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Abstract: Treatment of (E)-alk-1-enyldicyclohexylboranes with
tributyltin methoxide in the presence of galvinoxyl (1 mol%) at
room temperature results in transfer of the alk-1-enyl group from
boron to tin to give (E)-alk-1-enyltributylstannanes in a highly ste-
reoselective fashion. Subsequent halodestannylation of (E)-alk-1-
enyltributylstannanes is allowed to proceed in a one-pot manner to
produce the corresponding (E)-1-iodoalk-1-enes and (E)-1-bro-
moalk-1-enes in good to high yields, respectively.
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Alkenylstannanes are valuable intermediates in organic
synthesis, especially in Stille reaction.1–7 Generally, alke-
nylstannnanes are prepared through hydrostannation of
alkynes using radical initiators,8–13 Lewis acid cata-
lysts,14–16 or transition metal catalysts.17–22 Hydrostanna-
tion of alk-1-ynes via radical process induces
isomerization of the product to give a mixture of stereoi-
somers, (E)- and (Z)-alk-1-enylstannanes, while the hy-
drostannation in the presence of a Lewis acid, such as
ZrCl4, proceeds with involving a certain pentacoordinated
metal species derived from the acid to furnish (Z)-alk-1-
enylstannanes stereoselectively. Transition-metal-cata-
lyzed hydrostannation of alk-1-ynes usually occurs in a
highly stereoselective fashion; however, the reaction
gives a mixture of regioisomers, (E)-alk-1-enyl- and alk-
2-enyl-stannanes. Alternatively, hydrostannation with
dibutyliodotin hydride ate complex affords alk-2-enyl-
stannanes with high product selectivities.23 In preparation
of alkenylstannnanes using stannylcupration of alk-1-
ynes in place of hydrostannation, the regioselectivity de-
pends on the nature of the stannylcopper species, the reac-
tion temperature, and the structure of alk-1-yne, leading to
either (E)-alk-1-enylstannane or alk-2-enylstannane pre-
dominantly.24 Transmetalation of alkenyl metallic sub-
strates, for example, aluminium25–27 and copper,28 is also

a methodology for preparing alkenylstannanes. Quite re-
cently, Williams et al. have reported transfer of (Z)-alk-1-
enyl group from tellurium to tin via lithium.29 We previ-
ously published that transfer of alkenyl group from boron
to tin proceeded in the presence of a catalytic amount of
copper compound and a stoichiometric amount of aque-
ous NaOH to result in formation of alkenylstannanes, in-
cluding (E)- and (Z)-alk-1-enylstannanes with high
stereoselectivities.30,31 Although our method has the ad-
vantage of high regio- and stereoselectivities, the use of
copper salt and aqueous NaOH would be undesirable for
further synthetic elaboration in a one-pot manner. The de-
velopment of a novel and useful procedure for preparing
alkenylstannanes is thus still of importance. In continua-
tion of our interest in transfer of alk-1-enyl group on bo-
ron,32,33 herein, we report a simple and highly
stereoselective synthesis of (E)-alk-1-enyltributylstan-
nanes 2 via treatment of (E)-alk-1-enyldicyclohexylbo-
ranes 1 with tributyltin methoxide at room temperature
(Scheme 1).

Initially, we attempted the reaction of (E)-hex-1-enyldicy-
clohexylborane (1a) with tributyltin methoxide and found
that the reaction proceeded at room temperature to result
in formation of (E)-hex-1-enyltributylstannane (2a),34 ob-
served by GC analysis. When further analyzed by 1H
NMR spectroscopy, the crude product was contaminated
by a small amount of (Z)-hex-1-enyltributylstannane
(3a).35 Nevertheless, it is noteworthy that a simple reac-
tion between 1a and tributyltin methoxide caused transfer
of hex-1-enyl group from boron to tin under mild condi-
tions. On the other hand, it has been reported that the re-
action of alkenyltributylstannanes with haloboron
compounds such as BBr3 and 9-bromo-9-BBN causes
transfer of alkenyl group from tin to boron to form the cor-
responding alkenylboranes.36,37 To easily determine the
ratio of stereoisomers employing GC, we decided to uti-

Scheme 1 Transfer of (E)-alk-1-enyl group from boron to tin
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lize treatment of the reaction mixture with iodine
(Scheme 2). Alkenylstannane undergoes iododestannyla-
tion to give iodoalkene with retention of configuration at
the double bond,38,39 whereas reaction of 1a with iodine
provokes a sequence of addition–migration–elimination
reactions to form (Z)-1-cyclohexylhex-1-ene with high
stereoselectivity.40 Thus, the reaction of 1a with tributyl-
tin methoxide (1 equiv) was carried out at room tempera-
ture for 2 hours, followed by addition of a solution of
iodine (1.1 equiv) in THF at –15 °C and stirring for 0.5
hours at 0 °C to give (E)-1-iodohex-1-ene (4a)41 in 69%
yield, along with (Z)-1-iodohex-1-ene (5a)42 in 13% yield
based on the starting amount of hex-1-yne. No formation
of (Z)-1-cyclohexylhex-1-ene was observed. Despite our
efforts to improve the stereoselectivity, a mixture of 4a
and 5a was formed at all times. We assumed that a radical
species might be generated during the reaction with tribu-
tyltin methoxide and give rise to isomerization of the
product. If this is the case, then using a radical scavenger
should prevent the reaction from generating radical spe-
cies. This idea prompted us to examine the reaction of 1a
with tributyltin methoxide in the presence of galvinoxyl
(0.01 equiv) as a radical scavenger. We were pleased to
find that after iododestannylation 4a was obtained as the
sole product in 82% yield. Consequently, galvinoxyl not
only could inhibit the formation of 3a as expected, but
also was free from interfering with transfer of (E)-hex-1-
enyl group from boron to tin. Performing the reaction with
tributyltin methoxide for 1 hour under otherwise identical
conditions, the same result was obtained as described
above.43

Bromodestannylation was also explored and, in conse-
quence, pyridinium tribromide proved to be a suitable re-
agent. Thus, the reaction of (E)-oct-1-

enyldicyclohexylborane (1c) with tributyltin methoxide
was carried out in the presence of galvinoxyl (0.01 equiv)
at room temperature for 1 hour, followed by addition of a
solution of pyridinium tribromide (1.2 equiv) in THF un-
der the same conditions as those described in iododestan-
nylation to afford (E)-1-bromooct-1-ene (6c)44

exclusively in 79% yield based on the starting amount of
oct-1-yne (Scheme 3).

Encouraged by these initial results, we examined the
scope of this reaction by conducting a survey of various
alk-1-ynes. Table 1 shows the results of iodo- and bro-
modestannylation of (E)-alk-1-enyltributylstannanes 2
prepared via transfer reaction of (E)-alk-1-enyldicyclo-
hexylboranes 1 derived from alk-1-ynes. The present re-
action displays a broad substrate scope. For example, (E)-
alk-1-enyldicyclohexylboranes 1 bearing bulky alkyl and
phenyl groups as well as normal alkyl group participated
in the transfer reaction. In addition, some functional
groups were tolerated, including conjugated carbon–car-
bon double bond, chloro, and nitrile. The reaction of (E)-
alk-1-enyldicyclohexylboranes 1 bearing phenyl deriva-
tives with both electron-donating and electron-withdraw-
ing substituents at the para position proceeded well to
give the corresponding products, although (E)-2-(4-triflu-
oromethyl)phenyleth-1-enyldicyclohexylborane (1i)
showed slightly lower yields. It should be noted that both
(E)-1-iodoalk-1-enes 4 and (E)-1-bromoalk-1-enes 6 were
provided in a highly stereoselective fashion and in good to
high yields. Thus, these results indicated exclusive forma-
tion of (E)-alk-1-enyltributylstannanes 2.

In summary, we have developed a highly stereoselective
synthesis of (E)-alk-1-enyltributylstannanes 2 via transfer
of (E)-alk-1-enyl group from boron to tin under neutral
and mild reaction conditions. Furthermore, we have dem-

Scheme 2 Reaction of (E)-hex-1-enyldicyclohexylborane with tributyltin methoxide followed by treatment with iodine
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Scheme 3 Synthesis of (E)-alk-1-enyltributylstannanes and subsequent iododestannylation or bromodestannylation
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onstrated that the resulting (E)-alk-1-enyltributylstan-
nanes 2 can undergo iodo- and bromodestannylation in a
one-pot manner to provide the corresponding (E)-1-io-
doalk-1-enes 4 and (E)-1-bromoalk-1-enes 6 in good to
high yields, respectively. The synthetic advantages, in-
cluding applicability to various substrates and compatibil-
ity to functional groups, would make it an alternative to
currently available methods. Further synthetic applica-
tions of the resulting (E)-alk-1-enyltributylstannanes 2 are
under way in our laboratory.
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(43) To a solution of BH3·SMe2 (1 mmol) in THF (3 mL) was 
added cyclohexene (0.164 g, 2 mmol) dropwise at 0 °C 
under argon, and the mixture was stirred for 2 h at this 
temperature to form a white suspension of 
dicyclohexylborane in THF. To this suspension was added 
hex-1-yne (0.082 g, 1 mmol) dropwise at 0 °C, and the 
mixture was stirred for 2 h at this temperature to produce a 
clear solution of (E)-hex-1-enyldicyclohexylborane(1a) in 
THF. To this solution was added galvinoxyl (0.004 g, 0.01 
mmol) under a flow of argon, followed by dropwise addition 
of tributyltin methoxide (0.321 g, 1 mmol) at 0 °C. The 
resulting mixture was allowed to warm to r.t. and stirred for 
1 h to generate (E)-hex-1-enyltributylstannane(2a). The 
solution of 2a, thus prepared, was cooled to –15 °C, and a 
solution of I2 (0.279 g, 1.1 mmol) in THF (1 mL) was added 
dropwise. The resulting mixture was allowed to warm to 0 

Table 1 Iodo- and Bromodestannylation of (E)-Alk-1-enyltributyl-
stannanes 2 Derived from (E)-Alk-1-enyldicyclohexylboranes 1a

R Yield of product 4 
(%)b

Yield of product 6 
(%)b

n-Bu a 82

t-Bu b 88

n-C6H13 c 79

cyclohexenyl d 86 88

Cl(CH2)3 e 78 75

NC(CH2)3 f 83 84

Ph g 87 91

4-MeC6H4 h 78 88

4-F3CC6H4 i 67 78

a Both iodo- and bromodestannylation were carried out at –15 °C to 0 
°C using 1.1 equiv of iodine or 1.2 equiv of pyridinium tribromide.
b GC yields based on alk-1-yne employed.
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°C and stirred for 0.5 h. The reaction mixture was treated 
with aq Na2O3S2 to remove excess I2, and then oxidized by 
the successive addition of 3 M NaOH (1 mL) and 30% H2O2 
(0.5 mL) at 0 °C. After being stirred for 1 h at this 
temperature, the mixture was extracted three times with 
Et2O. The combined extracts were washed with brine and a 
10% aq solution of KF, dried over Na2SO4, and 
concentrated. The residue was purified by column 
chromatography on silica gel, with pentane as eluent, to give 
(E)-1-iodohex-1-ene (4a, 0.151 g, 72%).

(44) (E)-Oct-1-enyltributylstannane(2c) was prepared in the 
same manner as described in ref. 41 but using oct-1-yne 
(0.110 g, 1 mmol) instead of hex-1-yne. To the solution of 2c 
in THF was added a solution of pyridinium tribromide 
(0.384 g, 1.2 mmol) in THF (2 mL) dropwise at –15 °C, and 
the mixture was allowed to warm to 0 °C and stirred for 0.5 
h. The workup procedure was the same as described in ref. 
41, except for washing with aq Na2O3S2. Elution with 
pentane gave (E)-1-bromooct-1-ene (6c, 0.134 g, 70%). The 
1H NMR spectrum of 6c shows the alkenyl protons at d = 
6.01 (d, J = 13.4 Hz) and 6.15 (dt, J = 13.4, 6.4 Hz) ppm.
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