter 4: Decision Model to Select a Material 

under Uncertainty 

The materials are considered as key factor in managing the complexity while 

developing sustainable engineering products. Thus, material selection is very 

critical issue. The objective of this chapter is to develop a decision model under 

uncertainty and observe its effectiveness. This chapter is based on the Shahinur 

et al. (2017). The remainder of this chapter has been organized as follows: 

Section 4.1 describes the uncertainties (epistemic) in the product development 

using MI. Section 4.2 describes the proposed decision model that consists of four 

major steps, namely, decision formulation, information gathering, compliance 

calculation, and aggregation. Section 4.3 presents the results of a material 

selection problem, using the proposed decision model where a large number of 

alloys of Aluminum (Al), Magnesium (Mg), and Titanium (Ti) are evaluated. 

Due to lack of information of the natural material, jute, in this particular case, a 

metallic material is selected from the three metallic materials. Finally, Section 

4.4 provides the concluding remarks on this chapter.  

 

4.1 Epistemic Uncertainty in Product Development 

Before designing a product, it is a prerequisite to select materials, to ensure 

product functionality, quality, durability, and reliability. Suppose a designer 

wants to select a material for a stiff, light, strong and sustainable vehicle. While 

assessing the appropriateness of a set of materials (using MI) for making the 

parts of a product (vehicle), it is likely to be the case that the designer encounters 

a certain degree of epistemic uncertainty, as schematically illustrated in Figure 

4.1. There is uncertainty in MI calculation because MI itself is uncertain for a 



                 Decision Model to Select a Material under Uncertainty  

 

88 

 

given product. The material properties which are required to calculate the MI is 

uncertain, sustainable properties are not included in MI, and MI cannot 

guarantee a single selection of a material. 

 

Figure 4.1: A scenario of epistemic uncertainty regarding a material selection of 

a product vehicle. 

The shape and size (MI) of the car is customer dependent or it is unknown. It is 

worth mentioning that, the outline of a vehicle body depends on customer 

requirements (Sharif Ullah et al., 2016) and the outline is refined to get the final 

configuration using numerous engineering analyses where the materials must be 

known beforehand (Omar, 2011). Initially, the objectives or requirements 

(maximization or minimization) are known. Based on the customer requirement, 

if a designer prefers to maximize the structural integrity, it may create a conflict 

with the environmental impact. According to the general requirements, for above 

mentioned example, objectives can be expressed for strong material by 

maximizing TS, for light material minimizing ρ, for stiff material maximizing E. 

Sustainable products means CO2 Foot print should be low, Water usage should 

be low and Recycle fraction should be high (say). Based on the requirement for a 

vehicle, it can be informed that, to select a material, designer needs to 

incorporate the sustainable properties in material selection procedure 
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(Muhammet Gul, 2017). Furthermore, the sustainable properties are not included 

in the material selection process MI.  Based on above contemplation it can be 

concluded that, there is uncertainties in selection of materials for a vehicle using 

conventional graphical method MI. 

If a designer prefers to select the optimal materials for making the body of a 

vehicle (say) at a very early stage of the design process, the designer needs to 

handle conflicting objectives. In this study the conflicting objective is 

represented by possibility objective function (marked as 1). Uncertainty in the 

material properties is needed to be quantified using three different approaches 

(marked as 2 to 4). Using compliance analysis (marked as 5) between the 

objective function and the quantified data of material properties, a material for 

vehicle is selected (marked as 7). The proposed model shown in Figure 4.2 is 

designed to handle epistemic uncertainty and conflicting objectives behind the 

objective of material selection. 

 

Figure 4.2: Schematic diagram of the decision making procedure under 

uncertainty. 
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4.2 Mathematical Description of the Model  

This section describes the mathematical description of the proposed decision 

model to select the optimal alternatives. The proposed decision model employs 

the mathematical formulations described in Chapter 2 and helps users to make a 

decision under epistemic uncertainty, as described in Chapter 1. Figure 4.3 

schematically illustrates the proposed decision model and its relationship with 

the decision-relevant (analytic and/or empirical) knowledge.  

 

Figure 4.3: Proposed decision model. 

As seen from Figure 4.3, the decision model consists of following five modules 

as listed below: 

a) Formulation module, 

b) Information-Gathering module, 

c) Compliance-Calculation module,  

d) Aggregation module, and 

e) Decision module 

 

The Formulation and Information-Gathering modules work in coordination with 

the decision-relevant knowledge. This means that the available knowledge 
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regarding a given decision problem plays a vital role while performing the 

activities of Formulation and Information-Gathering modules. The output of the 

Formulation module serves as an input for the Information-Gathering module. 

The combined output of Formulation and Information-Gathering modules serves 

as the input for the Compliance-Calculation module. The output of the 

Compliance-Calculation module is the degrees of compliances for all 

alternatives for each criterion. Once the Compliance-Calculation module 

completes its function, the aggregation module makes a tradeoff among the 

compliances of some of the selected criteria based on the user-defined 

importance in order to rank the alternatives. The ranks of the alternatives help to 

make an informed decision. The decision made can be fed into the existing body 

of knowledge to enrich it, as schematically illustrated in Figure 4.3. 

However, the above description of the proposed decision model is rather 

informal. A relatively formal description of the decision model is given, as 

follows: 

 

4.2.1 Formulation Module 

Let, Ai = {A1, ...,AN} be the set of N different alternatives, Cj = {C1,...,CM} be the 

set of M different criteria, and Oj = {O1,...,OM} be the set of the states of the 

members in C for Formulation module, where, Oj  {maximization, 

minimization},  j = 1,...,M.  

The purpose of the Formulation module is to define A, C, and O. In order to 

define A, C, and O, the Formulation module relies on the analytical and 

empirical knowledge underlying the decision problem. It is illustrated in Figure 

4.3. The Formulation module decides the natures of the objective functions for 

the criteria in C. Let OB = {OB1,...,OBM} be the set of the objective functions of 

the criteria defined in C. As such, if Oj = maximization, then OBj = MAXj; 

otherwise OBj = MINj. 
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4.2.2 Information Gathering Module 

Information-Gathering module collects all sorts of data or information needed 

for determining the degree of compliances. It gathers the information to define 

the supports of the objective functions. Let, Sj = [aj, bj] be the support of OBj, j 

 {1,...,M}. Thus, Sj = [aj, bj], j  {1,...,M} can be a deterministic, local, semi-

global, or global supports as described in Section 4.2.2.1. The other function of 

the Information-Gathering module is to gather the decision-relevant information 

on each alternative defined in A for all criteria defined in C. Here, a piece of 

decision-relevant information denoted as DRIi,j can be a set of numerical values 

{d
k
i,j | k = 1,2,...}, a set of real intervals {P

l
i,j | l = 1,2,...}, a set of triangular fuzzy 

numbers {D
r
i,j | r = 1,2,...}, and any combination of these. This implies that DRIi,j 

 {DRI
k
i,j, DRI

l
i,j, DRI

r
i,j}, where  DRI

k
i,j= {d

k
i,j | k = 1,2,...}, DRI

l
i,j = { P

l
i,j | l = 

1,2,...}, and DRI
r
i,j = { D

r
i,j | r = 1,2,...}. 

 

4.2.2.1 Determining the Supports 

To define the maximization or minimization fuzzy number denoted as MAX or 

MIN, as described in the Chapter 2 Subsection 2.3.2, the support [a, b] must be 

known beforehand. Despite the remarkable progress of fuzzy-number-based 

knowledge-based systems, it remains true that no unique, best-of-the-world 

solution exists for setting a support of a fuzzy number unless it is induced using 

a set of numerical data. Keeping this in mind, this section describes four types of 

supports, for defining MAX or MIN. 

a) Deterministic, 

b) Local,  

c) Semi-global, and 

d) Global  

These supports are described below using numerical examples. 

First, the support called deterministic support has been considered. Deterministic 

support means a support that is known to all without any controversy. In case of 
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recycle fraction, it is customary to express the recycle fraction using a number 

taken from the interval [0, 1]. This means that if one defines MAX or MIN for 

maximizing or minimizing the recycle fraction, respectively, then the support [a, 

b] is equal to [0, 1], i.e., [a, b] = [0, 1]. The same argument holds for numerous 

physical quantities. It is worth mentioning that the compliances underlie a 

deterministic support that is equal to [0, 1]. If one is interested in seeing whether 

the compliances of an alternative to a set of criteria are being maximized, s/he 

obviously chooses an MAX for compliance maximization. In this case, the MAX 

underlies a support equal to [0, 1] because the values of the compliances always 

lie in the interval [0, 1] no matter the type of compliance (crisp, range, and 

fuzzy), as described in the Chapter 2 Section 2.4. 

On the other hand, the local, semi-global, and global supports are somewhat 

subjective, and, thereby, depending on the user's judgment or the available 

numerical data. For example, consider the following scenario. As there are seven 

classes of engineering materials and assume that one is interested in maximizing 

or minimizing the ρ of the material. According to (Ashby, 2005, p.520-521) the 

ρ (Mg/m
3
) of wood and wooden products, foams, rubbers, polymers, composites, 

ceramics, and metals and alloys lies in the interval [0.6, 1.05], [0.016, 0.47], 

[0.92, 0.955], [0.89, 1.58], [1.5, 2.9], [1.9, 15.9], and [1.74, 8.94], respectively. 

Now, if one considers a class of materials, e.g., metals and alloys, as the 

alternatives, and wants to evaluate the materials in the class using density as one 

of the criteria, then an interval [1.74, 8.94], or even a larger one (e.g., [1, 10]), 

becomes the support of MAX or MIN because the suggested support subsumes 

the intervals representing the density of all materials belonging to the considered 

class according to the supplied data. This kind of support is called the local 

support in the sense the support focuses alternatives that belong to a single class. 

On the other hand, if one considers two classes of materials, e.g., polymers and 

ceramics, as the alternatives, and wants to evaluate the materials of both classes 

using density as one of the criteria, then an interval [0.89, 15.9], or even a larger 

one (e.g., [0.5, 20]), becomes the support of MAX or MIN because the suggested 
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support subsumes [0.89, 1.58] and [1.9, 15.9], i.e., the intervals underlying the 

two classes of materials considered in terms of the criterion called density 

according to the supplied information. This kind of support is called the semi-

local support. 

Moreover, if one considers all materials as alternatives, and wants to evaluate 

them using density as one of the criteria, then an interval [0.016, 15.9], or even a 

larger one (e.g., [0.01, 20]) becomes the support of MAX or MIN. The reason is 

that the suggested support includes all intervals for all the materials considered 

in terms of the criterion called density according to the supplied information. 

This kind of support is called the global support. 

 

4.2.3 Compliance Calculation Module 

The Compliance-Calculation module calculates the degree of compliance for 

each combination of alternative and criterion. A degree of compliance denoted 

as COMi,j  [0, 1] is calculated by inputting each member of DRIi,j into CCMAX, 

CCMIN, RCMAX, RCMIN, TCMAX, or TCMIN, as defined in Chapter 2. If DRI
z
i,j is a 

member of DRIi,j, then the corresponding degree of compliance can be 

represented as COM
z
i,j 

 

4.2.4 Aggregation Module 

Finally, the Aggregation module aggregates the compliances of an alternative 

for some selected criteria in order to rank the alternatives so that one can make 

an informed decision. Let, Yi,j = {COM
z
i,j| z = 1, 2,...} be the set of compliances 

of the i-th alternative with respect to j-th criterion. Using Yi,j  [0, 1] as a 

triangular fuzzy number denoted as TAi,j can be induced. The induction process 

is described in Chapter 2 (Section 2.3). Let the support and core of the induced 

triangular fuzzy number TAi,j be [t1ij, t3ij] and t2ij, respectively. Since the values of 

the compliance lie in the interval [0, 1] and the compliance must be maximized, 

a special maximization fuzzy number denoted as COMMAX can be considered 
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where the support and core are [a, b] = [0, 1] and b = 1, respectively. As a result, 

the compliance of TAi,j with respect to COMMAX is the ranking score of the i-th 

alternative with respect to the j-th criterion denoted as RSi,j. Recall the procedure 

of determining the compliance of a triangular fuzzy number with respect to a 

maximization fuzzy number described in Chapter 2 (as shown in Figure 2.11 and 

equations (2.22) to (2.25). This procedure is valid for TAi,j and COMMX, too. The 

interaction between TAi,j and COMMAX is schematically illustrated in Figure 4.4, 

which is a similar case illustrated in Figure 2.11.   

 

Figure 4.4: Determining the ranking of an alternative based on a 

criterion. 

 In Figure 4.4, the points of intersections of TAi,j and COMMAX are VMAXij(VMAXxij, 

VMAXyij) and WMAXij(WMAXxij, WMAXyij). This yields ranking score denoted by RSi,j is 

expressed by following equation (4.1). 

ijij

MAXxijMAXyijMAXxijMAXyij
ji

tt

VtWtWV
RS

13

31
,

)()(




  (4.1) 

This relationship is found by substituting 0, 1, t1ij, t2ij, t3ij, VMAXxij, VMAXyij, 

WMAXxij, and WMAXyij for a, b, t1, t2, t3, VMAXx, VMAXy, WMAXx, and WMAXy, 

respectively, in the equations (2.22) and (2.23). The VMAXx, VMAXy, WMAXx, and 

WMAXy can be expressed by equation (4.2) and (4.3). 

t1ij
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t3ij
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Therefore, the ranking score RSi,j defined in equation (4.1) is calculated after 

calculating VMAXxij, VMAXyij, WMAXxij, and WMAXyij using equations (4.2) and (4.3), 

respectively. 

 

4.2.5 Decision Module 

In the decision module, to calculate the decision score, the ranking scores of an 

alternative Ai for all criteria can be added using the weighted importance. This 

yields a decision score denoted as DC (Ai), is given by equation (4.4) as follows: 

 









M

j

j

j

j

M

j

ijji

IMP

IMP
  wRSwADC

1

1

 that so         
(4.4) 

In equation (4.4), IMPj is the importance of j-th criterion that is an integer in the 

scale 0 to 10, i.e., IMPj  {0,...,10}, j  {1,...,M}. It is clear from equation 

(4.4) that when IMPj is greater, the importance of the criterion will become 

higher. Therefore, wj represents the normalized weight of the j-th criterion, wj 

 [0, 1]. Note that each IMPj is assigned subjectively by the decision maker(s). 

 

4.3 Implication of the Model: A Case Study 

In this section, in order to show the effectiveness of the model, a material 

selection case study is presented, where the complete information about 

alternative materials and design specifications are not known. First, consider the 

Formulation module. Here, three alternatives ({Ai| i = 1,…,3})  are considered as 
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listed in Table 4-a based on the general knowledge regarding materials used for 

making vehicle parts (McDowell et al., 2010; Omar, 2011; Mayyas et al., 2012a-

b; Poulikidou et al., 2015). 

Table 4-a. List of Alternatives (Ai| i = 1,…,3). 

A1 = Aluminum Alloys 

(Al) 

A2 = Magnesium Alloys 

(Mg) 

A3 = Titanium Alloys  

(Ti) 

In total 197 types of Al 

alloys are considered in 

A1 

In total 30 types of Mg 

alloys are considered in  

A2 

In total 45 types of Ti 

alloys are considered in  

A3 

 

The first alternative is a set of Al alloys that consists of 197 types of Aluminum-

based alloys. The second alternative is set of Mg alloys that consist of 30 types 

of magnesium-based alloys. The last alternative is set of Ti alloys that consist of 

45 types of titanium-based alloys. The number of alloys; 197, 30, and 45 of Al, 

Mg, and Ti, respectively, are considered based on the information available in a 

material database (CES Selector, Ref.). 

The MI is used to select materials for engineering components (Ashby, 2005, 

p.509-512). The MI depends on the nature of a component (e.g., tie, shaft, beam, 

column, plate, and panel) and the objective (e.g., stiffness-limited design at 

minimum mass and strength-limited design at minimum mass). In these MI, the 

material properties such as ρ, TS, and E are involved. Therefore, when the nature 

of the component is unknown (shown in Figure 4.1), at least, three material 

properties (ρ, TS, and E) are needed to be considered to ensure the structural 

integrity of the component. In addition, according to the MI (Ashby, 2005, 

p.509-512) to achieve a given objective, the ρ must be minimized whereas the 

TS and E must be maximized. On the other hand, the environmental impact of a 

vehicle can be minimized by reducing its weight. Therefore, minimization of ρ 

helps to reduce the environmental impact, too. Moreover, to reduce the usages of 

material, i.e., to increase the material efficiency (Allwood, et al., 2011; Ullah et 

al., 2013; Ullah et al., 2014), the recycle fraction of materials must be 
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maximized. At the same time, the primary production of materials must not 

produce a lot of greenhouse gasses (i.e., consume energy) and consume 

resources (e.g., water and land) (Rashid et al., 2011; Ullah et al., 2013; Ullah et 

al., 2014). Thus, besides ρ, Water usage, CO2 Footprint of the primary 

production of materials, and the Recycle fraction must be considered in order to 

accommodate the issue of sustainability while selecting material for making the 

body of a vehicle. 

Based on the above contemplation, a set of six criteria (C = {Cj | j = 1,…,6}), 

namely, ρ, TS, E, Water usage, CO2 Footprint, Recycle fraction, is considered to 

evaluate the alternatives called Al, Mg, and Ti. The decision-relevant 

information on these six criteria is shown by the min-max plots in Figure 4.5. 

Since the material property of an alloy is given by some numerical ranges or as 

crisp granular information see CES Selector database Ref. (Granta Company, 

2017, CSE selector), the minimum and maximum values of each range can be 

plotted on the horizontal and vertical axis, respectively. For example, let the ρ of 

an alloy is [2.63, 2.78] Mg/m
3
 (here the phrase “Mg” is mega-gram, not 

Magnesium). This piece of decision-relevant information is a point (2.63, 2.78) 

on the min-max plot. However, based on the decision-relevant information 

shown in Figure 4.5, the supports (S = {Sj | j = 1,…,6}), of the respective 

criterion are determined, as summarized in Table 4-b.   

 

 

 



                 Decision Model to Select a Material under Uncertainty  

 

99 

 

   

 

  

Figure 4.5: Decision-relevant information for three different categories of metal 

alloys. 

Table 4-b. States of criteria and their supports. 

Items () 

Criteria (Cj|j= 1,…,6) 

C1= ρ C2 = TS C3 = E 
C4 = Water 

usage 

C5 = CO2 

Footprint 

C6 = Recycle 

fraction 

Units [Mg/m
3
] [MPa] [GPa] [m

3
/kg] 

[kg-

CO2/Kg] 
[%] 

States minimize maximize maximize minimize minimize maximize 

Supports[a,b] [1, 15] [5, 1800] [10, 250] [0.1, 10] [1, 65] [0, 100] 

 

According to the customer requirement, the optimization states of the criteria are 

also listed in Table 4-b. From Table 4-b it is observed that, the TS, E, and 
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Recycle fraction must be maximized whereas the ρ, Water usage, and CO2 

Footprint must be minimized, as described early. Based on this, the objective 

functions (OB = {OBj | j =1,…,6}) of the six criteria are plotted and shown in 

Figure 4.6. 

   

  
 

Figure 4.6: Objective functions of six criteria. 

The supports (x-axis) are chosen from plots as shown in Figure 4.5 for objective 

functions of six criteria. As such, all supports here are local supports except the 

support of Recycle fraction that is a global support. According to the fuzzy 

theory, the range of DoB is 0-1 (y-axis). When the requirement is to maximize 

the criteria the function becomes ramp up (OBj = MAXj) for TS, E, and recycle 

fraction and vice versa.  The objective function of TS is maximization as shown 

in Figure 4.7 (a). The support of the objective function is taken from the plot of 

minimum and maximum range of TS as shown in Figure 4.5 and Table 4-b. 

Compliance is calculated using the interaction between objective function and 
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granular information of Al 2014, wrought T4 is shown in Figure 4.7(b). The 

compliances of alternative are determined using the procedure described in the 

Chapter 2. The maximum and minimum values of TS for Al 2014, wrought T4 

are 350 MPa and 440MPa, respectively. Thus, p = 350 MPa and q = 440 MPa 

and the objective function of TS is maximization. Therefore, using equation 

(2.23) the compliance of Al 2014, wrought T4 becomes 0.21. 

 

Figure 4.7: Interaction between crisp granular information with the objective 

function for Al 2014, wrought T4 alloy. 

Using similar procedure, the compliances of 197 types Al alloys are calculated 

for criteria, TS. Similarly, the compliances for other two alternatives (30 types of 

Mg alloy and 45 types of Ti alloy), six criteria are calculated and shown in 

Figure 4.8. From the Figure 4.8, it can be observed that the order of preference 

list of material in terms ρ is Mg > Al > Ti, TS is Ti > Al > Mg, E is Ti > Al > 

Mg, Water usage is Al > Ti > Mg, CO2 Footprint is Al > Mg > Ti, and Recycle 

fraction is Al > Mg > Ti. The values of the compliances for each criterion and 

alternative have uncertainty. This uncertainty is quantified by possibility 

distribution. 

The Possibility distribution of a criterion for each alternative is determined using 

the procedure described in the Chapter 2 Section 2.2.3. The possibility 

distributions for compliance of the alternatives namely, Al, Mg, and Ti for 

different criteria (ρ, TS, E, Water usages, CO2 Foot print, and Recycle fraction) 

are calculated and shown in Figure 4.9. 
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Figure 4.8: Compliances of the alternatives for a respective criterion. 

   

   

  

Figure 4.9: Possibility distribution of the alternatives for the respective criterion. 

In case of vehicle design, to choose the best material TS, E should be high, 

whereas ρ, CO2-Foot print, and Water usage should be low. As shown in Figure 
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4.9, it is clearly understood, which alternatives comply more with the objective 

functions according to criteria because the plots are the possibility distribution 

functions of the compliances. For example, in case of ρ the possibility 

distribution function of Mg lies near the value of 1 according to x axis. 

Therefore, the preferential list of material according to ρ is Mg > Al > Ti. The 

preference of lists of materials based on the ranking score and according to TS, 

E, CO2-Footprint, Water usage are Mg < Al < Ti, Ti > Al > Mg, Ti < Mg < Al,  

Mg < Al and Ti < Mg < Al respectively. That means graphically, it is possible to 

compare the alternatives and possible to make a preferential list of material. 

However, for exact decision making, it is required to go through the compliance 

calculation again. In case of Water usage as shown in Figure 4.9 there is no 

possibility graph for Ti because the variability in the data on Water usage for Ti 

is absent.  

The interaction between the objective function and the possibility distribution 

functions of six criteria and three alternatives are shown in the Figure 4.10. The 

value of the compliance always lies between 0 and 1. As the requirement is to 

maximize the compliances value, the objective function need to be maximized, 

however, the support is lies between 0 and 1. 
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Figure 4.10: Interaction between the objective function and the possibility 

distribution for five criteria, three alternatives. 

The points of the interaction between possibility distribution of compliances of ρ 

for Al alloys and the maximization objective function are VMINx = VMINy = 0.862, 

WMINx = WMINy = 0.867. The support of the possibility distribution function of 

compliances for ρ of Al is [0.85, 0.885] that is t1 = 0.85, t2 = 0.86 and t3 = 0.885. 

In case of ρ, using equation (2.33), the ranking score is calculated for Al alloys 

and it is 0.982. Similarly, the interaction between the objective function and the 

possibility distribution function of compliances for three alternatives and six 

criteria are calculated using equation (2.29) and equation (2.25). This ranking 

score also preserves the above mentioned order of preferences, as indicated in 

the last row in Table 4-c. This means that, the ranking score is an effective mean 

of aggregating the uncertainty associated with an alternative for a given 

criterion. 
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Table 4-c. Ranking scores of the alternatives. 
A

lt
er

n
a
ti

v
es

 

 (
A

) 
Criteria (C) 

 

C1 = ρ 

 

 

C2 = TS 

 

C3 = E 

C4 = 

Water 

usage 

C5 =  

CO2 

Footprint 

C6 = 

Recycle 

fraction 

A1 = Al 0.982 0.327 0.470 0.992 0.966 0.670 

A2 = Mg 0.995 0.243 0.255 0.872 0.871 0.624 

A3 = Ti 0.906 0.741 0.666 0.915 0.780 0.405 

Preferential 

order 

Mg > Al 

> Ti 

Ti > Al  

> Mg 

Ti > Al  

> Mg 

Al > Ti > 

Mg 

Al > Mg  

> Ti 

Al > Mg 

 > Ti 

 

Once the ranking scores are known, the decision-score (DC) can be calculated as 

described in the previous Section 4.1.5. In doing so, the importance of the 

criteria must be set. For this particular case, the criteria called ρ, Water usage, 

CO2 Footprint, and Recycle fraction are useful in assessing the sustainability of 

material, and, thereby, the sustainability of vehicles, as described above. The 

other two criteria, namely, E, and TS are useful for ensuring the structural 

integrity of the body of a vehicle. One can determine the decision-scores of the 

alternatives for different sets of importance as shown in Table 4-d. In particular, 

three sets of importance are chosen here for determining the decision-scores. In 

the first set, both sustainability and integrity criteria are considered equally 

important. For example, the importance of the criteria are ρ = TS = E = Water 

usage = CO2 Foot print = Recycle fraction = 10. According to this requirement 

the value of compliances for ρ, TS, E, Water usage, CO2 Foot print, Recycle 

fraction are 0.982, 0.327, 0.47, 0.992, 0.966, and 0.426, respectively, for Al. 

Thus, the total value of the compliance is 0.694 for Al. Similarly, the 

compliances for Mg and Ti are 0.609 and 0.735, respectively, as shown in Table 

4-d. 
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Table 4-d. Decision score for Set-1 based on six criteria of three alternatives. 

 Criteria(C) 

 

ρ 

 

TS 

 

E 

Water 

usage 

CO2 Foot 

print 

Recycle 

fraction 

Total 

Importance 10 10 10 10 10 10 60 

S
et

-1
 

Weight 0.166 0.166 0.166 0.166 0.166 0.166 1 

Al 0.163 0.054 0.078 0.165 0.161 0.071 0.694  

Mg 0.165 0.040 0.042 0.145 0.145 0.104 0.640  

Ti 0.151 0.123 0.111 0.152 0.13 0.067 0.735  

 

The decision-score of Ti becomes the maximum, followed by Al and Mg, 

respectively. Thus, when both sustainability and integrity criteria have the same 

degree of importance, the list of preferences is Ti > Al > Mg. Similarly, the other 

decision formulation are made for Set-2 and Set-3 and shown in Table 4-e.  

In the second set, sustainability criteria are considered relatively more important 

than the integrity criteria. This makes Al's decision-score the maximum followed 

by those of Ti and Mg, respectively, shown in Table 4-e. Thus, when the 

sustainability criteria are more important than the integrity criteria, the list of 

preferences is Al > Ti > Mg. This means that Ti and Al alternate their positions 

once the integrity criteria lose their importance compared to those of 

sustainability.  

In the last set, the sustainability criteria are considered very important compared 

to those of integrity. This makes Al's decision-score the maximum followed by 

those of Mg and Ti, respectively. Therefore, when the integrity criteria are 

somewhat insignificant compared to those of sustainability, the list of 

preferences is Al > Mg > Ti. This means that Al and Mg are the preferred 

materials when the sustainability is a key concern.  
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Table 4-e. Decision scores of the alternatives. 

 Criteria (C) Importance 

Set 1 Set 2 Set 3 

C1 = ρ 10 10 10 

C2 = TS 10 5 1 

C3 = E 10 5 1 

C4 = Water usage 10 10 10 

C5 = CO2 Footprint 10 10 10 

C6 = Recycle fraction 10 10 10 

Alternatives (A) Decision scores 

A1 = Al 0.694 0.753 0.820 

A2 = Mg 0.643 0.722 0.812 

A3 = Ti 0.735 0.742 0.749 

List of Preferences Ti > Al > Mg Al > Ti > Mg Al > Mg > Ti 

 

4.4 Conclusion 

 A new pragmatic decision model has been developed to select a material 

under the epistemic uncertainty. The effectiveness of the proposed 

decision model is observed to select a material.  

 An optimal material is selected from three metallic materials for a 

vehicle body. In this particular case it is considered that there is no 

information of MI, no information of the shape of components of vehicle 

body.  To make a strong, stiff, light, and sustainable car body from Al, 

Mg, and Ti, a material is selected through the proposed model. Finally, 

based on three different customer (e. g. Car Company) requirements, 

decision is made from limited information (design configuration, data 

uncertainty, and conflicting issue under sustainability). Thus, this type of 

model can be used in different manufacturing companies, especially; it 
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can be used at the starting of the company to reduce the complexity of 

the infrastructure. 

 Limitation of the model is that the designer needs to take care of 

alternatives selection. All types of the criteria should be known at the 

beginning, regarding the objective function; otherwise, requirement will 

not be accomplished. 

 When the Material Index for selecting an optimal material is unknown, a 

set of possibilistic objective functions can be used, instead. 

 The possibilistic objective functions can be used without any complicacy 

to incorporate the aspect of sustainability in a material selection process. 

 The interaction between the uncertainty of a material property and 

relevant possibilistic objective function can be quantified by a concept 

called compliance.  

The compliance can be aggregated for all objective functions in order to 

rank a material. 
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Chapter 5:  Discussions 

Selection of an optimal material is a critical as well as important issue in the 

product development process. It is critical in the context that around 80% cost 

and energy consumption of a product is required for material and to support its 

life cycle. The optimal material is required for a component of the product in 

view of sustainability, durability, and reliability. Otherwise, it is nothing, but a 

waste of material, money, and energy. Additionally, the material properties of 

the alternative resources vary to a large extent which leads uncertainty in the 

material selection method. In this study, uncertainty of a material property has 

been quantified using a reliable approach, the possibilistic distribution. When the 

material selection is required at an early stage of the product development, there 

is uncertainty in material selection using MI. In this study, using an alternative 

representation of the MI, a decision model is developed to select a material 

based on compliance. However, still, no one has considered these types of 

uncertainties at the initial stage of product development. To shed some light on 

the issues of uncertainty quantification and material selection, this thesis poses 

and answers the following questions: 

 

a) How will the findings of this research help others? 

b) What will be the further research based on the output or methods? 

 

Due to lack of information of sustainable properties, jute material was not 

incorporated in the proposed decision model to see the effectiveness. This study 

can link the different stakeholders of the eco-product frame-work. A framework 

for eco-product development based on the different stakeholders may be 

introduced as Figure 5.1 
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This study has an influence on the different components of the framework. The 

following framework will give a clear idea of how the research output of this 

study will help others.   

                                                      

 

Figure 5.1: A Complete framework of eco-product development. 

The important stakeholders of the eco-product framework are Researchers (A), 

Uncertainty Quantification System (B), Eco-Product Designer (C), Producer 

(D), and User (E) as shown in Figure 5.1. Diversified researches (A) have been 

developing on the material (e.g. characterization) since last few decades. The 

outcomes of these researches are needed to be stored for future use. due to 

various reasons, there is variability or uncertainty in the data of research natural 

material properties which are needed to quantify (B). Thereafter, based on that 

decision-relevant information, eco-designer can compare one material with 

another using proposed decision model (C) and select a material. This type of 

decision model is essential for the designer at the initial stage of the eco-product 

design. First, a designer designs a product on the basis of selected material, next 

the producer (D) produces a product using that designer specification (marked as 

5), and then the user (E) uses (marked as 6) that product. Depending on the user 

requirement or feedback (marked as 7), the eco-designer gets information 

(marked as 8) from the producer and the eco-designer will redesign the product 

by changing the input of the decision model. The decision of the proposed model 
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can be stored as information in the system B for further use. The initial or former 

decision (marked as 2) and modified (marked as 3) decision can be also stored as 

information in the stored system (B).  

Different types of research work have been going on the natural materials (e.g. 

characterization), during the last few decades by different researchers (shown in 

Figure 5.1 marked as A) of different countries (Bangladesh, India, China, Brazil, 

and so on). The designer designs the products based on the research information 

and knowledge. However, there is no link between the researchers (A) and eco-

designers (C) to transfer or share their knowledge. As a result, researchers, as 

well as designers, are not benefited from each other. Based on the above 

contemplation, different collaboration can be made between the different 

organizations of different countries for diversification of the eco-product. 

Moreover, this study can integrate A and C as shown in Figure 5.1. Based on 

this study, the outcome of scientific research (A) can be stored in the Data Bank 

(B). That data can be quantified through the proposed quantification method. 

Based on quantified data, the designers can select material from different 

alternatives, using the proposed decision model, at the beginning of the product 

designing.  

There is uncertainty in the data of material properties and dissimilarities among 

the research outputs. In addition, research outputs of the natural materials are not 

stored in a systematic manner that means there is no specific system or source to 

store the scientific results, for further use. Therefore, designers cannot rely on 

the existing system for eco-product development. Now, if eco-designers (C) 

want to design an eco-product, using natural material, they need a reliable source 

of information (like B). Using that information, designer can select an optimal 

natural material for eco-product. In this context, the proposed quantification 

approach (possibility distribution) can be used to quantify the uncertainty and 

store the data in the data bank. Thus, the eco-designer will be benefited from this 

study and will be able to quantify the uncertainty using proposed quantification 

system. Hence, the designer will be able to develop diversification in the eco-
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product using that quantified data. Furthermore, small and large number of data 

can be stored using the possibility distribution. Therefore, this study will be 

helpful to store and to quantify the uncertainty (B) in the data for further uses. 

Besides, the proposed quantification approach will enrich the data bank by 

storing the data using the possibilistic method. To select a material for an eco-

product, the data of material properties are required (discussed in Chapter 1), 

which now can be collected from the B.  The designer (C) will able to design an 

echo product using the data or information from B. Moreover, a designer using 

the proposed decision model can select a material before designing a product.   

In eco-product, the natural materials (particularly jute fiber) are sometimes used 

as a raw or after modification. Jute material namely, jute fiber, yarn, and jute 

fabrics (alternative form of jute) are used in the jute based eco-products 

development shown in Figure 5.2. 

 

Figure 5.2: Jute product made from jute yarn. 

Jute fiber is a primary material of the jute product and the data of jute fiber is 

used for the Jute-product designing. However, most of the jute based products 

are made from jute yarn. From this study, it is observed that yarn data can be 

used for product designing compared to the fiber data. When the  jute fibers 

properties, TS and E (see Shahinur and Ullah, 2017; Defoirdt, et al., May 2010; 

Jute Plant

Jute Products

Jute YarnJute Fiber 

Mechanical 

Processing
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Biswas, et al., 2013; Biswas, et al., 2011; Shahinur, et al., 2015; Jafrin, et al., 2014; 

Hossain, et al., 2014), are considered, their values were too high in comparison to 

those for yarn properties. For a better understanding, the possibility distributions 

of jute yarn and jute fibers are shown side by side in Figure 5.3. 

 
 

 (a) (b) 

Figure 5.3: Comparison between jute fiber and yarn in terms of uncertainty in TS 

(a) fiber and (b) yarn (copied from Figure 3.12). 

The possibility distribution for the TS of jute fibers shown in Figure 5.3(a), 

taken from (Shahinur and Ullah, 2017), was determined by the same 

methodology as described in Chapter 2 (Dubois, et al., 2004). As seen from the 

TS possibility distribution for jute fibers shown in Figure 5.3(a), the degree of 

the associated uncertainty is very high. That means fiber data are unreliable 

compared to jute yarn as shown in Figure 5.3(b). However, the data of jute yarn 

on the basis of possibility distribution are more pragmatic because the range of 

the jute yarn is narrow compared to jute fiber data. This means the combined 

strength of strong and weak jute fibers creates the resultant strength of the jute 

yarn. Since a bundle of jute fibers (not a single fiber) supports the strength of a 

product, the material properties of jute yarn can be used for making various 

design decisions. The proposed quantification approach can also be used to take 

a decision. For example, using possibility distribution, it can be concluded that 

yarn data are best for calculating the design limit compared to jute fiber. The 
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decision maker can keep these types of information and distribute to the 

company for eco product diversification.  

Furthermore, the proposed possibility distribution approach will not only be 

used to quantify the uncertainty, it can be also be used to see the effect of the 

controller (chemical or physical) on the material performance (output) while 

there is uncertainty. This method can also be used to identify the suitable 

commercial manufacturer for a specific production. These types of investigation 

need be proved using the proposed decision model. 

This model is not only usable for material selection, but can also be used in the 

selection of company at the starting of the signing from different companies or 

suppliers. Due to some problem if a supplier (e.g. Dayal) discontinues its 

business, in that case, customer (TOYOTA, Car Company) needs to select a 

supplier. Thus, the decision can be taken under this proposed model. The 

proposed model can be used to select which material (Indian jute, Bangladeshi 

Jute, Chinese jute, and Brazilian jute) will be used from which country 

(Bangladesh, India, China, and Brazil) for a product (e.g. Jute Carpet). 

Furthermore, there are different approaches (e.g. DNA based, point cloud-based, 

if then else, AHP, TOPSIS, and PROMETHEE) to take a decision which can be 

compared with the proposed decision model.  

If a designer wants to select a material for a particular product, the designer may 

need to follow the proposed decision model. In addition, Decision model (C) is 

required when there is epistemic uncertainty, material properties are uncertain 

and only objectives (maximization and minimization) are known. The objectives 

are maybe maximization or minimization or both. To differentiate the optimal 

material, their mechanical and sustainable properties are needed to be 

emphasized for the sustainability, reliability, and durability of the product. In 

this study, emphasis is given on the mechanical properties (like TS, E, and s) and 

sustainable properties (CO2 Footprint, Recycle fraction, and Water usage) of Al, 

Mg, and Ti. To observe the effectiveness of the proposed decision model a 

metallic material is selected. On the other hand, there is a lot of information of 
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metallic materials (for example CO2 Footprint, Water usage, and Recycle 

fraction) and their information is well established. Moreover, these data are used 

in the factory for production. However, due to lack of life cycle information on 

natural material, jute, it is not possible to select a natural material from the 

Material Universe. Thus, the sustainable properties (for example CO2 Footprint, 

Water usage, and Recycle fraction) of the natural material are required for 

sustainability calculation which is an open topic for future research.  

Shape of Objective Function  

This section describes the reason behind the selection of simple shape for 

objective function. Desire or requirement of the decision maker is termed as 

objective function. In this study, the objective functions are represented by two 

types of possibility distributions and the membership value of the objective 

function lies between 0 and 1. They are neither linear nor nonlinear, they follow 

the fuzzy logic and the function is fuzzy membership function. Moreover, linear 

and nonlinearity are considered in the hard computation world, whereas the 

proposed decision model is developed under soft computing. However, the 

shape of the proposed possibility objective function may be non-linear such as 

Gaussian distribution, convex and quadratic and polynomial function as shown 

in Figure 5.4. 

As in this study it is considered that the objective functions are fuzzy functions, 

meaning the information of the objective functions is not clear or fuzzy or 

uncertain. Thus, it can be said that, it is unknown which nonlinear shape is 

appropriate for objective function for individual criteria. In this study, to 

represent the objective function, for simplicity, the rule of thumb has been 

followed. That is why in this study simple shape (ramp up and ramp down) is 

considered for objective function representation. 
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Figure 5.4: Different shapes of objective functions. 

If the shape of the objective function is changed according to designer 

preference, the decision will be changed accordingly.  

If the objective function is denoted by F: XY, the domain of X is the support 

and Y is the membership value of possibility objective function. Xє and 

Yє[0,1] 

 

Figure 5.5: Domain of possibility objective function. 
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Thus, the support selection is an important issue to obtain the membership 

function for a specific criterion. The following section discusses the support 

selection. 

Support Selection 

Suppose two materials A and B from the Material Universe are needed to rank 

under a criteria ρ (data is a range for each alternative, say) as shown in Figure 

5.6. Based on the selection of x-axis range according to designer, the support 

will be local, semi-local, global, and deterministic as shown in Figure 5.6.The 

data of ρ for A and B lies in the natural material group. Thus, when a designer 

selects a range regarding the value of ρ for A and B as [ρA, ρB] the support will 

be considered as local support. When the range of density of natural material is 

considered, then, it will be named as local support. When the whole range of 

density from the Material Universe is considered, they will be named as global 

support as shown in Figure 5.6. Meanwhile, the deterministic support for ρ is 

unknown, which cannot be represented by conceptual Figure. 

 

Figure 5.6: Support consideration to select material A and B from the Material 

Universe.  

In this study, the objective function is represented by two types of possibility 

functions such as minimization and maximization. When one designer wants to 

minimize ρ, the possibility objective function for ρ can be represented by Figure 
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5.7 (a) based on the different supports consideration (say, data is CRISP). 

However, if other designer wants to maximize the ρ, the objective function can 

be represented by different maximization functions as shown in Figure 5.7 (b) 

based on support.  

  

(a) (b) 

Figure 5.7: Determination of (a) minimization and (b) maximization objective 

function based on different supports. 

The density of the natural material is comparable to the member of natural 

material. However, the density of natural materials is not comparable to the 

density of metallic materials. Thus, local support is the better option than other 

support to formulate the objective function.  However, a designer can choose or 

select any type of support according to the requirement. 

Support Calculation for Different Information 

As the data has different categories, support selection based on the data type also 

varied. If data is CRISP, support will be calculated from the minimum and 

maximum value regarding a criterion for all alternatives as shown in Figure 

5.8(a). For example: When ρAl = a, ρTi = b, ρMg = c, if a < b < c support will be [a, 

c]. If a < c < b support will be [a, b] and if b < a < c support will be [b, c]. For 

example, ρAl = 0.5 Mg/m
3
, ρTi = 0.6 Mg/m

3
, ρMg = 1.2 Mg/m

3
, the local support 

will be [0.5, 1.2]. 
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(a) (b) (c) 

Figure 5.8: Support (local) selection for the possibility objective function of (a) 

CRISP (b) range and (c) uncertain criterion. 

If data is a range, the range of x-axis of the minimum-maximum plot of the 

criteria for all alternatives will be selected as local support (discussed in Chapter 

4 as shown in Figure 5.8(b)).  If the data is uncertain (probability granular) for a 

criterion, that uncertainty can be represented by the possibility distribution. The 

possibility distribution for all alternatives if accumulated for that criterion, the 

range of x-axis will be selected as local support as shown in Figure 5.8(c).  

Ranking of Alternatives for Different Supports 

Support is an important issue to build the objective function. If a support is 

changed, the ranking remains same for same criteria but the value of the 

compliance is changed according to support. For example, consider the case of a 

criterion, ρ.  The objective function (minimization, say) will become as shown in 

Figure 5.9 for different supports. The support is selected as local (Figure 5.9(a)), 

semi-local (Figure 5.9(b)), deterministic (Figure 5.9 (c)) and global (Figure 

5.9(d)) (say).  
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(a) (b) 

  

(c) (d) 

Figure 5.9: Interaction of objective function and the uncertainty of criteria 

for (a) local, (b) semi-local, (c) deterministic, and (d) global support 

(objective function is to minimize the criteria). 

The ranking of three materials (Al, Mg, and Ti) is shown in the Figure 5.10 for 

the different ranges of support. Let us consider local, global, semi-local, and 

deterministic support of the ρ are [1, 15], [0, 100], [1, 20], and [0.01, 30], 

respectively. The ranking of alternatives remains same for different supports, 

however, value of the degree of compliance is changed accordingly as shown in 

Table 5-a. Therefore, it can be confirmed that if the support is changed the 

ranking of alternatives will not change. As the value of degree of compliance is 

changed, the decision scores would be changed. 
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Figure 5.10: The ranking of alternative for different supports (a) local [1, 15] (b) 

global [1, 100] (c) semi-local [1, 20] and (d) deterministic [0, 30] in case of 

criteria (ρ). 

Table 5-a. Degree of compliance for Al alloy based on different supports (ρ). 

Support Local Semi-local Global Deterministic 

Numerical 

Value 

[1, 15] [0, 20] [0, 100] [0.01, 30] 

Value of 

Compliances 

0.982 0.979 0.999 0.990 

Thus, it can be said that there is some constraint for the proposed model 

regarding the support selection. In case of objective function formulation, the 

consideration of support should be local because similar categories of 

alternatives can be compared with each other. For example, speed of the car can 
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be compared with car speed which has significant meanings. If a car speed is 

compared with the airplane speed it becomes illogical or insignificant. However, 

theoretically they can be compared, that is why there is option of semi-local, 

global and deterministic support. 

Approaches of Compliance Calculation 

Compliance of a criterion for an alternative means how far or close a criterion is 

from the desired objective function. The degree of compliance can be calculated 

in different ways based on the data pattern (or types of information). In this 

study, to observe the effectiveness of the proposed decision model, it is 

considered that each alternative comes from a group of alloy and the data of the 

criteria has individual range. Thus, at first, compliance is calculated for a 

criterion of each member of the alternative using crisp granular information 

theory. From that big data of compliances a possibility distribution is calculated 

for the group of members of an alternative. After that, the degree of compliance 

is calculated between that possibility distribution and maximization objective 

function for all alternatives as shown in Figure 5.11 (a). The approach to 

calculate the degree of compliance is different for different categories of data.  

Consider the data of criteria is uncertain (probability granular) or point cloud. 

Frist, by calculating possibility distribution of each criterion, the degree of 

compliance can be calculated for ranking between the alternatives and objective 

function as shown in Figure 5.11(b). However, when the range of data can be 

represented by point cloud, the ranking of alternatives can be made using this 

approach also.  
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Figure 5.11: Different approaches for ranking under compliance (minimize a 

criterion). 

Consider the data is a range. The degree of compliance can be directly calculated 

by interacting between the range of data and possibility objective function 

(minimization, say) as shown in Figure 5.11. When an alternative has many 

members and each member’s criteria is in the form of range the group of 

alternatives are needed to be ranked then the method (a) should be followed. 

When information of the criteria is crisp, method (d) should be followed. If the 

information of criteria is hybrid, the hybrid concept can be used to rank the 

alternatives.  Therefore, this is again an open topic for research. The proposed 

decision model can be used to take decision for different conditions or situations 

behind the multi-objective. 
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Difference between Pareto Optimal and Proposed Decision Model 

This section describes the difference between the Pareto optimal and the 

proposed model. The Pareto optimal theory is developed for multi criteria. The 

criteria are conflicting (minimization and maximization) in nature and the units 

of the criteria are different (for example MPa, GPa, Mg/m
3
, and %). In such case 

conventional linear and nonlinear solution are not applicable. That is why Pareto 

optimal is developed for multi-criteria solution. At first, in this case Pareto 

frontier or non- dominate line are found. In the non-dominated line one objective 

function (maximization or minimization) of a criterion is not dominated other 

objective function (maximization or minimization) of another criterion. The non-

dominated curve may be convex or concave or any other shape as shown in 

Figure 5.12. If the solutions are in the non-feasible area, they are ignored. The 

possible solutions are searched in the non-dominated area or line or boundary 

and optimized. If the solutions are not in the non-dominated line but in the 

feasible area, then the distance between them are calculated. The solution, for 

which the lowest distance is obtained, is considered as optimum or decision.   

  

Figure 5.12: Non-dominated line for the solution under Pareto optimal. 

In case of Pareto optimal the data of the criteria is considered as CRISP value. In 

case of two criteria the Pareto graphical representation is easy, however, for n 

types of criteria, it is tough to represent. Computationally this boundary is 

complex. Based on the linear-nonlinear system, linear and non-linear objective 

function, linear and nonlinear constrains different methods are developed to 
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obtain the solution at Pareto frontier line. Uncertain data, granular data, range of 

data, means all the information or data are not known, unclear or partially 

known. Thus, in such case, how the Pareto frontier (non-dominated area) will be 

plotted and how the decision will be taken is not clear. As in this study, the 

information is fuzzy, the uncertainty in data of the criteria are represented by 

fuzzy function and interacted with the fuzzy objective function. The interacted 

(compliance) values are also fuzzy membership function, and it is considered 

that they all are possible solution or results. Among them, maximum 

membership value is considered as a decision. 

In the proposed decision model from graphical presentation, it is easily 

comprehensible.  The compliance of all criteria is calculated and ranking (based 

on membership function) is made. Based on the decision maker’s importance on 

the criteria final decision is taken and the material is selected. 

The similar procedure is followed for range and crisp data but calculation 

procedures are different [see Chapter 2]. 

Furthermore, each stage of the proposed decision model is graphically 

presentable (see Figure 5.13) which is easily understandable by human 

perception. In the proposed model all data are equally emphasized, however, the 

solutions are searched in all membership functions for all criteria for all 

alternatives, rather than the boundary. 
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Figure 5.13: Decision making among two criteria under minimization and 

maximization objectives. 

Limitation of the Proposed Model 

If the decision score for two or more alternatives becomes same, in that case 

single decision will be uncertain. In such case, the decision will be a set of 

alternatives and all the members of that set will be equally treated for decision. 

Therefore, this area is for future research. 

Energy Absorption Properties 

Energy absorption (as shown in Figure 5.14) can be considered as a criterion of 

material selection. The reason behind the failure of the jute yarn and fiber is the 

energy absorption as shown in the Figure (Ullah, et al., 2017). The energy 

absorption is like a funnel in case of fiber, whereas, in case of yarn the 

absorption and release of the energy pattern is a different shape.  The variability 

of the energy absorption is controlled in yarn compared to jute fiber. The 

variability may be more controlled in jute products. Hence, this can be 

considered as a product development criterion. Before failure, the rate of energy 

absorption and release is high as shown in Figure 5.14(b) in the return map of 

the instantaneous energy absorption. 
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(a) (b) 

Figure 5.14: (a) Energy absorption pattern and (b) return map of jute yarn. 

In this study to select a material for sustainable product it was focus on the 

mechanical properties (TS, E, and ρ) and sustainable properties under stiffness 

and strength limited design. In this study, 6 criteria and three alternatives are 

considered. Any other criteria can be incorporated in the proposed model. For 

example endurance limit, fracture toughness, failure strength, cost, reserve, 

safety factor, and availability of the resources. If someone wants to select a 

material for vibration limited design then they will consider loss co-efficient of 

the material. If a person wants to select a material for damage tolerance design 

then they will consider fracture toughness.  If a person wants to select a material 

for strength limited and damage tolerance limited design then they will consider 

E, fracture toughness and failure strength of the material.  The incorporation of 

the criteria is totally based on the designer’s requirement. Energy absorption can 

also be a criterion to select a material for product development.  
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Chapter 6: Concluding Remarks 

The materials have been considered as a key factor for managing the complexity 

while designing engineering products. Hence, optimal material selection is 

essential for sustainable product development. Material selection behind the 

epistemic uncertainty is a difficult issue. To shed some light on this issue 

(selection of a material under uncertainty) this thesis poses and answers the 

following questions:  

 

How a material will be selected when the product specification is unknown? 

What will be the tool to quantify the uncertainty? 

What will be the method to select a material? 

How the sustainable properties can be incorporated in the material selection 

procedure? 

How to deal the uncertainties of the material properties? 

 

Nevertheless, the following remarks can be made on the findings:  

On Uncertainty of Material Index 

1. Uncertainty is an integrated part of material universe, material properties, 

and material selection process. 

2. When the Material Index for selecting an optimal material is unknown, a 

set of possibilistic objective functions can be used, instead. 

3. The possibilistic objective functions can be used without any complicacy 

to incorporate the aspect of sustainability in a material selection process. 

4. The interaction between the uncertainty of a material property and 
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relevant possibilistic objective function can be quantified by a concept 

called compliance.  

5. The compliance can be aggregated for all objective functions in order to 

rank a material 

6. Requirement or objectives of the customer can be represented by the 

possibility objective function. 

7. A case study is made for a light, strong, stiff and sustainable car body. A 

material is selected from Al, Mg and Ti for three different conditions. 

8. At initial case of the product designing, a sustainable material is selected 

under uncertainty; this selection of material will reduce the cost and 

complexity of the product. 

 

On Uncertainty Quantification of Natural Material 

1. The variability or uncertainty associated with the properties of a natural 

fiber-based material must be known beforehand to ensure the reliability 

of any eco-product made from it. Therefore, the uncertainty associated 

in the material properties of a natural material, called jute fiber, has 

been studied. In particular, tensile test is performed to determine the 

tensile strength and modulus of elasticity of jute yarn. The experimental 

results show that the tensile strength and modulus of elasticity of jute 

yarn vary significantly. The variability in the properties has been 

quantified using the conventional statistical approach (average, standard 

deviation, and skewness), widely used Weibull distribution and using 

the possibility distributions (a possibility distribution is probability-

distribution-neutral representation of the uncertainty associated with a 

physical quantity). From the possibility distributions, the most possible 

and expected values of tensile strength modulus of elasticity and strain 

to failure have been determined.  

2. The logically consistent ranges of tensile strength and modulus of 
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elasticity have also been determined. The lower limits of the ranges of 

jute yarn properties can be used as the design limits for jute product 

designing. 

3. To quantify the uncertainty of material property, possibilistic approach 

is the most reliable one among the three. Therefore, it is recommended 

to use the possibility distribution for quantification of the uncertainty 

when the uncertainty is unknown, and the number of data is limited.  

On Proposed Decision Model: 

1. Using the proposed model, one can select a material for a component of 

the product, from the material universe. In addition, the model can be 

used to select a material. 

2. Selecting appropriate materials at an early stage of a design process helps 

manage the complexity in the subsequent steps of product realization 

(detailed design, manufacturing, assembly, and operations management). 

Therefore, material selection entails a great deal of significance in 

engineering design. 

3. The early stage of a design process means that the design specifications 

and requirements are not known. Therefore, conventional material 

selection procedures are not applicable for selecting materials at an early 

stage of a design process. This study sheds some lights on this issue by 

developing a novel decision model that helps make a decision even 

though the design specifications and requirements are still evolving. 

4. In the presented decision model, the mathematical entities called 

triangular fuzzy number, compliance, and decision-score play a vital 

role. They are helpful for assessing and managing the heterogeneous 

decision-relevant information and conflicting objectives. The 

participation of a decision maker is also assured by introducing the user-

defined importance in the calculation process of the decision-score. 

5. Although a set of six criteria (ρ, TS, E, Water Usage, CO2 Footprint, and 

Recycle fraction) is used in selecting materials for the body of a vehicle 
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under epistemic uncertainty, one can add other criteria (e.g., cost, 

reserve, thermal property, and alike) if needed. Adding criteria will 

enlarge the set of the degrees of compliances without adding any 

additional information processing steps in the decision making process. 

Therefore, the presented decision model possesses a great deal of 

scalabilities. 

6. The advanced outlook on design process states that a design process is 

not just a knowledge-using process, but also a knowledge-creation 

process; the creation of knowledge takes place if one can handle the 

epistemic uncertainty in a systematic manner. As demonstrated in this 

study, the presented decision model can handle epistemic uncertainty in a 

systematic manner. It is also shown to be useful in creating new 

knowledge (e.g., it can create a list of material preferences even though 

the required design knowledge is not available). Therefore, the presented 

decision model can be integrated with a design process when knowledge-

creation is preferred over knowledge-use. This is particularly true when a 

problem-based design is transformed into a solution-based design. 

7. The variability or uncertainty associated with the properties of a natural 

fiber-based material must be known beforehand to ensure the reliability 

of any eco-product made from it. Therefore, the uncertainty associated in 

the material properties of a natural material, called jute fiber, has been 

studied. In particular, tensile test is performed to determine the tensile 

strength and modulus of elasticity of jute yarn. The experimental results 

show that the tensile strength and modulus of elasticity of jute yarn vary 

significantly. The variability in the properties has been quantified using 

the conventional statistical approach (average, standard deviation, and 

skewness), widely used Weibull distribution and using the possibility 

distributions (a possibility distribution is probability-distribution-neutral 

representation of the uncertainty associated with a physical quantity). 

From the possibility distributions, the most possible and expected values 

of tensile strength modulus of elasticity and strain to failure have been 
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determined. The logically consistent ranges of tensile strength and 

modulus of elasticity have also been determined. The lower limits of the 

ranges can be used as the design limits for jute product designing.  
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