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SUMMARY
Passive walking robots can walk on a slight downward slope powered only by gravity. We
propose a novel control strategy based on forced entrainment to stabilize a three-dimensional
quasi-passive walking robot in uphill and level walking by using torso control in the frontal plane
and synchronization of lateral motion with swing leg motion. We investigated the robot’s walking
energy efficiency, energy transformation, and transfer in simulation. The results showed that the
proposed method is effective and energy-efficient for uphill and level walking. The relationship
between energy utilization rate of actuation and energy efficiency of the robot was revealed, and
mechanical energy transformation and transfer were characterized.
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1. Introduction
A passive walking robot can walk down a gentle slope powered only by gravity without any actuator
and control.1 Its similarity to human gait and high energy efficiency implies that human walking may
sufficiently utilize passive dynamics. Study of passive walking contributes to an understanding of the
mechanism of biped walking and to design and control of biped robots.

Passive walking is stable under the condition of appropriate design, initial state, and slope angle.2

However, it is difficult to stabilize passive walking robots in variable environments, such as a variable
slope, and addition of some control is therefore necessary to stabilize passive walking robots. Some
researchers have focused on actuation of the hip, ankle, and knee. Collins et al.3 demonstrated that
quasi-passive walking robots can walk on a flat ground with startling human-like gait only with
simple control, such as ankle push-off or hip actuation. Harata et al.4 reported a biped robot with
only knee actuation controlled by a parametric excitation method. Tedrake et al.5 investigated a
three-dimensional (3D) biped passive walking robot “Toddler” with large curved feet and active
ankle joints, rolling motions of which are controlled by utilizing a sine oscillator in order to excite
the overall lateral motion of the robot. They used “Toddler” to test the utility of motor learning and
demonstrated that “Toddler” could learn to walk on flat ground by using its passive walking trajectory
as the target.3 A similar quasi-passive walking robot proposed by Nakanishi et al.6 also has curved
feet and excites its lateral motion by a sine oscillator. The difference is that the oscillator moves from
side to side on its hip axis in Nakanish et al.’s study.

Some researchers have focused on pitching control of the torso based on planar walking models.
McGeer7 added a torso to his planar walking model and maintained a constant gesture of the torso
by using a PD controller. Wisse et al.8 investigated a planar walking model with the upper body
constrained to the middle angle of the two legs. Narukawa et al.9 showed that a planar walking
model can walk on level ground efficiently by utilizing torso and swing leg control. However, few
researchers have focused on rolling control of the torso based on 3D passive walking models. In normal
walking of humans, the torso not only pitches in the sagittal plane but also rolls in the frontal plane.
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2 Quasi-passive walking robot by torso control

Fig. 1. (Colour online) Overview of simulation model of the robot.

Kuo10 reported that torso control can be utilized to stabilize lateral motion of 3D passive walking
robot, but the method was energy-inefficient to his walking model and was thus not investigated
sufficiently.

In our previous study, it was experimentally demonstrated that synchronization of the period of
lateral motion TL with the period of swing leg motion TS was a necessary condition for stable 3D
passive walking.11 In the next step, a mechanical oscillator actuated by a motor was mounted on a 3D
passive walking robot with spherical feet, and can roll in the frontal plane in order to control TL and
to synchronize TL with TS .12,13 The proposed method is also examined by our experimental robot.13

This method is analogous to moving the upper body to the left or right in the frontal plane in human
walking. Based on this stabilization method, turning and climbing were also realized by improving
torso control.14

The energy efficiency of walking is often evaluated by the specific mechanical cost of transport
(cmt), which focuses on the mechanical energy consumption. In the walking of a biped robot, the work
performed by actuators is transformed to mechanical energy of the robot. The efficiency of energy
transformation can be evaluated by energy utilization rate (reu), which focuses on the mechanical
energy generated by actuators. However, the relationship between reu and cmt is still unclear. Besides,
the mechanical energy is transferred between segments of the robot in walking and allows the legs to
move forward even without actuators at the hip. However, the process in quasi-passive walking has
not been investigated sufficiently.

In this study, we focus on the control, energy efficiency, energy transformation, and energy transfer
of the robot in uphill walking and level walking. First, a simulation model of the robot is introduced,
and the previous control method is improved to realize level and uphill walking on a variable slope.
The improved control method is examined by simulations to apply it to our experimental robot in
future work. Second, cmt is extended to measure the energy efficiency of uphill walking. Energy
transformation in walking and the relationship between reu and cmt is investigated by using the robot
in our current study. Finally, energy transfer and energy transformation from the torso to the legs in
walking are investigated to explain why the robot can walk on a variable slope with only an actuator
of the torso.

2. Simulation Model
The quasi-passive walking robot consists of two straight legs and a torso, and the torso includes a
mechanical oscillator, a motor, and a ballast box, as shown in Fig. 1. The structure and the mass
distribution of the simulation model is almost the same as our experimental robot, and thus the
control algorithm examined by simulation can be applied to the experimental robot. The robot has
three joints: two passive joints connecting the legs with a hip axis, and one active joint driven by a
motor that actuates a mechanical oscillator in the frontal plane. Therefore the pitch motion of the torso
is uncontrollable, but the rolling motion of the mechanical oscillator around the x1-axis is controllable.
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Fig. 2. Rotational torques of the legs generated by gravity in uphill walking.

The ballast box is fixed at the hip axis to mount the motor and the mechanical oscillator on the passive
walking robot, and the ballast box has the function of ballast to keep the mechanical oscillator upright.
The mechanical oscillator is analogous to the upper portion of the human torso above the waist. The
soles of the feet of the robot are spherical. The centers of the spheres are designed to be higher than
the center of mass of the robot in order to make the robot stable in a standing posture. The robot is
quite robust against disturbances due to this design of the feet.

The geometric design of the feet is symmetric with respect to front and back, but the mass
distribution of the feet is not. The centers of masses of the feet are regulated backward so that
the swing leg can naturally swing forward even on a slight upward slope, as shown in Fig. 2. In
experimental robot the mass distribution of the feet can be changed by putting a weight on each foot.
The gravity of the left leg is presented by GL, GLsinδL is the component force of GL, LL is the
moment arm of GLsinδL, and τL is the rotational torque of the left leg generated by GLsinδL.

When the robot walks on a slight upward slope, because of the design of the spherical foot sole,
a rotational torque is generated around the contact point between the stance foot and the ground,
as shown in Fig. 2. The gravity of the robot is represented by Gr, Grsinδr is the component force
of Gr, Lr is the moment arm of Grsinδr , and τr is the rotational torque of the robot generated by
Grsinδr .

At least six generalized coordinates are necessary to describe the dynamics of the robot by
Lagrangian mechanics: three coordinates are used to describe the orientation of the stance foot and
the other three are used to describe the rotational angles of the three joints. In addition, the robot is
a non-holonomic system because the spherical stance foot rolls on the ground in walking. In order
to reduce the mathematical complexity, Open Dynamics Engine15 (ODE; a 3D rigid-body physical
simulation engine) was used to conduct simulations.

In order to describe the position and orientation of the robot in ODE simulation, the global
coordinate O–XYZ is defined as shown in Fig. 1. The orientation of the ballast box relative to the
coordinate O–XYZ is determined by the sequence of rolling (θ), pitching (γ ), and yawing (ψ) about
the axes of O–XYZ. The ballast box and the mechanical oscillator have the same pitch (γ ) and yaw
(ψ) angles but can roll independently. Therefore, the relative roll angle of the mechanical oscillator
to the ballast box is defined as θw, as shown in Fig. 3. The ballast box and the legs have the same roll
angle (θ) but different yaw and pitch angles. The pitch angles of the left and right legs are therefore
denoted by γL and γR , respectively, and the yaw angles of the left and right legs are denoted by ψL

and ψR , respectively. Finally, the state vector of the robot is described as

q = [θ, θw, γ, γL, γR, ψ, ψL, ψR, θ̇ , θ̇w, γ̇ , γ̇L, γ̇R, ψ̇, ψ̇L, ψ̇R] . (1)

The body coordinates of the mechanical oscillator and the ballast box are defined as o1 − x1y1z1

and o2 − x2y2z2, respectively, as shown in Fig. 1. The origins of the coordinates o1 and o2 are fixed
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Fig. 3. Stabilization control algorithm.

on the centers of masses of the mechanical oscillator and the ballast box, respectively. The body
coordinates of the legs are omitted in Fig. 1. These body coordinates are used in the calculation of
rotational kinetic energy of the segments of the robot.

In the single support phase, the spherical stance foot purely rolls on the ground without slip, and
the swing leg swings ahead like a pendulum. The swing leg continues to leave the ground until the
roll angle θ becomes 0. The double support phase is assumed to be instantaneous, and the motion
of the swing foot reaching the ground is regarded as heel-strike. The heel-strike is assumed to be
inelastic and without sliding. The frictions of the joints are set to 0 in the ODE simulation.

3. Stabilization Control

3.1. Control algorithm and simulation of uphill and level walking
In variable environments, the gait of a quasi-passive walking robot will often be changed and thus
may become unstable because of the disturbance of environments. If the change of gait can be
utilized to stabilize the robot in an appropriate way, the environmental adaptability of the robot may
be improved. Based on this idea, the periodic lateral motion of the robot in walking is utilized to
entrain the periodic motion of the mechanical oscillator by utilizing a forced Van der Pol oscillator.
The mechanical oscillator can excite or damp the lateral motion in order to control the period of
lateral motion TL by adjusting the phase of the mechanical oscillator.

Furthermore, in order to stabilize the robot in uphill and level walking, TL has to be synchronized
with the period of swing leg motion TS . Swing leg motion is passive and therefore TS cannot be
controlled directly. Thus, TL is controlled and synchronized with TS by the motion of the mechanical
oscillator in the frontal plane. The target trajectory of the mechanical oscillator θwt is planned
according to the period, amplitude, and phase, as shown in Fig. 3. The motor is controlled by a simple
PD controller to trace the target trajectory of the mechanical oscillator.

The period of the target trajectory is controlled on the basis of forced entrainment, which is an
interesting phenomenon in nonlinear vibrations,16 and forced entrainment is realized on the basis of
forced Van der Pol equation as follows:13

ÿ − ε(1 − y2)ẏ + �2
V y = Kθ, (2)

where the roll angle θ of lateral motion of the robot is input for Eq. (2) as a periodic forcing function.
The self-excited angular frequency of Eq. (2) is represented by �V , and the angular frequency of
θ is represented by ω. If �V

∼=ω or the coefficient K is sufficiently large, system (2) indicates a
phase-locking phenomenon and θ will entrain y. According to forced entrainment, the periods of y
and ẏ are synchronized to the period of θ , and the phase of ẏ is the same as that of θ , but there is
a phase difference of π /2 between y and θ . Therefore, numerical solutions of y and ẏ are utilized
to control the period of θwt, and the period of the target trajectory θwt is also synchronized with the
period of lateral motion θ .



���������	
��������
������
�

Quasi-passive walking robot by torso control 5

Fig. 4. Synchronization of the period of lateral motion TL with the period of swing leg motion TS .

The amplitude of the target trajectory β is the maximum value of θwt in one period and is controlled
by a proportional integral (PI) algorithm,

β = KP (TS − TL) + KI

∫ t

0
(TS − TL) dt, (3)

where KP and KI are the proportional and integral gains, respectively. The PI algorithm can suppress
steady state error to synchronize TL with TS . Moreover, a simple method is used to deal with integral
windup, which will cause large overshoots. Since the power and maximum speed of an actual motor
are limited, the maximum value of the amplitude β is limited to 18◦ in the ODE simulations. However,
the output limitation of the amplitude will cause actuator saturation. To solve this problem, a simple
method is used by setting the maximum value of output of the integral component to 18◦ . If the
output is larger than the maximum value, the integral calculation of the integral component will be
stopped.

The target trajectory θwt is determined by the periods of y and ẏ, amplitude β, and phase difference
ϕ as follows:13

θwt = β

(
1

c1
ẏ cos ϕ − 1

c2
y sin ϕ

)
, (4)

where c1 and c2 are the amplitudes of y and ẏ. When β is positive, the phase difference ϕ between
the target trajectory θwt and the roll angle θ is set to 90° or −90° in order to increase or decrease TL

most efficiently, respectively.13 When ϕ is set to 90°, the phase difference is automatically selected
as 90° or –90° according to the sign of β, because –sin90° is equal to sin(−90°) and cos(±90°) is
equal to 0.

In order to generate the period of the target trajectory, the forced Van der Pol equation needs a
periodical input of θ . The initial condition of the robot is thus set to q = [0.12, 0. . .0] so as to let
the robot periodically roll first. In the ODE simulation, the robot walked on a path with slope angle
changed from 0◦ to 3◦ and started to walk on the slope of 3◦ after 5.59 [s]. The changes in TL and TS

are shown in Fig. 4. The period of lateral motion TL was synchronized with TS , and the robot was
stabilized despite the change in slope angle. The forced entrainment of lateral motion and motion of
the mechanical oscillator is characterized by the roll angle θ and θw, as shown in Fig. 5. In this figure,
θw and θwt are the actual trajectory and the target trajectory of the mechanical oscillator, respectively.
As shown in Fig. 5, TL is defined as the period of θ . The pitch angles of the legs are shown in Fig. 6.
A stance phase and a swing phase of the right leg are also shown in Fig. 6. The period of swing-leg
motion TS begins when the pitch angle γL matches γR , and the end of the period TS is defined as the
moment when γL matches γR after one period, as shown in Fig. 6.

Based on the control method mentioned above, the robot is robust against initial condition and
disturbance, because the dynamics of the mechanical oscillator is always forcedly entrained into the
dynamics of lateral motion in order to excite or damp the lateral motion. Even when the gait of our
robot is changed in variable environments, the robot can still be stabilized.

In contrast, “Toddler”5 is stabilized by direct excitation of a sine oscillator. As a result, the
entrainment can occur only when the frequency of the sine oscillator is tuned to near the passive
step frequency of the robot. Furthermore, the “Toddler” robot must be initialized in phase with
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Fig. 5. Forced entrainment of the mechanical oscillator motion and lateral motion.

Fig. 6. Pitch angles of the legs.

the sine oscillator and the entrainment is very sensitive to disturbance in phase.5 Consequently, the
environmental adaptability of “Toddler” is worse than ours.

4. Energy Efficiency of Walking

4.1. Mechanical cost of transport in uphill and level walking
In level walking, in order to compare mechanical energy efficiencies of steady walking of different-
sized robots and a human, a useful measure of energy efficiency is the specific mechanical cost of
transport3,17,18 (cmt): cmt = (mechanical energy used)/(weight × distance traveled), where “mechanical
energy used” is divided by “weight” because different-sized robots have different weights. In quasi-
passive walking, some robots only perform positive work in level walking, such as a Cornell biped,3

and their “mechanical energy used” is thus equal to the positive work. However, for humans and
most biped robots, both positive work and negative work are performed by actuators, and thus the
“mechanical energy used” is equal to “Wp − Wn,” where Wp is positive work and Wn is negative
work and has negative value.

In uphill walking, a part of the mechanical work is transformed into potential energy and thus
is not consumed. “Mechanical energy used” is therefore equal to “Wp − Wn − Ep,” where Ep

represents the change in potential energy. Therefore, cmt is extended to measure the efficiency of
uphill and level walking as follows:

cmt = Wp − Wn − Ep

weight × distance traveled
. (5)

Equation (5) can still be used for passive walking robots and robots that perform only positive
work. For passive walking robots, “Wp − Wn − Ep” is equal to “−Ep,” which is positive in
passive walking and equal to the loss of potential energy. For quasi-passive walking robots which
perform only positive work in level walking, “Wp − Wn − Ep” is equal to Wp.

Average values of cmt of our robot in level, uphill walking and passive walking are shown in
Table I, which also shows cmt of humans and several other biped walking robots.19 In this table, cmt
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Table I. Energy efficiencies of humans and
several biped robots.

Humans and robots cmt

Humans 0.05
ASIMO 1.60
Our robot

Uphill walking 0.108
Level walking 0.095
Passive walking 0.052

Delft’s Denise 0.08
Cornell biped 0.055
McGeer’s Dynamite 0.04

of uphill walking was measured when our robot walked on a 3° upward slope. In uphill walking, both
“mechanical energy used” and “distance traveled” decrease in one walking cycle, and thus cmt values
of uphill walking and the level walking are similar. The collision at the heel strike of our robot is
set to inelastic collision in the ODE simulation, and the simulation model therefore consumes more
mechanical energy than some other experimental quasi-passive walking robots.

Some understanding of the energy efficiency of humans and robots can be obtained from the
perspective of energy transformation. In level walking of humans, most of the mechanical energy is
dissipated by humans themselves rather than by the external world. The negative work of muscles
offsets most of the positive work of muscles, and little mechanical energy is dissipated at heel strike
in each walking cycle. For example, during a double support phase of human walking, most of the
negative work is performed by the leading leg to redirect the velocity of the center of mass and to
maintain steady walking.20 Although human walking is self-resistive, humans can walk much more
efficiently than humanoid robots. Humanoid robots need to accelerate and decelerate their joints to
trace a planned trajectory, and if the trajectory is planned inappropriately, much more negative work
offsets its positive work. Although the walking of humanoid robots and walking of humans are both
self-resistive, humans can utilize mechanical energy much more efficiently than can humanoid robots.

Energy transformation in passive and quasi-passive walking is different from that in human
walking. Passive walking robots perform no work but consume potential energy in walking on a
downward slope, and the loss of potential energy is dissipated at heel strike. Some quasi-passive
walking robots can only perform positive work in level walking, such as a Cornell biped, and their
mechanical energy is also dissipated at heel strike. Although our robot performs both positive work
and negative work in walking, the robot can still walk efficiently. Moreover, passive walking robots
utilize potential energy in downhill walking, but our robot performs positive work against the pull
of gravity in uphill and level walking. Energy transformation of our robot should be investigated in
order to understand the efficient uphill and level walking of the robot.

4.2. Energy efficiency and energy transformation
The torque of the motor is a non-conservative force (generalized force), and the mechanical energy of
the robot is therefore not conserved. According to the law of conservation of energy, the relationship
between mechanical work and mechanical energy of the robot is expressed as

Wr = Er + Ei, (6)

where Wr is the mechanical work performed by the motor on the robot, Er is the change in
mechanical energy of the robot, and Ei is energy loss at heel strike. The work of the motor changes
the mechanical energy during a single support phase, and some of the energy is dissipated at heel
strike. In a single support phase without heel strike, Eq. (6) can be simplified as

Wr = Er, (7)
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Fig. 7. Dissipated energy, change in total mechanical energy, and work performed by the motor on the robot.

which shows that the work performed by the motor only changes the mechanical energy in a single
support phase.

The mechanical work and mechanical energy of the robot Wr, Er , and Ei are calculated to
investigate energy transformation in walking. The mechanical oscillator and the ballast box roll in
the frontal plane by actuation of the motor, as shown in Fig. 1. Therefore, work on the mechanical
oscillator Wo, work on the ballast box Wb, and work on the robot Wr , which are performed by the
motor only in the frontal plane, are derived by

Wo =
∫ t

0
T (t)ωx1 dt, (8)

Wb =
∫ t

0
[−T (t)] ωx2 dt, (9)

Wr = Wo + Wb =
∫ t

0
T (t) (ωx1 − ωx2) dt, (10)

where T(t), ωx1, and ωx2 are the torque of the motor, angular velocity of the mechanical oscillator,
and angular velocity of the ballast box around the shaft of the motor, respectively. In Eq. (9), the
minus sign “−” in front of T(t) is due to reaction torque of the motor. In Eq. (10), ωx1 − ωx2 is the
motor speed, or the relative angular velocity of the mechanical oscillator to the ballast box.

In Eq. (6), Er is the change in mechanical energy Er , which is the sum of potential energy,
translational kinetic energy, and rotational kinetic energy of the each segment. Translational
kinetic energy is calculated from the masses of the segments and the translational velocities of
the centers of masses of the segments, and the rotational kinetic energy is calculated from the
angular velocities of the segments and moments of inertia about their body axes through the centers
of the masses. Potential energy is calculated from the height of the centers of masses from the
ground.

The energy loss Ei at heel strike is expressed as

Ei = Et1−
r − Et1+

r , (11)

where Et1−
r and Et1+

r are mechanical energy of the robot, “t1−” is the moment immediately before
heel strike, and “t1+” is the moment immediately after heel strike.

According to Eq. (6), the work Wr , energy loss Ei , and change in mechanical energy Er in one
uphill walking cycle are calculated by the ODE simulation, as shown in Fig. 7. The walking cycle
begins immediately after heel strike at 5.97 s and ends immediately before heel strike at 6.71 s. The
walking cycle includes a swing phase, a double support phase, and a single support phase for each
leg. The results show that Er is decreased at heel strike and energy loss Ei is increased at 6.35 s,
but Er is restored by Wr in a single support phase. The difference between Wr and (Er + Ei) can
be caused by the first-order semi-implicit integrator of the ODE, in which inaccuracy in implicit
integrators dampens the system energy, and inaccuracy in explicit integrators increases the system
energy.12 To minimize the error, the bounce parameter and constraint force mixing parameter (CFM)
of the ODE are set to 0 and 0.0001, respectively.
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Fig. 8. Energy utilization rate and cmt versus phase difference ϕ.

Fig. 9. Energy transformation between kinetic energy and potential energy in a walking cycle.

In order to investigate the energy utilization rate of the motor, the energy utilization rate (reu) is
defined to be “(Wp + Wn)/(Wp − Wn)”, where “Wp + Wn” is equal to the increase in mechanical
energy of the robot inputted by the motor, and “Wp − Wn” is equal to the total work performed by
the motor, because Wn is always negative according the definition in section 4.1. In level walking,
Wp accounts for approximately 88.65% of “Wp − Wn” on average, and “−Wn” accounts for 11.35%
of “Wp − Wn.” Therefore, reu of our robot in level walking is 77.3%, which means that 77.3% of
“Wp − Wn” is transformed into mechanical energy of the robot and the remaining 22.7% is consumed
by the motor itself. More direct actuation methods can achieve higher reu, such as push-off in ankle
joints of the Cornell biped,3 and the higher reu is one reason why the Cornell biped can walk more
efficiently than our robot.

In order to optimize the energy efficiency and energy utilization rate in uphill and level walking,
the phase difference in the target trajectory of the mechanical oscillator is set to 90◦. The relationship
of phase difference ϕ with the energy efficiency and energy utilization rate is shown in Fig. 8. The
horizontal axis is phase difference, and the vertical axis is cmt and reu, respectively.

When ϕ is 90°, cmt is 0.095 and 0.108 on average in level walking and uphill walking, respectively,
and reu is 77.3% and 74.9% on average in level walking and uphill walking, respectively. When ϕ

becomes larger or smaller than 90°, reu decreases and cmt increases, because more energy is consumed
by the motor itself.

The total mechanical energy of the robot Er consists of kinetic energy Ek and potential energy
Ep as shown in Fig. 9. The stance leg rolls and pitches so that the height of the center of mass of
the robot changes and mechanical energy is transformed between Ep and Ek . In addition, 18.7% of
Ek and 23.3% of Ek are dissipated at heel strike on average in uphill walking and level walking,
respectively.
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5. Mechanical Energy Transfer and Transformation

5.1. Mechanical energy transfer from the motor to the legs
In human walking, muscles generate and dissipate mechanical energy to actuate segments, and
segments of passive walking robots are actuated by gravity in passive walking. Our robot only has a
motor for actuating the mechanical oscillator, and there are no actuators in other passive joints. The
motor does not directly perform work on the legs, but the robot can still walk on level ground and
upward slopes. This is because some of the energy is transferred to the legs during a single support
phase to restore its mechanical energy by constraint forces of the joints. In order to investigate the
energy transfer between the segments of the robot, the relationships between work and energy for the
mechanical oscillator, ballast box, and legs in a single support phase are expressed as

Wo + Wco = Eo, (12)

Wb + Wcb = Eb, (13)

WcL = EL, (14)

WcR = ER, (15)

respectively. In Eq. (12) of the mechanical oscillator, Wo, Wco, and Eo are the work performed by
the motor on the oscillator, the work performed by constraint forces of the joint on the oscillator,
and change in mechanical energy of the oscillator, respectively. The rolling motion of the mechanical
oscillator is controlled by the motor, but its pitching and yawing motions are constrained by its joint,
and the constraint forces perform work on the oscillator. In Eq. (13) of the ballast box, Wb, Wcb, and
Eb are the work performed by the motor on the ballast box, the work performed by the constraint
forces of the joint on the ballast box, and change in mechanical energy of the ballast box, respectively.
In Eq. (14) of the left leg, WcL and EL are the work performed by constraint forces of the joint on
the left leg and change in mechanical energy of the left leg, respectively. In Eq. (15) of the right leg,
WcR and ER are the work performed by the constraint forces of joint on the right leg and change
in mechanical energy of the right leg, respectively. In Eqs. (12)–(15), the constraint forces of joints
perform work on each segment, but the constraint forces do not change the total mechanical energy
of the whole system by assuming ideal constraints. Thus,

Wco + Wcb + WcL + WcR = 0. (16)

The work performed by the motor and mechanical energy of the robot can be directly calculated
in numerical simulation, and then the work performed by constraint forces can be calculated by using
Eqs. (12)–(15).

According to Eq. (12), the work performed by the motor, the constraint forces on the mechanical
oscillator, and its mechanical energy in a single support phase are shown in Fig. 10(a). According to
Eq. (13), the work performed by the motor, the constraint forces on the ballast box, and its mechanical
energy in a single support phase are shown in Fig. 10(b). The constraint forces perform more negative
work than positive work on the mechanical oscillator and ballast box (Wco in Fig. 10(a) and Wct in
Fig. 10(b)). According to Eq. (16), if Wco and Wct are negative, WcL and WcR are positive. Some of
the mechanical energy is transferred to the legs by the constraint forces. As shown in Fig. 10(c), WcL

and WcR are calculated on the basis of Eqs. (14) and (15). The swing leg acquires more mechanical
energy than the stance leg does in the single support phase. In the energy transfer, constraint forces
neither change the total mechanical energy nor consume additional energy, and there is therefore no
energy loss in the process.

5.2. Energy transformation from work of constraint forces to kinetic energy of the legs
The constraint forces of the hip joint directly increase the potential energy of the legs in rolling motion
in the frontal plane. However, because the pitching motions of the legs are free, the constraint forces
of the hip joint cannot directly actuate the legs to walk on a slight upward slope in the sagittal plane.
In uphill walking, the forward pitching and swing motion of the legs benefit from its design, as shown
in Fig. 2. The swing leg swings forward because of the rotational torque τL produced by the gravity
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Fig. 10. Energy transfer between the segments of the robot in a single support phase.

of the swing leg about the hip axis. The stance leg rolls forward because of the inertia of the robot
and the rotational torque τr , which is produced by the gravity of the robot around the contact point
between the foot sole and the ground. In this process, the gravity of the robot performs positive work,
and the potential energy of the robot is transformed to kinetic energy of pitching motion of the legs.

6. Conclusion
There are several findings or conclusions in the current study. First, we achieved uphill and level
walking of a 3D quasi-passive walking robot on a variable slope in ODE simulation by torso control.
The torso motion is always utilized to synchronize the lateral motion of the robot with its swing leg
motion to stabilize walking. The target trajectory of the mechanical oscillator in the frontal plane is
planned by controlling its phase, amplitude, and period. The proposed method will be examined by
our experimental robot in future work.

Second, the energy efficiency of the robot was analyzed from the viewpoint of energy
transformation. The results show that high energy utilization rate of the motor helps to increase
the energy efficiency in walking. In a future work, in order to further increase energy efficiency
of the robot, we will focus on improving the trajectory of the mechanical oscillator and on reducing
the energy loss at heel strike by improvement in the design or by additional control. Besides, the
robot can walk efficiently even though the target trajectory of the mechanical oscillator is planned.
An inference from our results is that if an appropriate target trajectory can be planned, a biped robot
based on a trajectory control method can also be energy-efficient.

Third, energy transfer and transformation from the torso to the legs were analyzed mathematically.
The constraint forces of joints transfer mechanical energy to the legs, and potential energy is
transformed to kinetic energy of the legs so that the legs can move forward.
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Appendix A: Comparison of control methods
A 3D quasi-passive walking robot similar to ours is “Toddler”5 because it has curved feet and its
lateral motion is controlled by the rolling motion of ankle joints. The trajectory of ankle’s rolling
motion of “Toddler” is a sine function, which is determined by its amplitude and frequency. Its ankle
rolling motion entrains the overall lateral motion of the robot for stable walking.

Another similar quasi-passive walking robot proposed by Nakanishi et al.6 also has curved feet.
The robot excites its lateral motion by an oscillator, which moves from side to side on its hip axis. The
trajectory of the oscillator is also a sine function, which is determined by its amplitude and period.
The actuation method is similar to “Toddler” by entraining lateral motion into a sine oscillator.

There are two major differences in the control methods between our robot and the above-mentioned
two robots. First, the mechanical oscillator of our robot does not entrain the overall lateral motion,
but is forcibly entrained into the lateral motion of the robot by using a forced Van der pol oscillator.
As a result, the forced entrainment always occurs even when the step frequency of the robot changes
in variable environments. Second, the phase of the sine oscillator is uncontrollable in the mentioned
robots, but in our robot the phase of the mechanical oscillator is controllable. The motion of mechanical
oscillator of our robot can excite or damp the lateral motion of the robot to control TL, by adjusting
the phase difference between the motion of the mechanical oscillator and the lateral motion of the
robot. This is why our robot is very robust against disturbance in phase.
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Fig. 11. Entrainment of mechanical oscillator motion and lateral motion under the excitation of a sine oscillator.

In order to compare the control methods of our robot and the above-mentioned two robots, the
control method with the sine oscillator,6 d(t) = Asin(2πt/Tsf ), is applied to our robot in level walking.
In stable walking with our control method, the amplitude of mechanical oscillator is near 0.3 rad, as
shown in Fig. 5. Therefore, the amplitude of the sine function A is set to 0.3 rad to compare the results
in the similar condition. When the period of the sine oscillator Tsf is changed from 0.4 s to 0.75 s the
robot can walk stably. A longer or shorter period will cause unstable gait. The lateral motion of the
robot and the mechanical oscillator motion in stable level walking are shown in Fig. 11. θ , θw, and θwt

are the roll angle of the robot, the actual trajectory, and target trajectory of the mechanical oscillator,
respectively. The period of the sine oscillator Tsf is set to 0.45 s, 0.65 s, and 0.75 s in Figs. 11(a)–(c),
respectively. Under the control with the sine oscillator, the phase difference between θ and θw changes
as the period Tsf changes. Only when Tsf is near 0.75 s, the phase difference is near π /2, as shown in
Fig. 11(c). However, in our control method in level walking the phase difference between θ and θw is
always constant at π /2 to excite the lateral motion of the robot, as shown in Fig. 5.

Under the control of the sine oscillator, the robot becomes sensitive to initial conditions, including
initial period and phase of lateral motion of the robot. Therefore, the environmental adaptability of
the method is worse than that of our method in the model of our robot.

Appendix B: Comparison of cmt and reu in different control methods
The sine oscillator mentioned in Appendix A is applied to our robot. The relationship of walking
period Tsf with cmt and reu in stable level walking is shown in Fig. 12. The horizontal axis is walking
period while the vertical axes are cmt and reu, respectively. When Tsf is between 0.55 s and 0.75 s, reu

is larger than 95% and cmt is between 0.06 and 0.07. The maximum of reu is 97.8%, and the minimum
of cmt is 0.061.
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Fig. 12. Energy utilization rate and cmt versus the period Tsf .

In comparison with our control method, the control method with sine oscillator is more energy
efficient. One reason is that θw generated by using forced Van der Pol oscillator is not harmonic
function as the sine oscillator. By comparing Fig. 5 with Fig. 11(c), it is easily seen that the amplitude,
period and phase of θ and θw are almost the same. However, the level walking shown in Fig. 5 is less
energy efficient because non-harmonic oscillation may cause deterioration of energy efficiency in the
model of our robot.


