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abstract

The finite element formulation based on the Galerkin method is proposed
for the analysis of the transmission characteristics of quantum wires in a
magnetic field. This formulation holds the gauge invariance when the com-
plex conjugate of the wave function is chosen as the test function. Also, it
is implied in the formulation that the sum of the outgoing current from a
discontinuity region equals the incident current into the region. Moreover,
the potential is discretized using the shape function in the quadratic line and
triangular elements of the finite element method. If the potential is defined
as a quadratic function of the coordinates, it can be exactly described in
this discretization, and so this formulation is very suitable for the analysis
of realistic quantum wires, whose potential is often expressed with quadratic
functions of the coordinates and similar ones. Some discontinuity problems
of quantum wires are analyzed and the validity of our approach is shown by
comparison with the results of other analysis methods.
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1. Introduction

In recent years there has been much interest in investigating the wave na-
ture of electrons and various quantum interference effects in submicron de-
vices. In order to develop quantum devices, it is important to investigate
the scattering properties in a quantum waveguide. Especially, the trans-
port properties of quantum devices in a magnetic field are much interesting,
and various analysis methods for arbitrarily shaped quantum devices such as
the boundary-element method (BEM) [1], the finite element method (FEM),
[2,3], and the finite difference method (FDM) [4] have been developed. In
Ref. [1], an exact but complicated Green’s function has been developed, and
wave functions have been calculated using the BEM for a charged particle
injected into a semi-infinite two-dimensional region consisting of a quantum
wire in a perpendicular magnetic field. In Ref. [4], the effects of a perpendic-
ular magnetic field on a closed stadium-shaped cavity was studied using the
FDM. Also, the approaches based on the recursive Green’s-function method
(RGM) have been developed for the analysis of the transmission character-
istics of quantum wires with a parabolic-type potential in a magnetic field
[5,6].

Using the FEM, a stadium-shaped quantum dot [2] and a quantum wire
involving a single antidot [3] are analyzed. Previously we proposed a novel
finite element formulation for the analysis of the energy levels of a two-
dimensional quantum cavity in a magnetic field [7]. In the formulation of
Ref. [7], the final eigenvalue matrix equation consists of a real symmetric
and an Hermitian matrix, while that of Refs. [2] and [3] would generate
asymmetric (neither real symmetric nor Hermitian) matrices for a cavity in
a magnetic field. The FEM which is based on the variational method and
generates Hermitian matrices has been proposed for a four band k-p analysis
on the valence band structure of a quantum wire [8], but it does not contain
the analysis of a quantum wire in a magnetic field.

In this paper, we apply the formulation based on the Galerkin method
in Ref. [7] to the analysis of the transmission characteristics of quantum
wires in a magnetic field. The Schrodinger equation is invariant in gauge
transform, and our formulation holds the gauge invariance when the complex
conjugate of the wave function is chosen as the test function, while that in
Refs. [2] and [3] does not. Also, it is implied in our formulation that the
sum of the outgoing current from a discontinuity region equals the incident
current into the region. Moreover, the potential as well as the wave function
is discretized using the shape function in the quadratic line and triangular
elements of the FEM, since realistic quantum wires may have a potential
profile which changes in a complicated fashion as a function of the position.
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If the potential is defined as a quadratic function of the coordinates, it can
be exactly described in this discretization, and so this formulation is very
suitable for the analysis of realistic quantum wires, whose potential is often
expressed with quadratic functions of the coordinates and similar ones [5].

2. Theoretical Formulation

2.1. Basic equation

We consider a two-dimensional discontinuity problem of quantum wires, as
shown in Fig. 1, where Iy is a hard wall (the barrier along Iy is infinitely high)
and I'; (j = 1,2,---, N) connects the discontinuity region 2 to the infinite
uniform wire j. We assume that a uniform perpendicular magnetic field
B = ZB is applied over region 2 and the wires, where B is the magnetic-flux
density vector, B is a constant, and Z is the unit vector in the z direction.
Since the z confinement is stronger, we neglect its contribution and zero
energy is taken as the edge of the fundamental z-related subband without
any loss of generality. Under the effective-mass approximation, the time-
independent Schrédinger equation is given by

i(—mv+eA)2+V V= Ey (1)
2m

where m, —e, E/, and 1 are the electron effective mass, charge, total energy,
and envelop wave function, respectively, and the effective mass is assumed
to be uniform in ) and the wires. The symbols A and V' denote the vector
potential and the potential energy, respectively, and & is Plank’s constant
divided by 27. With the choice of the Coulomb’s gauge V - A = 0, applying
the Galerkin method to Eq. (1), we obtain the following equation [7]:

//Q {W -V — i%@w) (V) + i%(w‘,) (AW

2
+ (?) + 27;;‘/ = k2] W} drdy
N
= Zl/F ;s (V%’ + i;A%) &y (2)
Jj= J

where k? = 2mE/h*, ¢ is a test function, and Z; is the outward unit vector
normal to I';. The integral [[, dzdy represents the area integration over (2,
and frj dy; represents the line integration over I';.
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For ¢ = ¢* (3)* being the complex conjugate of ), we notice that the
integrands in the left- and right-hand sides of Eq. (2) are invariant in the
following gauge transform:

h=e" MY A=A"+VA (3)

where A is an arbitrary scalar function, and the wave functions ¢ and v’
are for the vector potentials A and A’ respectively. Unfortunately, the
formulations published previously (Eq. (7) of Ref. [2] and Eq. (33) of Ref.
[3]) do not hold the gauge invariance. Also, since the current density is
defined as

J= Zlm {@z]* (w + i;Aw)] (4)

the imaginary part of the right-hand side of Eq. (2) is written as

m N N m N
j= J ]:

where [i,. represents the incident current and I; is the outgoing current into
the wire j. The value of this expression must be zero because the left-hand
side of Eq. (2) is a real number for ) = v¥*, and it corresponds directly to
the fact that the sum of the outgoing current equals the incident current.

2.2. Finite element discretization

We divide region 2 into a number of quadratic triangular elements [9] and
discretize the envelop wave function and the potential in the element as

v={N}{vt, v={N}{v}, V={N}{V} (6)

where the components of the vectors {t}., {¢}, and {V}. are the values
of ¥, 1, and V at the nodes in the element, respectively, {N} is the shape
function vector [9], and the superscript 7' denotes transpose. Substituting
Eq. (6) into Eq. (2), we can obtain the following equation:

{0} [Py} = il/rj W (V%’ + Z';A%‘) - dy; (7)

with

O{N}o{N}T  Oo{N}o{N}T
Pl = ze://e{ ox ox * oy oy



K. Hirayama et al. / Microelectronics Journal 6

e O{N}T O{N}T
_27_1({]\7}141 e +{N}A, ay )

e (0{N} r, {N} T

+

() + . - k] {N}{N}T} dady

where the components of the vectors {1/} and {1} are the values of 1/ and
1 at all the nodes except those on boundary I'y, respectively, [P] is a sparse
Hermitian matrix, A, and A, are the z and y components of A, respectively,
[J. dxdy represents the area integration over an element, and ), stands for

the sum over all the elements in region €.

2.3. Analytical relations

We choose the vector potential A; = —%;By; in wire j and the envelop wave
function ¢} for A’. We can set ¢; = e’ieAi/h@D;, where VA; = A — A, and
then the integral of the right-hand side of Eq. (7) may be reduced as

(A i = [ gemientm (O% Y\
/Fjwj (V%—HhAw]) xjdyj—/rjw]e <8xj zl%w]>dyj (8)

where AY = Aj(z; = 0,y;) and Ip = /li/eB represents a magnetic length.
When the incident wave of a propagating mode with unity amplitude
comes from wire 1, the wave function ¢’ in wire j is expressed as

iy, y5) = Ge” " foc(yn) + D b€ fi(y5) (9)
n=1
and o
j Y5y
L =i = Ggme(y) + {g;(y;)} {05} (10)
or; Ip r;
with

. LY
ginc(yl) = <—Zﬂinc—ll;
B

> finc(yl)

(0,0} = <iﬁjn - lyB) Fin0y) = g (w5)
{bj}n = bjn
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where f3;, and f;,,(y;) stand for the phase constant and the mode function
of the mth mode in wire j, respectively, and S, and fi,(y1) represent those
of the incident mode. Here {-}, is the nth component of the corresponding
column vector, and 4;; is the Kronecker’s delta. We can not always obtain f3;,,
and f;,(y;) analytically, so we calculate them numerically by use of the FEM,
as described in Appendix. Multiplying Eq. (9) with f}(y;) (I =1,2,---) and
integrating the equation over I';, we can obtain

(b} = LI [ A )Y (=0 fucly) + 5 )y, (1)
with
)b = Finu)s (Hilw = [ F(u) in(y)dy;

where the superscript * stands for the complex conjugate, and [-];, is the
[th-row and nth-column component of the corresponding matrix. We divide
boundary I'; into a number of quadratic line elements [9] and discretize the
envelop wave function on I'; as

vy = {Nj}T{?fj} (12)
vy o= AN} {5} (13)

where the components of the vectors {1;} and {1);} are the values of 1 and
¢ at the nodes on I';, respectively, and {N,} is the shape function vector
along I';. Substituting Eq. (12) into Eq. (11), {b;} is given as

{bi} = —0u[H) ™ {Fuc} + () [F){0,) (14

with

(Fuc) = [ LAY fucl)dyr, [F]= [ (i)} e N Ty,
We finally obtain from Eqs. (8), (10), (13), and (14)

s (Ve i A ) -y = 5 (00 () — {872} (15)
with

{Wic} = {Gunck =[G Pk, (2] = =[Gyl )

where

(G = [ (M Mgy, 1G] = [ (N} g (0)) "y,
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2.4. Evaluation of transmitted probability

Using Egs. (7) and (15), we can obtain the following matrix equation:

[ [Poo] [P01] [P02] e [PON] 17 {wo} ]
[Pio]  [Pu] + [Z4] [P1a] e [Pin] {1}
[Pao] [P [P22] (Za] -+ [Pan] {42}

Pl [Pal Pa) o [P+ 12 | | (o) |

{0}
{\Ijinc}
- | {0} (16)

{0} |

where the components of the vector {1y} are the values of the nodes in
region €2 except the nodes on boundary I';. This final matrix equation has a

sparse complex (neither symmetric nor Hermitian) matrix, and may be solved
The current density across I'; is given as
h 2
= ]1E [ <BIHC > 1nc(y1)

efficiently by using the bi-conjugate gradient method with the precondition
of the incomplete LU decomposition.
R h . (O]
Jj - &lp, = —Im [% (axj— 1/}) F]
& 2y,
+ Z Re[bln] _Binc + ﬁln - ZT fin(:(yl)fln(yl)
- B

Z Z 210jn ( it + Bjn — ié:) Fi(yi) fin(y;) (A7)

l1n1

where M; represents the number of the propagating modes in wire j, and
Re[] and Im[-] denote the real and imaginary parts of a complex number,
respectively. Using the orthogonality relation Eq. (A.6), we derive

/1" Jj . L?Zjdyj = —5j1[inc + [j (18)

with

e = L (e 2) i
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A M Y,
L = > |bjn|2/r_ (@'n - l%) Fo(y5)dy;
n=1 J

After solving Eq. (16) and determining {b;} from Eq. (14), we can finally
obtain the transmitted probability of wire j as Tj = I;/[inc.

3. Numerical Examples

In order to show the validity and the usefulness of our approach, we analyze
some discontinuity problems of quantum wires.

First we consider a quantum wire with a circular antidot in a magnetic
field, as shown in Fig. 2, where d is the width of the wire, D is the diameter
of the antidot, and boundaries I'y, I'y are located at x = —a, a, respectively.
Here a/d = 1.5, D/d = 0.1, and the magnetic length is {5 = d/+/22.8 [3]. The
potential V' is set equal to zero in the discontinuity region and the wires. The
antidot is replaced with an equilateral 32-side polygon of an area equal to the
original circular one. Figure 3 shows the transmitted probability against the
change of the electron energy for the first-mode or second-mode incidence,
where the electron energy is normalized by Ey = (h*/2m)(n/d)?. For E/FE, <
2.35, no propagating mode exists. Figure 4 shows the probability density in
contour lines and the probability current density in arrows at E/E, = 4.37
where the transmitted probability is nearly equal to zero. Here we take into
account one propagating and nine non-propagating modes for F/FEy < 7.28
and two propagating and eight non-propagating ones for F/FE, > 7.28 in
each of wires 1 and 2. Our results agree well with those of Leng et al. [3].

Next we consider a quantum wire with a parabolic potential in a magnetic
field, as shown in Fig. 5, where the potential profile is given as

Valy) = mwiy?/2,  |z| > b/2
V(y) = { V. @y) _ mwgy%/z, |z < b/2

Here we assume b = 40nm, B = 0 or 0.37T, Aw, = 6.39meV, £ = 9meV
[6], and m = 0.067mg (mg being the electron mass in free space). In order
to analyze this discontinuity problem by using the FEM formulated in the
previous section, we put hard walls at y = +d/2, whose barriers are infinitely
high and then the discontinuity region 2 is defined as the rectangular region
of (|z] <a+0/2) A (Jy| < d/2). We set a = 100nm and d = 360nm, and
take into account one propagating mode and nine non-propagating modes in
each of wires 1 and 2.

Figure 6 shows the transmitted probability and the phase of the propagat-
ing mode against the change of the potential V; for B = 0. Here the reference
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plane of the phase is located at x = —b/2 for the incident propagating mode
and x = b/2 for the transmitted one. We find that at w,,/ws = 2.26, 4.37, and
6.65, the transmitted probability is zero and the phase changes dramatically
by 2m. If we do not put the hard walls at y = £d/2, we can analytically ob-
tain the propagating and non-propagating modes in each of the regions of the
potentials V,, and V;, and then we may calculate the transmitted probability
by using the mode-matching method (MMM). The dark dots in Fig. 6 present
the results of the MMM. The computed results of the FEM and the MMM
are in good agreement, and so we confirm that the hard walls at y = £d/2
do not affect the results and the results of the FEM is in good accuracy.

Figure 7 shows the transmitted probability and the phase of the propa-
gating mode in wire 2 against the change of the potential V; for B = 0.3 T.
The computed results of the FEM and the MMM are in good agreement, but
unfortunately we were not able to calculate the transmitted probability for
ww/ws > 3 by using the MMM, because the sum of the transmitted proba-
bility was not unity even if we took into account 50 non-propagating modes
in each of the regions of the potentials V,, and V.

Finally we consider a T-junction quantum wire in a magnetic field, as
shown in Fig. 8, where d is the width of wire 1, D is that of wires 2 and 3, I'y
is located at y = —D/2 —a, and I'y, I3 are located at x = —d/2 —b, d/2+0,
respectively. The intensity of the magnetic field is given as R./Ap = 10,
where A\ = 27/k is the Fermi wavelength and R. = kl% is the cyclotron
radius. We take into account 20 modes (all the propagating modes and some
non-propagating ones) in each of wires 1 to 3.

We assume that d/A\rp = 2.1, a/Ap = 1, b/A\r = 10, and the potential V' is
set equal to zero in the discontinuity region and the wires. Figure 9 shows the
sum of the transmitted probability of wires 2 and 3 against the change of the
width of wires 2 and 3 for the first- or second-mode incidence from wire 1. In
comparison with those of RGM [5], our results are in good agreement for the
first-mode incidence, and somewhat greater for the second-mode incidence.

We can treat the parabolic-type potential profile in Ref. [5], as shown in
Fig. 10, given as

V/IE = [2* — (c, — R)?]/)\3 + 1

in Region I,

V/E = (r — R) Kl— 26z >T+R]/)\%+1

cr — |z

in Region II,
V/E = (R+ Ap—1)%/\%
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for r < R+ Ar and zero for r > R + Ap in Region III, and
V/IE = (ly| — ¢, + R+ Ap)?/\%

for |y| > ¢, — R — Ap and zero for |y| < ¢, — R — Ap in Region IV. Here
¢ =c+d/2,c,=c+D/2 and r = \/(cx — |2])? + (¢y + y)?. Regions I and
IV are defined as y < —c¢, and (|z| > ¢;) V (y > 0), respectively, and the
region (|z| < ¢;) A (—¢, <y < 0) is divided into regions II and III at the two

lines between the points of (£¢,, —¢,) and (0, —c, + \/(R + Ap)?2 —2). The
potential V' in region III is set equal to the electron energy E at » = R and
zero at 1 = R+ Ap. The parameters of the length should satisfy the relation
R < ¢; < R+Ap <¢,. For R/A\p = 6.2, we assume ¢/ \p = 4 and d/A\p = 6.1,
while ¢/A\r = 3 and d/Ar = 8.1 are used in Ref. [5], because we confirmed
in the numerical investigation that the case of ¢/Ap = 4 and d/A\p = 6.1
yields almost the same results as the other in less computational time. Also,
we set a/Ap = b/Ap = 5. Figure 11 shows the sum of the transmitted
probability of wires 2 and 3 against the change of the width of wires 2 and
3 for the first- or second-mode incidence from wire 1. Our results agree
approximately both for the first- and second-mode incidence with those of
RGM [5]. We believe that our results are more correct, because the parabolic-
type potential is expressed with quadratic functions of the coordinates in an
triangular element in the FEM, while only with the values at the vertices
of a square lattice in the RGM. Figure 12 shows the probability density in
contour lines and the probability current density in arrows at D/Ap = 8 for
the first-mode incidence. We find that the electron wave is well confined
in the region within the broken lines for V' = E. which present the wire
configuration in classical mechanics.

4. Conclusion

The finite element formulation based on the Galerkin method has been pro-
posed for the analysis of the transmission characteristics of quantum wires
in a magnetic field. This formulation holds the gauge invariance, and it is
implied that the sum of the outgoing current from a discontinuity region
equals the incident current into the region. Also, the potential is discretized
using the shape function in the quadratic line and triangular elements of the
FEM in order to treat realistic quantum wires with a potential profile which
changes in a complicated fashion as a function of the position. We have an-
alyzed a quantum wire with a circular antidot or a parabolic potential and a
T-junction quantum wire with zero or a parabolic-type potential, and have
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shown the validity of our approach by comparison with the results of other
analysis methods.

In the future, we shall investigate in detail the effects of the shape of a
quantum wire, the profile of a potential, etc. on the transmission characteris-
tics of quantum wires in a magnetic field by using the finite element analysis
proposed here.
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Appendix
When we set the wave function as ¢} = % f;(y;) for the vector potential
A’ = —1;By; in wire j, we obtain the following equation from Eq. (1):
Efi |2 2mVily) (s i
dy]g] + [’f - # - é —B) | fily;) =0 (A.1)

Under the boundary condition f;(+d;/2) = 0, the functional for Eq. (A.1)
is given as

F(f;) = 2/ {(gi)?— {kz—wgé(yj)— (2—@)2} ff(yj)}dyj

(A.2)
We divide boundary I'; into a number of quadratic line elements and dis-
cretize f;(y;) and Vj(y;) on I'; as

fily) = AN} Vilyy) = ANV} (A.3)
where the components of the vectors {f;} and {V;} are the values of f;(y;)

and V;(y;) at the nodes on I';. Substituting Eq. (A.3) into Eq. (A.2)
and applying the variational principle, we obtain the following eigenvalue

equation:
&S [6 ] e

@l = f [P (e oy - ) vy

@) = [ NN
Ql = | '{Nj}{Nj}Tdyj

where [0] and [1] are the null and unit matrix, respectively. We can obtain
the phase constants and the mode functions from the solution of Eq. (A.4).
For the {th and nth modes in wire j, we can derive from Eq. (A.1)

dfjn df]l‘|

~ Finla) g

[f]l( i)

dy]

+

_ (ZZ; - 5]71) + <;J12; - le) ] sz(yj)fjn(yj) =0 (A5)
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Integrating this equation over I';, we can obtain the following orthogonality
relation [10]:

(Bji — ﬁjn)/r (ﬁﬂ + Bjn — 2;:) Fi(y;) fin(y;)dy; =0 (A.6)

J
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Figure Captions

Fig. 1. Discontinuity of quantum wires in a perpendicular magnetic field.
Fig. 2. Quantum wire with a circular antidot, where a/d = 1.5, D/d = 0.1,
the magnetic length is g = d/+/22.8, and the potential is V' = 0.

Fig. 3. Transmitted probability for a quantum wire with a circular antidot,
where Ey = (h*/2m)(r/d)?.

Fig. 4. Probability density (contour lines) and probability current density
(arrows) at F/Ey = 4.37 for a quantum wire with a circular antidot.

Fig. 5. Quantum wire with a parabolic potential, where a = 100nm, b =
40nm, d = 360nm, the factor of the potential in a semi-infinite uniform
wire is hw,, = 6.39 meV, the electron energy is £ = 9meV, and the electron
effective mass is m = 0.067mg (mo being the electron mass in free space).
Fig. 6. Transmitted probability and phase of the propagating mode for a
quantum wire with a parabolic potential in B = 0.

Fig. 7. Same as Fig. 6, but in B =0.3T.

Fig. 8. T-junction quantum wire, where a/Ap = 1, b/A\r = 10, d/Ap = 2.1,
and the cyclotron radius is R, = 10\ (Ar being the Fermi wavelength).
Fig. 9. Transmitted probability of a T-junction quantum wire for the first-
or second-mode incidence in V' = 0.

Fig. 10. Parabolic-type potential profile in a T-junction quantum wire. The
broken lines for V' = FE present the wire configuration in classical mechanics.
Fig. 11. Same as Fig. 9, but in the parabolic-type potential.

Fig. 12. Probability density (contour lines) and probability current density
(arrows) at D/Ar = 8 for the first-mode incidence in a T-junction quantum
wire with a parabolic-type potential.
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