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Abstract. We investigate the structure of, especially non-vanishing, twisted
cohomology groups with locally constant sheaf coefficients of a punctured
Riemann surface with the aid of the theory of Deligne [5].

§0 Introduction

The hypergeometric function of one variable has an integral representation on
a one-dimensional complex torus invented by Wirtinger [14] (see also [11]). This
integral representation is understood as the pairing of a twisted homology class
and a twisted cohomology class on a one-dimensional complex torus minus four
points. There are several directions to obtain generalizations or analogues of this
integral representation. One direction is to study twisted cohomology of a one-
dimensional complex torus minus n points (where n ≥ 2), which we discussed in
[8]. Another direction is to study twisted cohomology of an abelian variety minus
several theta divisors. In [13] we investigated the structure of twisted cohomology
of an abelian surface minus theta divisors with normal crossings.

In this paper we treat the third direction. Namely, we study here the struc-
ture of twisted cohomology of a compact Riemann surface of genus g(≥ 1) minus
n points with the aid of the theory of Deligne [5]. Let X be a compact Rie-
mann surface of genus g, and p1, . . . , pn be n(≥ 2) distinct points on X. We
set X∗ = X − {p1, . . . , pn}. A complex one-dimensional representation of the
fundamental group of X∗ determines a locally constant sheaf L on X∗, which is
the coefficient sheaf of our twisted cohomology of X∗. Thanks to Deligne’s the-
ory [5], the twisted cohomology of X∗ relates to hypercohomology of logarithmic
Čech-de Rham complex (§1). To study the structure of the non-vanishing co-
homology group H1(X∗,L), we calculate the spectral sequence associated to the
hypercohomology (§2). To investigate its structure further, under the assumption
n > max{1, 2g − 2}, we consider a short exact sequence of sheaves (cf. Proof of

Mathematical Subject Classification (2010): Primary 33C70; Secondary 14K25,55N25,
14F40, 32C35

Key words: Riemann surface, twisted cohomology, hypercohomology, spectral sequence



56 H. Watanabe

Lemma 3.1) introduced by Deligne [5], and we arrive at the main theorem (Theo-
rem 4.1), where we give a basis of H1(X∗,L) as a set of meromorphic 1-forms on
X. In [6] Ito gives a basis of H1(X∗,L) as a set of Čech cocyles. Finally in §5 we
treat the genus one case, where a corollary to Theorem 4.1, equivalent to Theorem
2.7 in [8], is given. Finally we add that this paper is a generalized version of a
previous paper [12] where only the genus one case is treated.

§1 Cohomology with coefficients in L

Let X be a compact Riemann surface of genus g(≥ 1). Let p1, . . . , pn be
n(≥ 2) distinct points on X. Let m1, . . . ,mn be elements of C − Z such that∑n

k=1mk = 0. We set X∗ = X − {p1, . . . , pn}. Then it is easy to see that
the Euler number χ(X∗) of X∗ is χ(X∗) = 2 − 2g − n. Let p0 be a fixed base
point of X∗. Let α1, . . . , αg, β1, . . . , βg be 2g simple closed curves on X with
base point p0 which generate the fundamental group π1(X, p0) and correspond to
a canonical homology basis of H1(X,Z) (cf. [2]). We have the single relation
α1β1α

−1
1 β−1

1 . . . αgβgα
−1
g β−1

g = 1 in π1(X, p0). Without loss of generality we may
assume that the n points p1, . . . , pn are contained in the interior of the 4g-gon
edged by 4g sides α1, β1, α

−1
1 , β−1

1 , . . . , αg, βg, α
−1
g , β−1

g . Let γk (k = 1, . . . , n)
be a small circle about pk with anti-clockwise direction such that the n circles
γ1, . . . , γn are mutually disjoint, and are contained in the interior of the 4g-gon.
The 2g+n closed curves α1, . . . , αg, β1, . . . , βg, γ1 . . . , γn generate the fundamental
group π1(X

∗, p0), and satisfy the single relation α1β1α
−1
1 β−1

1 . . . αgβgα
−1
g β−1

g =
γ1 . . . γn in π1(X

∗, p0). Let ρ be a group homomorphism of π1(X
∗, p0) into the

multiplicative group C∗ = C − {0} such that ρ(γk) = e2πimk . Then, as is well-
known (e.g. [2], see also [7]), there exists a multivalued meromorphic multiplicative
function T (u) on X∗ such that for any γ ∈ π1(X

∗, p0) the relation T γ(u) =
ρ(γ)T (u) holds where T γ denotes the analytic continuation of T along γ. Let
ωk,l (k ̸= l) be a 1-form holomorphic on X − {pk, pl} and having poles of order
1 at pk and pl with residues +1 and −1 respectively. Then it is easy to see
that there exists a multivalued holomorphic multiplicative function T1(u) on X

∗,
unique up to constants, such that the relation T γk

1 (u) = ρ(γk)T1(u) holds for

k = 1, . . . , n and the equation d log T1 =
∑n−1

k=1(m1 + · · ·+mk)ωk,k+1 is satisfied.
Then T2(u) = T (u)/T1(u) is a multivalued meromorphic multiplicative function on
X such that T γk

2 (u) = T2(u) holds for k = 1, . . . , n. Let L be the locally constant
sheaf on X∗ generated by branches of the multivalued function T (u)−1. Let P
be the holomorphic line bundle on X having T2(u)

−1 as a meromorphic global
section. We have c1(P ) = 0. Let L (resp. L1) be the holomorphic line bundle on
X∗ defined by the 1-cocycle determined by the branches of T (u)−1 (resp. T1(u)

−1).
Then we have L = L1⊗P |X∗, where P |X∗ denotes the restriction of P to X∗. Let
OX∗(L) be the sheaf of modules over the structure sheaf OX∗ generated by local
sections of L. Then we have a natural sheaf isomorphism OX∗(L) ∼= OX∗ ⊗C L,
which is given by the correspondence Γ (U,OX∗) ∋ φ←→ φ⊗ h ∈ Γ (U,OX∗ ⊗L)
for any sufficiently small open set U ⊂ X∗ and a branch h of T (u)−1 over U . Let
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us consider the short exact sequence of sheaves on X∗:

0 −→ C −→ OX∗
d−→ Ω1

X∗ −→ 0,

where Ω1
X∗ denotes the sheaf of holomorphic 1-forms on X∗. Tensoring L from

the right on this sequence, we have an exact sequence

0 −→ L −→ OX∗ ⊗C L
d⊗1−→ Ω1

X∗ ⊗C L −→ 0. (1)

Here the operator d ⊗ 1 is a canonical connection in the sense of [5, I, Prop.
2.16]. We set Ω1

X∗(L) = Ω1
X∗ ⊗OX∗ OX∗(L). Then the following diagrams are

commutative:

OX∗ ⊗C L
d⊗1−−−−→ Ω1

X∗ ⊗C L

≃
y y≃

OX∗(L) −−−−→
d

Ω1
X∗(L)

φ⊗ h d⊗17−→ dφ⊗ h
↕ ↕
φ 7−→

d
dφ

Therefore (1) is equivalent to the following exact sequence:

0 −→ L −→ OX∗(L)
d−→ Ω1

X∗(L) −→ 0. (2)

For an open set U ⊂ X∗ and a section φ ∈ Γ (U,Ωp
X∗(L)) (where p is 0 or 1, and

Ω0
X∗ = OX∗), there is a section ψ ∈ Γ (U,Ωp

X∗(P |X∗)) such that φ = ψ · T1|U ,
where T1|U is a branch of T1 defined on U . Then we have a sheaf isomorphism

Ωp
X∗(P |X∗)

∼−→ Ωp
X∗(L) (p = 0, 1) ψ 7−→ φ = ψ · T1

such that the following diagram is commutative:

OX∗(P |X∗)
∇−−−−→ Ω1

X∗(P |X∗)

≃
y y≃

OX∗(L) −−−−→
d

Ω1
X∗(L)

where ∇φ = dφ + φd(log T1) and ∇2 = 0. Note that ∇h1 = 0 for any branch h1
of T1(u)

−1. Then the exact sequence (2) is equivalent to the following:

0 −→ L −→ OX∗(P |X∗)
∇−→ Ω1

X∗(P |X∗) −→ 0,

Since, as is well-known, Hq(X∗,Ωp
X∗(P |X∗)) = 0 for p ≥ 0 and q > 0, it follows

that Hp(X∗,L) ∼= Hp
DR(Ω

•
X∗(P |X∗),∇). Then we have

Lemma 1.1. Hp(X∗,L) = 0 if p ̸= 1. Therefore dimH1(X∗,L) = n+ 2g − 2.

Proof. Obviously, Hp(X∗,L) ∼= Hp
DR(Ω

•
X∗(P |X∗),∇) = 0 if p ≥ 2. Note that

H0(X∗,L) ∼= {f ∈ Γ (X∗,OX∗(P |X∗)) | ∇f = 0}. It is also obvious that, if a
section f ∈ Γ (X∗,OX∗(P |X∗)) satisfies ∇f = 0, then f = 0.
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Let EpX∗ be the sheaf of complex-valued C∞ forms of total degree p on X∗.
Replacement of the sheaf Ωp

X∗ by EpX∗ in the above argument is valid, and gives
us the following exact sequence on X∗:

0 −→ L −→ E0X∗(P |X∗)
∇−→ E1X∗(P |X∗) −→ 0,

where EpX∗(P |X∗) = EpX∗⊗E0
X∗
E0X∗(P |X∗). Let D =

∑n
k=1 pk be a reduced divisor

on X. Let Ωp
X⟨D⟩ be the sheaf of p-forms over X with logarithmic pole along

D ([10]). Since X is one-dimensional, we have by definition Ω0
X⟨D⟩ = OX and

Ω1
X⟨D⟩ = Ω1

X(D). We have inclusion of sheaves over X: Ωp
X⟨D⟩ ⊂ j∗Ω

p
X∗ ⊂

j∗EpX∗ , where j denotes a natural inclusion mapping of X∗ into X. We set
Ωp

X⟨D⟩(P ) = Ωp
X⟨D⟩ ⊗OX OX(P ). Since j∗Ω

p
X∗ ⊗OX OX(P ) ∼= j∗Ω

p
X∗(P |X∗)

and j∗EpX∗ ⊗E0
X
E0X(P ) ∼= j∗EpX∗(P |X∗), we have inclusion of sheaves over X:

Ωp
X⟨D⟩(P ) ⊂ j∗Ω

p
X∗(P |X∗) ⊂ j∗EpX∗(P |X∗). Let us consider a complex of sheaves

of logarithmic forms:

(Ω•
X⟨D⟩(P ),∇) : OX(P )

∇−→ Ω1
X(D)(P ) −→ 0.

Then the next lemma follows immediately from [5, II, Cor. 3.14] (for an elementary,
analytical, direct proof of it, see [13]).

Lemma 1.2. Two complexes of sheaves overX, (Ω•
X⟨D⟩(P ),∇) and (j∗E•X∗(P |X∗),∇),

are quasi-isomorphic to each other.

By taking global section functor we have

Corollary 1.3. Hp(X∗,L) ∼= Hp(X,Ω•
X⟨D⟩(P ),∇), where H denotes a hyperco-

homology.

§2 Logarithmic Čech-de Rham complex and spectral sequence

The rest of this paper is devoted to investigating the structure of the non-
vanishing cohomology group H1(X∗,L) ∼= H1(X,Ω•

X⟨D⟩(P ),∇). To this end
we study the spectral sequence associated to the hypercohomology. Note that
Ω0

X⟨D⟩ = OX and Ω1
X⟨D⟩ = Ω1

X(D). Let U = {Ui}i be an open covering of X.
Let us consider the following double complex:

...
...xδ

xδ

C2(U ,OX(P ))
∇−−−−→ C2(U ,Ω1

X(D)(P )) −−−−→ 0xδ

xδ

C1(U ,OX(P ))
∇−−−−→ C1(U ,Ω1

X(D)(P )) −−−−→ 0xδ

xδ

C0(U ,OX(P ))
∇−−−−→ C0(U ,Ω1

X(D)(P )) −−−−→ 0,
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where δ denotes the coboundary operator satisfying δ∇ = ∇δ. The total differ-
entiation operator ∆ is defined to be ∆ = δ + (−1)p∇ on Cp(U ,OX(P )). For
p ≥ 0 we set Kp = Cp(U ,OX(P )) ⊕ Cp−1(U ,Ω1

X(D)(P )), where C−1 = 0. We
set K(U) = ⊕∞

p=0K
p. Since ∆(Kp) ⊂ Kp+1 and ∆2 = 0, the pair (K(U),∆) is a

complex. By the definition of hypercohomology (e.g. [3]), we have

Hp = Hp(X,Ω•
X⟨D⟩(P ),∇) = lim−→

U
Hp(K(U),∆),

where Hp(K(U),∆) = Ker[Kp ∆−→ Kp+1]/Im[Kp−1 ∆−→ Kp] and lim−→
U

means the

inductive limit taken with respect to refinements of open coverings of X. By
setting K0 = K(U) and K1 = ⊕∞

p=0C
p(U ,Ω1

X(D)(P )), we introduce a filtra-
tion of K(U): K(U) = K0 ⊃ K1 ⊃ 0. The spectral sequence Er(U) associ-
ated to the filtered modul K(U) is given as follows: Ep

1 (U) = H(Kp/Kp+1) =
Hδ(⊕∞

q=0C
q(U ,Ωp

X⟨D⟩(P )) = ⊕∞
q=0H

q(U ,Ωp
X⟨D⟩(P )) and the other Ep

r (U) (r ≥ 2)
are given inductively. The limit Er = lim−→

U
Er(U) is also a spectral sequence and

abuts to the hypercohomology Hp. We have Ep
1 = ⊕∞

q=0H
q(X,Ωp

X⟨D⟩(P )) and
Epq

1 = Hq(X,Ωp
X⟨D⟩(P )). Note that Epq

1 = 0 (p > 1).

Lemma 2.1. Assume that the line bundle P has the first Chern class c1(P ) = 0,
but is not holomorphically trivial. Then E1 = E∞. Namely, we have E01

∞ =
H1(X,OX(P )), E10

∞ = H0(X,Ω1
X(D)(P )), and Epq

∞ = 0 if (p, q) ̸= (1, 0), (0, 1).
Moreover we have dimE01

∞ = g − 1 and dimE10
∞ = n+ g − 1.

Proof. Obviously E0q
1 = Hq(X,OX(P )) = 0 if q ̸= 1 (cf. [4], p.74). By Riemann-

Roch theorem we have dimE01
1 = dimH1(X,OX(P )) = g−1. Since the divisor D

is effective, by Kodaira vanishing theorem, we have E1q
1 = Hq(X,Ω1

X(D)(P )) = 0
if q ≥ 1. Note that Ω1

X(D)(P ) ∼= O(K + [D])(P ), where K is the canonical class
and [D] denotes the line bundle associated to the divisor D. Since c1(K + [D]) =
2g − 2 + n, it follows ([4], p.111) that dimE10

1 = dimH0(X,Ω1
X(D)(P )) = (2g −

2 + n)− (g − 1) = g − 1 + n. Therefore E1 = E∞.

Lemma 2.2. Assume that the line bundle P is holomorphically trivial: P = 1.
Then E2 = E∞. Namely, we have E01

∞ = H1(X,OX), E10
∞ = H0(X,Ω1

X(D))/C ·
∇(1), and Epq

∞ = 0 if (p, q) ̸= (1, 0), (0, 1). Moreover we have dimE01
∞ = g and

dimE10
∞ = n+ g − 2.

Proof. Let us consider the complex E0q
1

∇−→ E1q
1 . If q = 0, this is turned to

H0(X,OX)
∇−→ H0(X,Ω1

X(D)). We have H0(X,OX) = C. If f ∈ C satisfies
∇f = 0, then f = 0. So we have E00

2 = 0. Moreover, obviously we have E10
2 =

H0(X,Ω1
X(D))/C · ∇(1). If q = 1, by Kodaira vanishing theorem, we have E11

1 =
H1(X,Ω1

X(D)) = 0. So the complex above is turned to a trivial one: E01
1 =

H1(X,OX)
∇−→ 0, from which it follows that E01

2 = H1(X,OX) and E11
2 = 0. If

q ≥ 2, we have E0q
1 = E1q

1 = 0 similarly by the vanishing theorem, from which it
follows that E0q

2 = E1q
2 = 0. Consequently we have E2 = E∞.
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§3 Deligne’s resolution

From now on we assume that n > max{1, 2g−2}. Let us investigate the vector
space E01

∞ further. We prove the following

Lemma 3.1. We have the isomorphism

E01
∞ = H1(X,OX(P )) ∼=

H0(X,Ω1
X(2D)(P ))

∇H0(X,OX(D)(P )) +H0(X,Ω1
X(D)(P ))

.

Proof. Let us consider the resolution of the sheaf OX(P ) by Deligne [5, II, Prop.
3.13]:

0 −→ OX(P ) −→ OX(D)(P )
∇′

−→ Ω1
X(2D)(P )

Ω1
X(D)(P )

∇′

−→ 0,

where ∇′ is the mapping induced by ∇. Since n > 2g − 2, it follows by Serre
duality that H1(X,OX(D)(P )) = 0. Therefore the short exact sequence above
implies the exact sequence of cohomology groups:

0 −→ H0(X,OX(P )) −→ H0(X,OX(D)(P ))

∇′

−→ H0

(
X,

Ω1
X(2D)(P )

Ω1
X(D)(P )

)
−→ H1(X,OX(P )) −→ 0,

from which we have the isomorphism

H1(X,OX(P )) ∼=
H0

(
X,

Ω1
X(2D)(P )

Ω1
X(D)(P )

)
∇′H0(X,OX(D)(P ))

. (3)

Since H1(X,Ω1
X(D)(P )) = 0 by Kodaira’s vanishing theorem, we have

H0

(
X,

Ω1
X(2D)(P )

Ω1
X(D)(P )

)
∼=
H0(X,Ω1

X(2D)(P ))

H0(X,Ω1
X(D)(P ))

. (4)

Moreover, by this isomorphism, we may identify the mapping

∇′ : H0(X,OX(D)(P )) −→ H0

(
X,

Ω1
X(2D)(P )

Ω1
X(D)(P )

)
with the composition

H0(X,OX(D)(P ))
∇−→ H0

(
X,Ω1

X(2D)(P )
)
−→ H0(X,Ω1

X(2D)(P ))

H0(X,Ω1
X(D)(P ))

.

Then we have

∇′H0(X,OX(D)(P )) ∼=
∇H0(X,OX(D)(P ))

∇H0(X,OX(D)(P )) ∩H0(X,Ω1
X(D)(P ))

∼=
∇H0(X,OX(D)(P )) +H0(X,Ω1

X(D)(P ))

H0(X,Ω1
X(D)(P ))

.

(5)
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Substitution of (4) and (5) into (3) gives us the desired formula, which proves
Lemma 3.1.

§4 Basis of cohomology group

For each p the hypercohomology group Hp inherits a filtration from the cor-
responding filtered module Kp. Especially in the case where p = 1 we have
H1 = H1

0 ⊃ H1
1 ⊃ 0. According to the general theory of spectral sequences

we have Gp(H
1) ∼= Ep,1−p

∞ , that is, we have H1
0/H

1
1 = G0(H

1) = E01
∞ , H1

1 =
G1(H

1) = E10
∞ . Combining the results of Lemmas 2.1, 2.2 and 3.1, we arrive at

the following theorem:

Theorem 4.1. We have the isomorphism H1(X∗,L) ∼= E01
∞ ⊕ E10

∞ , where,
(i) if P is topologically trivial but not holomorphically, then

E10
∞ = H0(X,Ω1

X(D)(P )),

E01
∞ =

H0(X,Ω1
X(2D)(P ))

∇H0(X,OX(D)(P )) +H0(X,Ω1
X(D)(P ))

;

(ii) if P is holomorphically trivial, then

E10
∞ = H0(X,Ω1

X(D))/C · ∇(1),

E01
∞ =

H0(X,Ω1
X(2D))

∇H0(X,OX(D)) +H0(X,Ω1
X(D))

.

According to this theorem, we can choose a basis of H1(X∗,L) as follows:

Example 1. Assume that P is topologically trivial but not holomorphically. We
have H0(X,Ω1

X(P )) ⊂ H0(X,Ω1
X(D)(P )). By Riemann-Roch theorem and Serre

duality we have dimH0(X,Ω1
X(P )) = g−1. Let ω1, . . . , ωg−1 be 1-forms holomor-

phic on X with values in P which form a basis of H0(X,Ω1
X(P )). We denote by σk

(1 ≤ k ≤ n) a 1-form holomorphic on X−{pk} with values in P which has a unique
pole of order 1 at pk. Then n+ g− 1 1-forms ω1, . . . , ωg−1, σ1, . . . , σn form a basis
of E10

∞ . Let τk (1 ≤ k ≤ n) be a 1-form holomorphic on X −{pk} with values in P
which has a unique pole of order 2 at pk. Since dimE01

∞ = g−1 < n, g−1 1-forms
τ1, . . . , τg−1 which are not in ∇H0(X,OX(D)(P )) + H0(X,Ω1

X(D)(P )) define a
basis of E01

∞ . Therefore n + 2g − 2 1-forms ω1, . . . , ωg−1, σ1, . . . , σn, τ1, . . . , τg−1

define a basis of H1(X∗,L).

Example 2. Assume that P is holomorphically trivial. We have H0(X,Ω1
X) ⊂

H0(X,Ω1
X(D)) and dimH0(X,Ω1

X) = g. Let ω1, . . . , ωg be 1-forms holomorphic
on X which form a basis of H0(X,Ω1

X). Let ωk,l be a 1-form holomorphic on
X − {pk, pl} (k ̸= l) and having poles of order 1 at pk and pl with residues +1
and −1 respectively. Then n + g − 1 1-forms ω1, . . . , ωg, ω12, ω23, ω34, . . . , ωn−1,n

form a basis of H0(X,Ω1
X(D)). Since ∇(1) =

∑n−1
k=1(m1 + · · · +mk)ωk,k+1, n +

g − 2 1-forms ω1, . . . , ωg, ω12, ω23, ω34, . . . , ωn−2,n−1 define a basis of E10
∞ . Let τk
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(1 ≤ k ≤ n) be a 1-form holomorphic on X − {pk} which has a unique pole of
order 2 at pk. Since dimE01

∞ = g ≤ n, g 1-forms τ1, . . . , τg which are not in
∇H0(X,OX(D)) +H0(X,Ω1

X(D)) define a basis of E01
∞ . Therefore n+ 2g − 2 1-

forms ω1, . . . , ωg, ω12, ω23, ω34, . . . , ωn−2,n−1, τ1, . . . , τg define a basis of H1(X∗,L).

§5 Genus one case

In this section we consider the case whereX is a one-dimensional complex torus:
X = C/(Z + τZ). Let n, n′ be integers such that 2 ≤ n ≤ n′. Let ak, bk (1 ≤ k ≤
n′) be real numbers, ck (1 ≤ k ≤ n) complex numbers but not integers, and ck

(n + 1 ≤ k ≤ n′) non-zero integers. We assume that
∑n

k=1 ck =
∑n′

k=n+1 ck = 0.
We also assume that (ak, bk) (1 ≤ k ≤ n), regarded as elements of R2/Z2, are
different from each other. Let tk (1 ≤ k ≤ n) be the point defined by −akτ − bk
on X. Then we have tk ̸= tl if k ̸= l. We set D = {t1, . . . , tn}, and X∗ = X −D.
Note that the point tk is a unique zero of the theta function θak,bk(u, τ) on X

([9]). We set T1(u) =
∏n

k=1 θak,bk(u, τ)
ck , T2(u) =

∏n′

k=n+1 θak,bk(u, τ)
ck , and

T (u) = T1(u)T2(u). Then we have

T1(u+ 1) = e2πi(a1c1+···+ancn)T1(u),

T1(u+ τ) = e−2πi(b1c1+···+bncn)T1(u),

T2(u+ 1) = e2πi(an+1cn+1+···+an′cn′ )T2(u),

T2(u+ τ) = e−2πi(bn+1cn+1+···+bn′cn′ )T2(u).

Let L be the locally constant sheaf on X∗ defined by the one-dimensional represen-
tation of the fundamental group π1(X

∗, ∗) by the multivalued function T (u)−1.
Let P be the holomorphic line bundle on X having T2(u)

−1 as a meromorphic
global section. We have c1(P ) = 0. Then Theorem 4.1 is reduced to the following

Corollary 5.1. (i) If P is not holomorphically trivial, thenH1(X∗,L) ∼= H0(X,Ω1
X(D)(P )),

and Hp(X∗,L) = 0 (p ̸= 1). We have dimH0(X,Ω1
X(D)(P )) = n.

(ii) If P is holomorphically trivial (i.e., P = 1), thenH1(X∗,L) ∼=
(
H0(X,Ω1

X(D))/C · ∇(1)
)
⊕

H1(X,OX), and Hp(X∗,L) = 0 (p ̸= 1), where ∇ is defined by ∇φ = dφ +
φd(log T1) for any differential form φ. We have dimH0(X,Ω1

X(D))/C · ∇(1) =
n− 1 and dimH1(X,OX) = 1.

Remark. This corollary is already proved in [8] by applying Mittag-Leffler theorem
in the complex analytical theory on Riemann surfaces.

Let ℘(u) be a meromorphic function with a unique pole at t1 ∈ D of order
2. Then the non-zero cohomology class [℘(u)du] in H1(X,OX) defined by the
1-form ℘(u)du ∈ Γ (X∗,Ω1

X∗) forms a basis of H1(X,OX). Therefore the coho-
mology classes forming a basis of H0(X,Ω1

X(D))/C · ∇(1) and the cohomology
class [[℘(u)du]] in H1(X∗,L) defined by ℘(u)du form a basis of H1(X∗,L).
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