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Stability Analysis of the Characteristic Polynomials 

whose Coefficients are Polynomials of Interval Parameters 

Using Monotonicity

Takeshi KAWAMURA* and Masasuke SHIMA**

In this paper, we analyze the stability of the characteristic polynomials whose coefficients are polynomials of 

interval parameters via monotonicity methods. Our stability conditions are based on Frazer-Duncan's theorem 

and all conditions can be checked using only endpoint values of interval parameters. These stability conditions 

are necessary and sufficient under the monotonicity assumptions.

When the monotonicity conditions do not hold on the whole parameter region, we present an interval divi-

sion method and a transformation algorithm in order to apply the monotonicity conditions. Then, our stability 

analysis methods can be applied to all characteristic polynomials whose coefficients are polynomials of interval 

parameters.
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1. Introduction

In this paper, we study the stability of the following 

characteristic polynomial F(s,p), 

F(s,p)=cn(p)?+Cn-1(p)sn-1+...+Co(p)(1)

where p=(p1,•c,pm), and cj(p)=cj(p1,•c,pm) 

is a polynomial of pi•¸[pi,pi]=Ii•¼_??_, 

i=1,2,•c,m,j=0,1,•c,n,

p•¸P=I1•~I2•~•c•~Im, 

and cn(p)>0

It is one of the problems of the control theory whether the 

characteristic polynomial (1) is stable or not for all param-

eter values belonging to P. Essentially, for our present 

purpose of the stability analysis of (1), it is satisfactory if 

the Routh-Hurwitz conditions hold for any p•¸P. But, 

how we can ascertain it, this is the central and very diffi-

cult problem. In this respect, it seems that the following 

theorem given by Frazer and Duncan is most fundamen-

tal.

Theorem 1. (Frazer and Duncan)1),2) The character-

istic polynomial (1) is stable if and only if the following 

two conditions are satisfied.

1) The largest Hurwitz determinant Hn(p) does not 

vanish for any p•¸P.

2) There exists a p'•¸P where F(s,p') is stable.

Theorem 1 is equivalent to Hermite-Biehler's theorem3),4) 

and still has the deficiency that the condition 1) is diffi-

cult to verify. For the single parameter case: m=1, 

we have the tools such as Sturm's theorem5) and so on 

if the coefficients are polynomials of the one parameter. 

For example, if Theorem 1 is applied to the segment of 

polynomials

F(s,))=(1-))po(s)+)pi(s),)E[0,1],(2)

where the highest coefficients of p0(s) and p1(s) 

are positive, 

we can derive the following result by Hwang and Yang 

directly.

Theorem 2. (Hwang and Yang)6) The convex com-

bination of given polynomials p0(s) and p1(s) defined in 

(2) is Hurwitz stable for all ƒÉ•¸[0,1] if and only if the 

following conditions hold: 

1) One of the end-point polynomials p0(s) and p1(s) 

is Hurwitz stable and the other is positive at s=0.

2) The entry an-1,0(ƒÉ) of the optimal fraction free 

Routh array is positive for ƒÉ•¸[0,1].

The optimal fraction free Routh array is given by Jeltsch

7)
, and Hurwitz determinants H1, H2, H3,•c,Hn appear 

in the first column of his fraction free Routh array. In this 

case, the entry an-1,0(ƒÉ)=Hn-1(ƒÉ). And condition1) of 

Theorem 2 means that the constant term of s in F(s,ƒÉ) 

is positive and F(s,ƒÉ) is stable at one of the endpoints 
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of ƒÉ. Since Hn(ƒÉ) is a product of Hn-1(ƒÉ)(=an-1 ,0(ƒÉ)) 

and the constant term of F(s,ƒÉ), Theorem 2 is a segment 

polynomial version of Theorem 1.

Moreover, the condition 1) of Theorem 1 is the most 

simple one from the viewpoint of calculation of the Routh 

array, which is learned from the theory of optimal fraction 

free Routh array by Jeltsch. But, for the multi-parameter 

case: m>1, there is not yet any result comparable with 

Sturm's theorem as in the one parameter case for checking 

condition 1) of Theorem 1 on the whole parameter region.

In order to study the multi-parameter case, we have 

proposed the use of monotonicity property of multivari-

able polynomials and presented stability conditions which 

we have to calculate only at the endpoints of P9)•`11).

There are some cases, in which the monotonicity con-

ditions do not hold on the whole parameter region. If 

the zeros of partial derivative with respect to an interval 

parameter do not depend on other parameters, we divide 

the parameter interval to subintervals so that the mono-

tonicity conditions hold. On the other hand, if the zeros 

of partial derivative with respect to interval parameters 

depend on other parameters, we make a monotone poly-

nomial with new independent interval parameters. The 

latter procedure is the modification of Sideris' method8) 

which transforms the polynomial to the multi-linear form. 

And the number of new independent parameters in our 

method is not larger than that of Sideris' method.

Finally, we will illustrate our method and stability con-

ditions by an example. Since our stability conditions with 

transformation algorithm are sufficient, so we will com-

pare the conservativeness of our stability conditions with 

that of Siljak's conditions and Sideris' conditions in the 

same example. And the relation between our stability 

conditions and the edge theorem will be discussed by us-

ing two examples.

2. Monotone multi-variable polynomials

The characteristic polynomial (1) is also derived from 

the linear system in the state space form with structured 

uncertainties. In case of complex systems, interval pa-

rameters appear in polynomial form in the coefficients of 

the characteristic polynomials. Some of them are given 

in the examples in the reference 2). If we use the max-

imum and the minimum values in place of polynomials 

of interval parameters in the stability analysis, the de-

rived stability conditions become only sufficient and have 

the stability margin. Since, in general, it is difficult to 

check the stability of the characteristic polynomial (1), 

several assumptions and alterations are made for the sta-

bility analysis. In this paper, we use the assumption of 

the monotonicity with respect to interval parameters in 

(1).

There are m interval parameters in (1), so we pre-

pare the following definition for the convenience of ex-

pressions.

Definition. In this paper, we consider parameters p1, 

p2,•c,pm; pi•¸[pi,pi]=Ii•¼_??_,i=1,2,•c,m. 

For the parameter region P defined in (1), we denote its 

endpoint as p* and the set of endpoints as P*; p*•¸P*. 

And we define pk=(p1,p2,•c,pk-1, pk+1,•c,pm), 

pk•¸Pk=I1•~I2•~•c•~Ik-1•~Ik+1•~•c•~Im, 

k=1,2,•c,m. For the parameter region Pk, we also 

denote its endpoint as p*k and the set of endpoints as P*k; 

p*k•¸P*k.• 

Definition. (Monotone polynomial of p on P)9) Let 

ƒÓ(p) be a polynomial of pi•¸[pi,pi]•¼_??_,i=1,•c,m. 

If one of the following inequalities: 

E[pipi'(3)
(9pi-

or

5pip2[pi,pi](4)

holds for any fixed pi•¸Pi, ƒÓ(p) is called a monotone 

polynomial of pi.

If ƒÓ(p) is monotone with respect to all pi, i=1,•c,m, 

then it is called a monotone polynomial of p.• 

How to check the monotonicity conditions

In the reference 9), we have provided a finite procedure 

with which we can check the monotonicity condition (3) 

or (4) by using only the endpoints p*•¸P*. In some cases, 

our procedure requires finite but many steps of calcula-

tions with the aid of computer algebra system. In this 

respect, it is worth to note that there are two cases where 

the monotonicity can be checked immediately.

Case 1: If the partial derivative is in the form of 

ap(p)d(p
i)(5)a

pi

where ƒÕ(pi) is a polynomial of pi,

ƒÓ(p) is monotone in pi. The proof is obvious.

Case 2: If the partial derivative is calculated as 

33)

1(pi)i52(),~6)ap
i

where ƒÕ1(pi) is a polynomial of pi 

and ƒÕ2(pi) is a polynomial of pi, 

the monotonicity of ƒÓ(p) with respect to pi can be 

checked by ƒÕ1(pi). If one of the following conditions: 

ui51(pi)>0forpiE[pi,piJ(7)

or
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11(pi)<0forpiE[pi,Pi](8)

holds, ƒÓ(p) is a monotone polynomial of pi.

The case 1 is a special case of the case 2, where ƒÕ1(pi) 

is constant. And if the polynomial ƒÓ(p) is linear or affine 

or multi-linear with respect to p, ƒÓ(p) is in the case 1. So 

we separate the case 1 from the case 2.

In the case 2, if ƒÕ1(pi) changes its sign on the inter-

val [pi,pi], we can divide the interval into subintervals 

and ƒÕ1(pi) is monotone on each subinterval. In addition, 

the conditions (7) or (8) can be checked by using Storm's 

theorem at the endpoints of pi.

Of course, there are other cases where we can check eas-

ily the monotonicity of ƒÓ(p). The typical case is given in 

the section 5.1.

3. Stability analysis with monotonicity 

assumptions

In this section, we derive the stability conditions under 

the monotonicity assumptions. In our previous papers 

9)•`11)
, we have used the notion of monotonicity for multi-

parameter polynomials to derive stability conditions. If a 

polynomial is monotone with respect to interval parame-

ters, we can derive its maximum and minimum values on 

the whole parameter region using the value of polynomial 

at the endpoints of the parameter region P. Thus, if a 

polynomial satisfies the monotonicity conditions, we can 

show its positivity on the whole parameter region using 

only the endpoint values of parameters. Applying this 

idea to the condition 1) of Theorem 1, we obtain the sta-

bility conditions as follows.

Since the condition 1) of Theorem 1 is expressed by 

means of Hurwitz determinant, we denote Hurwitz deter-

minants as Hi(p), H2(p),•c,Hn(p).

Then, we have the stability conditions: 

Theorem 3. We assume Hn-1(p) and c0(p) are mono-

tone in p, then the characteristic polynomial (1) is stable 

if and only if the following two conditions hold.

1) Hn-1(p) and c0(p) are positive at all endpoints p*

•¸ P*.

2) F(s,p) is stable at one of the endpoints p*•¸p*.

Proof. We assume cn(p) is positive in (1). If F(s,p) 

is stable, all coefficients of F(s,p) are positive and all 

Hi(p)>0,i=1,2,•c,n on the whole parameter region 

p. Then all conditions of Theorem 3 hold.

Under the monotonicity condition of Hn-1(p) and c0(p), 

the minimum value of Hn-1(p) and c0(p) with respect 

to p are found at some endpoints in P*, respectively. 

Then, if the condition 1) of Theorem 3 holds, Hn-1(p) 

and c0(p) are positive on the whole parameter region P. 

Since Hn(p)=Hn-1(p)c0(p), if the condition 1) of The-

orem 3 holds, then the condition 1) of Theorem 1 is satis-

fied on the whole parameter region P. The condition 2) of 

Theorem 3 is equivalent to the condition 2) of Theorem 1. 

Thus, under the assumption of monotonicity, condition 1) 

and 2) of Theorem 3 are necessary and sufficient for the 

stability of F(s,p) on the whole parameter region P• 

4. Interval division method and trans-

formation algorithm

Unfortunately, there are some characteristic polynomi-

als which do not satisfy the monotonicity conditions of 

Theorem 3 or are difficult to verify the monotonicity. 

Next, we will consider how to apply our monotonicity con-

ditions to the general cases.

4.1 Interval division method

If f(p) is not monotone in pi and zeros of •Ýf(p)/•Ýpi=

0 do not depend on other interval parameters Pk (i•‚k), 

we divide the interval of pi at zeros of •Ýf(p)/•Ýpi=0.

Interval division method If a polynomial f(p) is not 

monotone in pi, and l zeros (pzi1<Pzi2<•c<pzil) of 

•Ý f(p)/•Ýpi=0 do not depend on other interval parame-

ter pk, i•‚k, we divide the parameter interval of pi into 

subintervals: [Pi,Pzil], [pzi1,pzi2],•c,[pzil,pi].

Then, f(p) is monotone in pi on each subintervals.• 

When we apply this method to Hn-1(p) or c0(p) which 

is not monotone in p, the conditions of Theorem 3 remain 

necessary and sufficient on the subintervals.

4.2 Transformation algorithm

In this section, we consider a case where zeros of 

•Ý f(p)/•Ýpi=0 depend on the other interval parameters 

pk(i•‚k). In this case, we cannot apply the above men-

tioned interval division method.

Let us consider a simple example of Sideris' method, 

9=pi-P1P2,P1E[0,1],P2E[0,2].(10)

In this case, we have the following derivatives 

ag =5p-p2(11)
api
ag =-p1(12)
8P2
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g is monotone in p2 (monotone case 1), but not monotone 

in p1. In this case, when p2 is fixed(p2•‚0), the partial 

derivative (11) changes its sign on the interval p1•¸[0,1]. 

And zeros of •Ýg/•Ýp1=0 depend on p2, then we cannot 

divide the interval of p1 to subintervals.

Sideris and Pena8) showed how to calculate the maxi-

mum value and the minimum value of g with respect to p. 

They introduced new independent parameters and modi-

fied g to g': 

g'=pipaP3p4P5-pips(13)

where p'1•¸[0,1], p'2•¸[0,1], p'3•¸[0,1] 

p'4•¸[0,1], p'5•¸[0,1], p'6•¸[0,2].

In this modification, g is embedded in g', and g' is multi-

linear with respect to the parameter p'1 , p'2, p'3, p'4, p'5, and 

p'6. In this case, [min(g),max(g)]•º[min(g'),max(g')] on 

the parameter region.

In this paper, we modify Sideris' method to make the 

monotone polynomials with respect to interval parame-

ters. In this example, if term -p2 does not exist in (11), 

then g is monotone with respect to parameter p1. So we 

introduce new independent parameters p1, p2, and p3 with 

P1=p1 and p2=p2. Then we modify the second term 

•g -p1p2•h to •gp3p2•h
, where p3•¸[0,1] and denote the 

new polynomial g by 

9=pi-p2p3(14)

where p1•¸[0,1], p2•¸[0,2], p3•¸[0,1].

Then, we have derivatives with respect to pi, i=1, 2, 3, 

ag
=_4ag=-a5g=-

apiPi0P2p3ap3P2.(15)

We can see that g is monotone in all parameters p1, p2, 

and p3. And g is embedded in g. Now, we prepare one 

definition in order to describe the above mentioned pro-

cedure.

Definition. (Monotonization index) Let us consider 

the polynomial

k(p)=Pawa(1ii)p()(pi)+...+piWC(pi)

+p2W~(pi)+X()(16)

where ƒ¿>ƒÀ>•c>ƒÄ>ƒÅ•†1,ƒ¿

, ƒÀ,•c,ƒÄ, ƒÅ•¸Z, and ƒµƒ¿, ƒµƒÀ,•c,ƒµƒÄ

, ƒµƒÅ, X are polynomials of pi, 

p=(p1,•c,pm).

For this polynomial, we set a monotonization index mzi 

for parameter pi as 

mzi=a-r~.(17)• 

Using this definition, we will propose a transformation al-

gorithm. If the polynomial is not monotone with respect 

to an interval parameter and the interval division method 

cannot be applied to the parameter, we will use the fol-

lowing procedure.

Algorithm

Step 1. Firstly, the order of terms in the polynomial 

should be set by the descending order of powers of pi. 

Then, the polynomial is in the form of (16), which will 

be assumed in the following procedure. We calculate 

the monotonization index mzi.

Step 2. If the monotonization index mzi is smaller than ƒÅ

; the lowest degree term of pi (mzi<ƒÅ), then go to 

Step 4. Or else (if mzi•†ƒÅ), go to Step 3.

Step 3. In this step, mzi•†ƒÅ. And we transpose the 

lowest degree term of pi:pƒÅi•¨qƒÅ-1iqm+1 and in other 

terms all p is transposed to q; q=(q1,•c,qm,), qj•¸

[pj,pj],j=1,2,•c,m, and qm+1•¸[pi,pi]. When we 

apply this step to (16), we have 

~(q)=qWa(Q'i)+qWa(qi)+...+qiW(qi)

+qz-lgm+iW,lgi)+X(I)(18)

Then we check the monotonicity of the transposed poly-

nomial ƒ³(q) with respectt to qi. If the transposed poly-

nomial is monotone in qi, the algorithm ends, or else 

we transpose again parameters q•¨p with added new 

 interval parameter pm+1•¸[pi,pi] and set ƒ³•¨ƒ³, then 

go to Step 1.

If the lowest degree of pi is 1(ƒÅ=1) in the polynomial ƒ³

, the lowest degree of qi in the transposed polynomial 

ƒ³(q) becomes ƒÄ. And if the transposed parameter pm+1 

does not appear in the lowest degree term of pi, we 

transpose pi•¨qm+1 using the above mentioned rule. 

If there are transposed parameter pm+1,•cpm+k, we 

transpose pi•¨qm+k+1.

Step 4. In this step, mzi<ƒÅ. We transpose the high-

est degree term pƒ¿i•¨qƒ¿i-1qm+1 and in other terms all 

p is transposed to q; q=(q1,•c,qm), qi•¸[pi,pi], i=

1,2,•c,m, and qm+1•¸[pi,pi] If we apply this step 

to (16), we have 

~(q)=qa-iqm+iWa(Qj)+gJ(gZ)+...

+qZW((qi)+g2W)+X()(19)

Then we check the monotonicity of the transposed poly-

nomial ƒ³(q) with respect to qi. If the transposed poly-

nomial is monotone in qi, the algorithm ends, or else 

we transpose again parameters q•¨p with added new 

interval parameter pm+1•¸[pi,pi] and set ƒ³•¨ƒ³, then 
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apply this Step 4 repeatedly.

If we have applied this Step 4 to (16) (ƒ¿-ƒÀ) times, 

we have 

~(q)=g~~'a(9i)+...+qi~'n(qi)+X(4i)(20)

where ƒµƒÀ(qi)=qm+1qm+2•cqm+ƒ¿-ƒÀƒµƒ¿(qi)

+ƒµƒÀ(qi)

If we cannot verify the polynomial is monotone in pi in 

this Step 4, we should apply this step (ƒ¿-ƒÅ) times, 

we have 

(q)=g2'~~(gi)+X(pi)(21)

where =gm+lqm+2...qm+a-~1Wa(qi)

+qm+a-(~+1...qm+a-r~~pQi)+...

+qm+a-+1...qm+a-r~W~(gi)+W,(q).

In this case, 

a~(g)
-qg''-%

aq2~(q2)(22)

If ƒÅ-1 is even (ƒÅ is odd), ƒ³(q) is obviously monotone 

in qi. If ƒÅ-1 is odd and the interval [pi,pi] do not 

contain 0, ƒ³(q) is also monotone in qi.

If ƒÅ-1 is odd and the interval [pi,pi] contains 0, we 

divide the interval at 0. Then, ƒ³(q) is monotone on [pi,

0] and [0, pi]. In this paper, we consider the positivity 

 of polynomial in Theorem 3 and, in this case, ƒÅ is even 

 for ƒ³(q)=qƒÅiƒ³ƒÅ(qi)+X(qi). Therefore, if |pi|>pi, 

we should check its positivity only at 0 and pi, so we 

can reduce the interval to [pi,0]. Conversely, if |pi|•…

pi, we should check its positivity at only 0 and pi, and 

reduce the interval to [0,pi]. If the transposed polyno-

mial is monotone in qi or finally, the form of (21), then 

the algorithm terminates.

If the transposed parameter pm+1 do not exist in the 

highest degree term, we transpose pi•¨qm+1 using the 

above mentioned rule. If there are transposed parame-

ter pm+1,•c,pm+k, we transpose pi•¨qm+k+1

•  Remark 1. (Step 3): If we have applied only Step 

3 to (16)(ƒ¿-ƒÀ) times, we have 

~(q)=gaWa(Qj)+q~WQ(gi)+...+gi~(gi)

+X()(23)

where X(qi)=X(qi)+qm+1qm+2•cqm+ƒÅƒµƒÅ(qi)

If (23) is not monotone in qi and mzi>ƒÄ, we apply Step 

3 again. If (23) is not monotone and the inequality mzi

<ƒÄ is satisfied, we go to Step 4.

In the following, we will explain Step 4 is finished even 

if the intermediate polynomials are not monotone. If we 

apply Step 4 to (16), mzi always decreases and the same 

type of inequality mzi<ƒÅ remains valid until the algo-

rithm of Step 4 comes to the end in finite steps. 

On the contrary, in Step 3, both the monotonization in-

dex mzi and the lowest degree term of pi may change 

simultaneously. Hence, according to the value of mzi-

(the lowest degree of pi), we go to Step 3 or Step 4. So 

long as the value is positive or equal to 0, we apply the 

procedures of Step 3, repeatedly. In this case, if we apply 

only Step 3 for (16), we have 

~(q)=gaa(gi)+X()(24)

where X()=X()+qm+lgm+2...qm,+nP(qi)

+qm+lqm+2...qm+~~((qi)+...

+qm+lqm+2...qm+pWa(gi)

This polynomial (24) is similar to (21). As the space is 

limited, we only note that transposing ƒÅ to ƒ¿, the same 

argument of the monotonicity in (21) can be applied to 

(24) and the algorithm ends in finite steps.

Therefore, the algorithm terminates for all polynomials in 

finite steps.• 

When we apply this algorithm to Hn-1(p) or c0(p) which 

is not monotone in p or cannot verify the monotonicity, 

we can use Theorem 3 for the stability analysis, but con-

ditions become sufficient. If the number of additional in-

dependent parameters increases, the stability margin also 

increases in general. On this point of view, the stability 

margin of our method is not larger than that of Sideris' 

method, because the number of new independent param-

eters of our algorithm does not exceed that of Sideris' 

method.

5. Examples

Let us consider the stability of the following character-

istic polynomial: 

F(s,p)=s3+(3p3+pip2+plp2+3p1+10)s2

+(4pi+pa+15)s+6p1p2+17(25)

Source of this characteristic polynomial is the reference 

12), in which Barmish showed Sideris' method. In this 

example, we will check the stability of (25) for two sets of 

interval parameters p1 and p2. And we will compare our 

method with Siljak's method and Sideris' method for the 

polynomial (25) in this example.
Now, we apply our method to this characteristic poly-

nomial. We have 

H2(p)=133+45p1+40p1+57pi+12p1+9p1p2

+15pip2+4pip2+4pip2+10p2+3pip2
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Table 1 H2(p) and c0(p) at p*

+3pip2+731732+pipe(26)

co(p)-17+6p1p2.(27)

5.1 Monotone case: p1•¸[0,1], p2•¸[0,1].

Firstly, we check the monotonicity of H2(p) and c0(p) 

with respect to p.

9112(p)=45+80p1+171p1+60pi+9732+30731732
apl

+12P1P2+16731732+3732+9pip2+732

+2pip2>0(28)
aH2(p) =9731+15731+4731+4pl+20132+6p1p2

9732

+6p1p2+3731732+3pip2~0(29)

And for c0(p), we also have 

ato(p)
-6p2,ato(p)=6p1.(30)a

pt9732

Then, we can see that H2(p) and c0(p) satisfy the mono-

tonicity condition for p1•¸[0,1] and p2•¸[0,1], because 

all coefficients in (28), (29), and (30) are positive. Then 

we have Table 1. From Table 1, we can learn that H2(p) 

and c0(p) are positive on the whole parameter region P. 

At any endpoints of p, the characteristic polynomial is 

stable. Thus, the characteristic polynomial (25) is stable 

with p1•¸[0,1] and p2•¸[0,1]. In this case, our conditions 

are necessary and sufficient.

5.2 Non-monotone case: p1•¸[-0.8,0.4] and p2

•[̧-6,3].

For intervals p1•¸[-0.8,0.4] and p2•¸[-6,3], we check 

the monotonicity of H2(p). In this case, if p2 is fixed at 

-6
, (28) is positive at p1=-0.8 and negative at p1=0.4. 

And also if p1 is fixed at 0.4, (29) is positive at p2=3 and 

negative at p2=-6. Then, we can see that H2(p) is not 

monotone in p on given intervals. Firstly we transform 

H2(p) with respect to p1 using our algorithm.

112(p)=12pi+4pip2+pi(57+4732+3p2)

+pi(40+15732+732)+pl(45+9732

+3p2+pz)+10p2+133.(31)

In this case, the monotonization index mz1=4 and the 

lowest degree of p1 is 1, then we apply Step 3 in the algo-

rithm. Applying Step 3 three times, we have 

H2(q)=12g1+4g4g2+gi(57+4q2+3q2)

+q3q4(40+1582+q2)+q3(45+9q2

+3q2+q2)+10g2+133(32)

where q1E[-0.8,0.4],q2E[-6,3],

q3E[-0.8,0.4],q4E[-0.8,0.4].

Then, monotonization index mz1 becomes 2 and the low-

est degree of q1 is 3, so we apply Step 4. Applying Step 4 

twice, we have 

H2(q)=ql(57+4q2+3q2+12g3g4+4g2g3)

+q3q4(40+1582+q2)+q3(45+9q2

+3q2+q2)+10q+133(33)

where qiE[-0.8,0.4],q2E[-6,3],

q3E[-0.8,0.4],q4E[-0.8,0.4].

In this case, H2 is monotone in q1: 

9112(q) -2381(57+4q2+3q22+12g3q4+4g2g3).(34)a
gl

Next, we consider the condition with respect to p2. Now 

we consider the following (transposed) polynomial 

733(1+734)+732(10+3pi+3733)

+9733+4pp3+15p3p4

+12pp3p4+5773+45733+40p3p4(35)

where 731E[-0.8,0.4],732E[-6,3],

733E[-0.8,0.4],p4E[-0.8,0.4].

In this case, mz2=2 and the lowest degree of p2 is 1. 

Then, we apply Step 3. We have 

H2(q)=gg31+q+8210+3q

+g54gl+9q3+4g1g3+15g3g4

+12gg3g4+57g+4583+40g3g4(36)

where q5E[-6,3]

The monotonization index mz2 changes to 1 and the low-

est degree of q2 becomes 2. Then, we apply Step 4. We 

have 

112(q)=g2g3q5(1+q4)+10+3q+3q3)

+q5(4q+9q3+4q1q3+15g3g4)

+12gg3q4+57g+45g3+40g3g4(37)

=-2q2(q3q5(1+g4)+10+3q+3q3)(38
9)

where qrE[-0.8,0.4],q2E[-6,3],

q3E[-0.8,0.4],q4E[-0.8,0.4],

q5E[-6,3].

Then (37) is monotone on the divided interval q2•¸[-6,

0], [0,3]. According to Step 4, we can reduce the interval 

of q2 to [-6,0]. And in (37), other parameters q3, q4, 

and q5 appear multi-linearly, thus (37) is monotone in q. 

Then, we have Table 2. In this case, (37) is positive at 
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Table 2 H2(q) at q*

Table 3 c0(p) at p*

all endpoints q*, then we learn that (37) is positive on the 

given region. And H2(p) is positive on the given region P

, because H2(p) is embedded in (37).

Finally, we check c0(p). From (30), we can see that 

c0(p) is monotone in p. When we check the value of c0(p) 

at p*, we have Table 3 and learn that c0(p) is positive 

at all endpoints p*•¸P*. In this example, at any end-

points of p, the characteristic polynomial is stable. So 

the characteristic polynomial (25) is stable on the given 

parameter region P.

5.3 Comparison of our method with Siljak's 

method and Sideris' method

In the reference 13), Siljak and Stipanovic made the 

sum of the square of the real part and the square of the 

imaginary part of F(jƒÖ,p) and derived each minimum 

value of coefficients with respect to p. For these coef-

Table 4 The modified Routh array with p1•¸[0,1] and p2•¸

[0,1]

Table 5 The modified Routh array with p1•¸[-0.8,0.4] and 

p2•¸[-6,3]

ficients, Siljak applied Sideris' method and the iteration 

algorithm, named Bernstein subdivision algorithm14), in 

order to calculate the minimum value of each coefficients 

of squared polynomial with respect to p. Making the poly-

nomial with the minimum value of each coefficients with 

respect to p, then Siljak calculated his modified Routh 

array13),15) Applying Siljak's positivity method to (25), 

we have the following squared polynomial:

g(w,p)=289+204p1p2+36pip2+(-115-102p1

+120pi-102pi+16pi-154p1p2-70P2 1P2

-36pip2+30pz-4pip2-12pipz+p2)w

+(70+60pi+pi+60pi+18p4+9p6

+20p1p2+26pip2+6pip2+6pip2+6pip2
222342-2p2+plp2+2p1p2+pip2)w2+w3(39)

For the intervals p1•¸[0,1] and p2•¸[0,1], the minimum 

values of coefficients with respect to p are calculated by 

numerical method. Then, we also have

g(w)=w3+68w2-428w+289(40)

and the modified Routh array (Table 4).

And for the intervals p1•¸[-0.8,0.4] and p2•¸[-6,3], 

we have

g(w)=w3-57.783424w2-187.960336w+6.76(41)

and the modified Routh array (Table 5).

The first columns of both modified Routh array (Table 

4, Table 5) have one sign variation, then the characteristic 

polynomial is not R+-positive. Thus, we cannot ascertain 
its stability using Siljak's method.

In this example, since there are only two interval pa-

rameters, we can see its stability by other methods, for 

example, some graphical methods. And we can learn that 
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the characteristic polynomial (25) with all interval param-

eter sets of p1 and p2 in this example is stable.

When we apply Siljak's method to the characteristic 

polynomials (25), the degree of each interval parameters 

in the coefficients of (39) become to doubled degree of 

(25). Therefore, the complexity of calculation in the sta-

bility analysis also increased. Siljak compared the sta-

bility margin of two methods by the stability test of the 

example and showed that using Bernstein subdivision al-

gorithm has smaller stability margin than using Sideris' 

method13). From the same point of view, our method is 

less conservative than Siljak's method.

In case of p1•¸[-0.8,0.4] and p2•¸[-6,3], if we apply 

Sideris' method to the coefficients of (25), we have

F(s,p)=s+(3pip2p3+pip2p4+pip4+3p1

+10)82+(4p1p2+pp5+15)s

6pip4+17(42)

where piE[-0.8,0.4],p2E[-0.8,0.4],

p3E[-0.8,0.4],p'4E[-6,3],p5E[-6,3].

In this case, the characteristic polynomial(42) is unsta-

oie at p'1=0.4, p'2=0.4, p'3=0.4, p'4=3, p'5=-6. 

Thus, our method is also less conservative than Sideris' 

method.

If we apply Sideris' method to H2(p) for p1•¸[-0.8,0.4] 

and p2•¸[-6,3] instead of our methods, then we have 

H2(p')=133+45pi+40pip2+57pip2p5+10psp7

+12pip2psp4p5+9p1p6+pip2p6p7p8

+4pip2p3ps+4pip2p3p4ps+15pip2ps

+3pipsp7+3pip2p3psp7+pipsp7ps(43)

wherepiE[-0.8,0.4],p'2E[-0.8,0.4],

p3E[-0.8,0.4],piE[-0.8,0.4],

p5E[-0.8,0.4],psE[-6,3],

p7E[-6,3],psE[-6,3].

And at p'1=0.4, p'2=0.4, p'3=0.4, p'4=0.4, p'5=0.4, 

p'6=-6, p'7=3, p'8=3, H'2(p')=-112.276. Hence, 

the characteristic polynomial is unstable. So the stabil-

ity conditions with our transformation algorithm also less 

conservative on this point.

For the parameter intervals p1•¸[0,1] and p2•¸[0,1], 

the polynomial (42) is stable. In (42), the number of in-

terval parameters are equal to that of our method. but, if 

we apply mapping theorem2),16) to the stability analysis 

of (42), we must check the convex hull at each positive ƒÖ 

which is spanned by F'(jƒÖ,p) with the endpoint values 

of P in the complex plane.

Table 6 H3(p1) and c0(p1) at p*1

For the parameter intervals p1•¸[0,1] and p2•¸[0,1], 

H'2(p') is positive. For (43), we must check the positivity 

of H'2(p') at 28=256 endpoints. Using our method, we 

checked only 22=4 endpoints of p for the stability and 

we learn that F(s,p) is stable in this example (Table 1).

In case of p1•¸[0,1] and p2•¸[0,1], we can also check 

F(s,p) is stable, applying Sideris' method to F(s,p) or 

H2(p). But, stability conditions become only sufficient 

with Sideris' method. On the other hand, for the param-

eters p1•¸[0,1] and p2•¸[0,1], our stability conditions 

are necessary and sufficient.

5.4 Relation between our monotonicity condi-

tions and the edge theorem

The edge theorem can be applied to the polynomial

F(s,p)f0(s)+pifi(s)+...+pmfm(s)(44)

where piE[p2jpi],i=1,2,••,m.

This polynomial is affine in p. The edge theorem requires 

to check the stability of F(s,p) on the exposed edge of 

p. Our stability conditions also can be applied to the 

stability analysis of (44). Sometimes, our monotonicity 

conditions do not hold on the whole parameter region P.

Let us consider the following example.

F(s,pi)=5+4pl+(24+8pi)s+6s2

+(24-8pi)s3+(5-4pi)s4(45)

-6<pi<6(46)

The original polynomial is given in the reference 3) as an 

example where the exposed edge determines its stability 

in z-plane. And an interval parameter p1 itself becomes 

the exposed edge. In this paper, we discuss in s-plane, so 

we apply the bilinear transformation z=(1+s)/(1-s). 

And we have (45) and the following H3(p1) and c0(p1).

H3(pi)=256(-9+8pi),co(pe)=5+4pi.(47)

Checking the monotonicity of H3(p1) and c0(p1),

dH3(p1) =4096p1dco(pi)=4,(48)
dpidpi'

we can see that c0(p1) is monotone in p1 and H3(p1) is not 

monotone in p1. The derivative of H3(p1) has one zero at 

p1=0 and we divide the interval of p1 at 0. And in this 

example, p1 appears only in the form of p21 in (47), so we 

can reduce the interval of p1 to p1•¸[0,6/5] for checking 

the positivity of H3(p1) (Table 6).
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Table 7 H2(p) at p*

H3 (p1) becomes negative at p1=0. This means that 

the polynomial (45) is not stable on the whole parame-

ter region. In the reference 3), Mori and Kokame showed 

that the polynomial(45) is not stable on the exposed edge, 

but stable at both endpoints of p1. In this example, we 

use only the interval division method to H3(p1). So, the 

stability condition is still necessary and sufficient.

It is known that for the polynomial whose coefficients 

are multi-linear in interval parameters, the edge theorem 

is incompetent for analyzing the stability17). In the ref-

erence17), the following example is given.

F(s,p)=s3+(p1+p2+1)s2+(p1+p2+3)s

+1+r2+6p1+6pz+2p1p2(49)

P1E[0.3,2.5],p2E[0,1.7]

Calculating the Hurwitz determinant H2(p), we have

H2(p)=2-2p1+pl-2P2+P2-r2,(50)

aH2(p) -2+2p1,aH2(p)=-2+22.p(51)
aptape

In this example, partial derivatives (51) vanish at p1=1 

and p2=1, respectively. Then, we divide the intervals of 

p1 and p2 at 1. Substituting r=0.5, we have Table 7. 
H2(p) becomes negative at p1=p2=1. This means that 

(49) is unstable. Since we use only our interval division 
method to H3(p) with respect to p, derived conditions are 

still necessary and sufficient. In the reference 17), Acker-

mann et al. showed that the unstable parameter region 

is a circle whose center is p1=p2=1 and radius is r in 

defined parameter region P. And They also showed that 

F(s,p) is stable at all endpoints of p and on all edges 

of the parameter region P. In this example, the center 

of unstable region (circle) is the dividing point of interval 

parameters in the interval division method.
Now we summarize the comparative merits of our 

method and the edge theorem. The edge theorem is useful 

only for the affine polynomial with respect to the param-

eters. And it is known that the calculation of the exposed 

edge is difficult in general(1). Ackermann et al. showed 

that the edge theorem is not applicable to the polynomial 

whose coefficients are multi-linear with respect to interval 

parameters. On the other hand, our monotonicity method 

can be applied to the affine or multi-linear polynomials. 

Even if there exist exposed edges in the parameter region, 

our monotonicity method is still effective. Conversely, if 

the monotonicity condition do not hold on the whole pa-

rameter region, it may be possible that there exist exposed 

edges in the parameter region.

6. Concluding Remarks

Our stability conditions are based on Frazer-Duncan's 

theorem and the monotonicity conditions of multivariable 

polynomials. If all the coefficients are monotone in the 

sense of multivariable polynomials defined by us, our sta-

bility conditions are necessary and sufficient and can be 

checked at the endpoints of parameter region (Theorem 

3). Though our monotonicity conditions are complicated 

to check and not always satisfied, there are some cases 

where the conditions can be checked easily. Two typical 

cases are shown. And in order to derive stability con-

ditions for the cases where the monotonicity conditions 

do not hold or cannot be verified on the whole parameter 

region, we •hmonotonized•h the problem by dividing param-

eter intervals into subintervals (Interval division method) 

or introducing a new augmented set of parameters (Trans-

formation algorithm). If the former method is applicable, 

our stability conditions remain necessary and sufficient. 

In the latter case, the original family of polynomials is 

embedded into the new family of polynomials. Thus, if 

it is possible to show that all the polynomials belong-

ing to the new family are positive, the original family is 

composed of positive polynomials on the whole parameter 

region. Therefore, we can apply our stability conditions 

using the transformation algorithm. Our transformation 

algorithm is the adaptation of Sideris' method and our 

algorithm terminates in finite steps.

Our methods are illustrated by examples and compared 

with Siljak's method and Sideris' method. All three meth-

ods are only sufficient conditions, if we use the transfor-

mation algorithm in our stability analysis. It is shown 

that our conditions are less conservative than other two 

methods by checking the stability of a characteristic poly-

nomial with two different combinations of parameter in-

tervals. In addition, the advantage of our method over 

the edge theorem is described.

In view of the progress of the information technology, 

we can check the stability of the characteristic polynomial 

(1) at very large number of mesh points in the parameter 

(1) For example, the statement is given in the reference 18), 
p. 82.
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region, But, if the characteristic polynomial is stable at 

all the mesh points, is it possible to regard it as a stable 

polynomial? This is a question to be solved analytically 

and quantitatively, but not yet. On the other hand , if 
monotonicity conditions hold or using only interval divi-

sion method to polynomials, our stability conditions are 

necessary and sufficient. And our transformation algo-

rithm and Sideris' method can be used safely in the design 

and analysis of control systems with various safety mar-

gins. In this respect, our method has the most narrow 
safety margin and can be applied to the polynomial type 

coefficients including the multi-linear type . Nevertheless, 
the problem of robust stability is not solved completely 

up to the present.

We wish to express our gratitude to the reviewers for 

valuable comments and criticisms.
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