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Abstract. We investigate the structure of, especially non-vanishing, twisted
cohomology groups with locally constant sheaf coefficients of a punctured
Riemann surface with the aid of the theory of Deligne [5].

80 Introduction

The hypergeometric function of one variable has an integral representation on
a one-dimensional complex torus invented by Wirtinger [14] (see also [11]). This
integral representation is understood as the pairing of a twisted homology class
and a twisted cohomology class on a one-dimensional complex torus minus four
points. There are several directions to obtain generalizations or analogues of this
integral representation. One direction is to study twisted cohomology of a one-
dimensional complex torus minus n points (where n > 2), which we discussed in
[8]. Another direction is to study twisted cohomology of an abelian variety minus
several theta divisors. In [13] we investigated the structure of twisted cohomology
of an abelian surface minus theta divisors with normal crossings.

In this paper we treat the third direction. Namely, we study here the struc-
ture of twisted cohomology of a compact Riemann surface of genus g(> 1) minus
n points with the aid of the theory of Deligne [5]. Let X be a compact Rie-
mann surface of genus g, and pi,...,p, be n(> 2) distinct points on X. We
set X* = X — {p1,...,pn}. A complex one-dimensional representation of the
fundamental group of X* determines a locally constant sheaf £ on X*, which is
the coefficient sheaf of our twisted cohomology of X*. Thanks to Deligne’s the-
ory [5], the twisted cohomology of X* relates to hypercohomology of logarithmic
Cech-de Rham complex (§1). To study the structure of the non-vanishing co-
homology group H'(X*, L), we calculate the spectral sequence associated to the
hypercohomology (§2). To investigate its structure further, under the assumption
n > max{1,2g — 2}, we consider a short exact sequence of sheaves (cf. Proof of
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Lemma 3.1) introduced by Deligne [5], and we arrive at the main theorem (Theo-
rem 4.1), where we give a basis of H'(X*, L) as a set of meromorphic 1-forms on
X. In [6] Tto gives a basis of H'(X*, L) as a set of Cech cocyles. Finally in §5 we
treat the genus one case, where a corollary to Theorem 4.1, equivalent to Theorem
2.7 in [8], is given. Finally we add that this paper is a generalized version of a
previous paper [12] where only the genus one case is treated.

81 Cohomology with coefficients in £

Let X be a compact Riemann surface of genus g(> 1). Let p1,...,p, be
n(> 2) distinct points on X. Let mq,...,m, be elements of C — Z such that
Yopgmr = 0. We set X* = X — {p1,...,p,}. Then it is easy to see that
the Euler number y(X*) of X* is x(X*) = 2 — 29 — n. Let py be a fixed base
point of X*. Let ai,...,a4,81,...,84 be 2g simple closed curves on X with
base point pp which generate the fundamental group 71 (X, pg) and correspond to
a canonical homology basis of H1(X, Z) (cf. [2]). We have the single relation
arfrag BTt agﬁgaq_lﬁg_l =1 in 71 (X, pg). Without loss of generality we may
assume that the n points pq,...,p, are contained in the interior of the 4g-gon
edged by 4g sides o, B, a7 ', B L., ag, Be ot Byt Let v (k= 1,...,n)
be a small circle about p, with anti-clockwise direction such that the n circles
Y, .-, are mutually disjoint, and are contained in the interior of the 4g-gon.
The 2g+n closed curves ax,...,aq,B1,...,Bg,71 --.,Vn generate the fundamental
group 71 (X*,po), and satisfy the single relation ay 810767 .. .agﬁgoglﬁq—l =
Y1 -.p in w1 (X* po). Let p be a group homomorphism of 71 (X*,pg) into the
multiplicative group C* = C — {0} such that p(y;) = €2™*. Then, as is well-
known (e.g. [2], see also [7]), there exists a multivalued meromorphic multiplicative
function T'(u) on X* such that for any v € m(X*,pg) the relation T7(u) =
p(v)T (u) holds where T7 denotes the analytic continuation of 7' along ~. Let
wr (k # 1) be a 1-form holomorphic on X — {py,p;} and having poles of order
1 at py and p; with residues +1 and —1 respectively. Then it is easy to see
that there exists a multivalued holomorphic multiplicative function T3 (u) on X*,
unique up to constants, such that the relation 7% (u) = p(y%)T1(u) holds for
k=1,...,n and the equation dlogT} = ZZ;II (m1 4+ -+ + my)wg k41 is satisfied.
Then T5(u) = T'(u)/T1(u) is a multivalued meromorphic multiplicative function on
X such that 7% (u) = Ta(u) holds for k =1,...,n. Let £ be the locally constant
sheaf on X* generated by branches of the multivalued function 7'(u)~!. Let P
be the holomorphic line bundle on X having T»(u)~! as a meromorphic global
section. We have ¢;(P) = 0. Let L (resp. L1) be the holomorphic line bundle on
X* defined by the 1-cocycle determined by the branches of T'(u) ™! (resp. T4 (u)~1).
Then we have L = L; ® P|X*, where P|X™* denotes the restriction of P to X*. Let
Ox~(L) be the sheaf of modules over the structure sheaf Ox« generated by local
sections of L. Then we have a natural sheaf isomorphism Ox+(L) 2 Ox- ®¢ L,
which is given by the correspondence I'(U,Ox+) 3 ¢ +— ¢ ®@h € I'(U,Ox+ @ L)
for any sufficiently small open set U C X* and a branch h of T'(u)~! over U. Let
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us consider the short exact sequence of sheaves on X*:
d
0—C— Ox- = Q4. —0,

where QY. denotes the sheaf of holomorphic 1-forms on X*. Tensoring £ from
the right on this sequence, we have an exact sequence

0—L— Ox0c L QL. ®c £ — 0. (1)

Here the operator d ® 1 is a canonical connection in the sense of [5, I, Prop.
2.16]. We set Q4. (L) = Q%. ®0,. Ox~(L). Then the following diagrams are
commutative:

Ox-®c L —2215 QL. ®c L

eoh 4 doah
~| E t !
— d
Ox+(L) —— Qk.(L) L 1
Therefore (1) is equivalent to the following exact sequence:
0— £ — Ox-(L) % QL. (L) — 0. (2)

For an open set U C X* and a section ¢ € I'(U, Q%.. (L)) (where p is 0 or 1, and
0%. = Ox-), there is a section ¢ € I'(U, Q%. (P|X*)) such that ¢ = ¢ - T1|U,
where T3 |U is a branch of T; defined on U. Then we have a sheaf isomorphism

O (PIX™) = Q% (L) (p=0,1) b o=9-T
such that the following diagram is commutative:

Ox-(P|X*) —Y— QL. (P|X*)

=| |=

Ox-(L) ——  Qh.(D)

where Vi = dp + pd(logTy) and V2 = 0. Note that Vh; = 0 for any branch hy
of Ty (u)~t. Then the exact sequence (2) is equivalent to the following:

0— £ — Ox-(P|X*) - Qk.(P|X*) — 0,

Since, as is well-known, H9(X*, Q% (P|X*)) = 0 for p > 0 and ¢ > 0, it follows
that HP(X*, L) = Hf . (Q2%.(P|X*), V). Then we have

Lemma 1.1. H?(X* £) = 0 if p # 1. Therefore dim H'(X*,£) =n + 2g — 2.
Proof. Obviously, H?(X*,L£) = HE,(Q%.(P|X*),V) = 0 if p > 2. Note that

HOX* L) =2 {f € ['(X*,0x-(P|X*)) | Vf = 0}. It is also obvious that, if a
section f € I'(X*, Ox~(P|X™*)) satisfies Vf = 0, then f = 0.
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Let £%. be the sheaf of complex-valued C* forms of total degree p on X*.
Replacement of the sheaf QF., by £%. in the above argument is valid, and gives
us the following exact sequence on X*:

0— £ — % (P|X*) -5 EL.(P|X*) — 0,

where E%. (P|X*) = £%. @gy, E%- (P|X*). Let D = 371, px be a reduced divisor
on X. Let Q% (D) be the sheaf of p-forms over X with logarithmic pole along
D ([10]). Since X is one-dimensional, we have by definition Q% (D) = Ox and
QL (D) = Q% (D). We have inclusion of sheaves over X: Q5 (D) C j.Q%. C
J+E%., where j denotes a natural inclusion mapping of X* into X. We set
Q5 (D)(P) = Q% (D) ®o, Ox(P). Since j.0%. ®o, Ox(P) = j,.0%.(P|X*)
and j.E%. ®gq EY(P) = j.E%.(P|X*), we have inclusion of sheaves over X:
Q% (D)(P) C j.O%.(P|X*) C j.&%.(P|X*). Let us consider a complex of sheaves
of logarithmic forms:

(Q%(D)(P),V) : Ox(P) V5 Q&(D)(P) — 0.

Then the next lemma follows immediately from [5, IT, Cor. 3.14] (for an elementary,
analytical, direct proof of it, see [13]).

Lemma 1.2. Two complexes of sheaves over X, (Q% (D)(P), V) and (j.E%. (P|X*), V),
are quasi-isomorphic to each other.

By taking global section functor we have

Corollary 1.3. H?(X*, L) 2 HP(X,Q%(D)(P), V), where H denotes a hyperco-
homology.

§2 Logarithmic Cech-de Rham complex and spectral sequence

The rest of this paper is devoted to investigating the structure of the non-
vanishing cohomology group H(X* £) = H(X,Q%(D)(P),V). To this end
we study the spectral sequence associated to the hypercohomology. Note that
Q% (D) = Ox and Q% (D) = QL (D). Let U = {U;}; be an open covering of X.
Let us consider the following double complex:
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where § denotes the coboundary operator satisfying 6V = V4. The total differ-
entiation operator A is defined to be A = § + (—=1)?V on C?(U,Ox(P)). For
p > 0 we set KP = CP(U,Ox(P)) & CP~HU, Q% (D)(P)), where C~1 = 0. We
set K(U) = @2 KP. Since A(K?) ¢ KP*! and A? = 0, the pair (K(U),A) is a
complex. By the definition of hypercohomology (e.g. [3]), we have

HP = HY(X, Q% (D)(P). V) = limy H” (K (1), A),
u

where H?(K(U), A) = Ker[K? =5 K7*1]/Im[K?~" =5 K?] and lim means the

inductive limit taken with respect to refinements of open coverings of X. By
setting Ko = K(U) and K, = ®52,CP(U, Q2 (D)(P)), we introduce a filtra-
tion of K(U): K(U) = Ko D K; D 0. The spectral sequence E,(U) associ-
ated to the filtered modul K (i) is given as follows: EY(U) = H(K,/Kp11) =
Hs(920CI(U, Q5 (D) (P)) = @2 HI(U, Q% (D)(P)) and the other E2(U) (r > 2)
are given inductively. The limit F, = limE (U) is also a spectral sequence and

abuts to the hypercohomology HP. We have EY = @2 HY(X, Q% (D)(P)) and
EY = H1(X, Q% (D)(P)). Note that EY? =0 (p > 1)

Lemma 2.1. Assume that the line bundle P has the first Chern class ¢;(P)
but is not holomorphically trivial. Then E; = E,. Namely, we have F
HY(X,0x(P)), BY = HO(X,QL(D)(P)), and EZf = 0 if (p,q) # (1,0),
Moreover we have dim E% = g — 1 and dim B0 =n + g — 1.

=0,
O:
o0
0,1).

Proof. Obviously EY! = H9(X,0x(P)) = 0if ¢ # 1 (cf. [4], p.74). By Riemann-
Roch theorem we have dim B! = dim H'(X, Ox(P)) = g— 1. Since the divisor D
is effective, by Kodaira vanishing theorem, we have F1¢ = H(X, Q% (D)(P)) =0
if ¢ > 1. Note that Q% (D)(P) = O(K + [D])(P), where K is the canonical class
and [D] denotes the line bundle associated to the divisor D. Since ¢ (K + [D]) =
29 — 2 + n, it follows ([4], p.111) that dim F{° = dim H°(X, QL (D)(P)) = (29 —
24n)—(g9—1)=g—1+n. Therefore £y = E,

Lemma 2.2. Assume that the line bundle P is holomorphically trivial: P = 1.
Then E> = E. Namely, we have E9! = H'(X,0y), EY = HO(X, Ql x(D))/C -
V(1), and EP4 = 0 if (p,q) # (1,0),(0,1). Moreover we have dim EY! = g and
dmEL =n+g-2.

Proof. Let us consider the complex E? ~, E!% If ¢ = 0, this is turned to
HO(X,0x) —~» HO(X,Q%(D)). We have HO(X,0x) = C. If f € C satisfies
Vf =0, then f = 0. So we have ES° = 0. Moreover, obviously we have Fi° =
HY(X,04(D))/C -V(1). If ¢ = 1, by Kodaira vanishing theorem, we have F{! =
HY(X, Q}((D)) = 0. So the complex above is turned to a trivial one: EY! =

H(X,0Ox) ~, 0 from which it follows that ES' = H'(X,Ox) and E}! = 0. If
q > 2, we have E E%q = 0 similarly by the vanishing theorem, from which it
follows that qu Elq = 0. Consequently we have Fy = E.
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83 Deligne’s resolution

From now on we assume that n > max{1,2g—2}. Let us investigate the vector

space EO further. We prove the following

Lemma 3.1. We have the isomorphism

1%

V HO(X,0x(D)(P)) + H(X, Q% (D)(P))

Proof. Let us consider the resolution of the sheaf Ox (P) by Deligne [5, II, Prop.

3.13]:

v Q% (2D)(P) v
0— Ox(P) — Ox(D)(P) — W — 0,

where V' is the mapping induced by V. Since n > 2g — 2, it follows by Serre
duality that H'(X,Ox(D)(P)) = 0. Therefore the short exact sequence above

implies the exact sequence of cohomology groups:

0 — H°(X, Ox(P)) — H°(X,Ox(D)(P))
Q% (2D)(P)

v’ 1
—— H° (X, OL(D)(P) > — HY(X,0x(P)) — 0,

from which we have the isomorphism

o+ QL2D)(P)
" <X’ 0L (D)(P) )

H'(X,0x(P)) = V' HO(X,Ox(D)(P))”

Since H'(X, QL (D)(P)) = 0 by Kodaira’s vanishing theorem, we have

0 (X Q§(<2D><P>) . HO(X, 94 (2D)(P))
Q% (D)(P) HO(X, Q (D)(P))
Moreover, by this isomorphism, we may identify the mapping
QL (2D)(P)
V' : H(X,0x(D)(P)) — H° (X, X)
o)) Q% (D)(P)
with the composition

v

HO(X,0x(D)(P)) %+ H (X, 0% (2D)(P)) — H(X, Q% (2D)(P))

Then we have

VH’(X,0x(D)(P))
VH(X,0x(D)(P)) N H(X, Q% (D)(P))
~VH(X,0x(D)(P)) + H°(X, Q% (D)(P))
B HO(X, Q% (D)(P))

V'H(X,0x(D)(P)) =

HO(X, Q% (D)(P))
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Substitution of (4) and (5) into (3) gives us the desired formula, which proves
Lemma 3.1.

84 Basis of cohomology group

For each p the hypercohomology group HP inherits a filtration from the cor-
responding filtered module KP. Especially in the case where p = 1 we have
H! = H) > H} D 0. According to the general theory of spectral sequences
we have G,(H') = EL:!'"P  that is, we have H}/HI = Go(H') = EJ!, H} =
G1(H') = EX0. Combining the results of Lemmas 2.1, 2.2 and 3.1, we arrive at
the following theorem:

Theorem 4.1. We have the isomorphism H'(X*,£) = EQ! @ E!9, where,
(i) if P is topologically trivial but not holomorphically, then

EY = H°(X, Q% (D)(P)),

o H(X, 0 (2D)(P)) |
> VH(X,0x(D)(P)) + H(X, Q% (D)(P))’

(ii) if P is holomorphically trivial, then
BY = H"(X,Qx(D))/C-V(1),

201 H(X, QL (2D))
>~ VHO(X,0x(D)) + H (X, QL (D))’

According to this theorem, we can choose a basis of H'(X*, L) as follows:

Example 1. Assume that P is topologically trivial but not holomorphically. We
have H(X, Q% (P)) c H°(X,Q4%(D)(P)). By Riemann-Roch theorem and Serre
duality we have dim H°(X, Q% (P)) = g—1. Let wy,...,wy—1 be 1-forms holomor-
phic on X with values in P which form a basis of H(X, Q% (P)). We denote by o
(1 <k < n) al-form holomorphic on X —{py} with values in P which has a unique
pole of order 1 at py. Then n+g—1 1-forms wy,...,wg—1,01,...,0, form a basis
of EX0. Let 7 (1 < k < n) be a 1-form holomorphic on X — {py.} with values in P
which has a unique pole of order 2 at pg. Since dim E%} = g—1 < n, g—1 1-forms
Ti,...,Tg—1 which are not in V H(X,Ox(D)(P)) + H°(X,Q%(D)(P)) define a
basis of E!. Therefore n + 2g — 2 1-forms wy, ... JWg—1, 01y s Oy Tly e vy Tg—1
define a basis of H*(X*, L).

Ezample 2. Assume that P is holomorphically trivial. We have H°(X, Q%) C
HY(X,0% (D)) and dim H°(X,QY) = g. Let wi,...,w, be 1-forms holomorphic
on X which form a basis of H°(X,Q%). Let wy,; be a 1-form holomorphic on
X — {pg,pi} (k # 1) and having poles of order 1 at py and p; with residues +1
and —1 respectively. Then n 4 g — 1 1-forms wi, ... ,wq, w12,W23, W34, ..., Wn—1,n
form a basis of H(X, Q% (D)). Since V(1) = Zz;ll(ml + o M)Wk k1, M+
g — 2 1-forms wy, ..., wy, w12, W23, W3d, - - - ,Wn—2,—1 define a basis of E10. Let 7
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(1 < k < n) be a 1-form holomorphic on X — {p;} which has a unique pole of

order 2 at py. Since dimEY = g < n, g 1-forms 7,...,7, which are not in
V HY(X,0x (D)) + H°(X, Q% (D)) define a basis of EY!. Therefore n +2g —2 1-
fOI‘mswl,...,wg,wlg,w23,W34,...,wn_27n_1,7'1,...,Tg define a basis Ole(X*,[:).

85 Genus one case

In this section we consider the case where X is a one-dimensional complex torus:
X =C/(Z+7Z). Let n,n’ be integers such that 2 <n <n'. Let ag, b (1 <k <
n') be real numbers, ¢ (1 < k < n) complex numbers but not integers, and ¢
(n+1 < k < n’) non-zero integers. We assume that > ;_, ¢; = ZZ/:n Lk = 0.
We also assume that (ay,br) (1 < k < n), regarded as elements of R?/Z?, are
different from each other. Let ¢; (1 < k < n) be the point defined by —axT — by
on X. Then we have ty # ¢; if k #1. We set D = {t1,...,t,}, and X* = X — D.
Note that the point ¢ is a unique zero of the theta function 6,, p, (u,7) on X
([9]) We set Tl(u) = HZ:I aakubk (uvT)Ckv T2(u) = szn—k—l eak,bk(uﬂT)Ckv and
T(u) = Ty (u)To(u). Then we have

Ty (u+ 1) = e2milarerttanca)y (y),
Ty(u+7) = e 2rirest 4Ty (u),
Ty(u+1) :eQwi(anJrlcn,+1+“'+an/cn/)TQ(U),
Ty(u+ 1) = 2milnmacntrttbuen )Ty (y),

Let L be the locally constant sheaf on X* defined by the one-dimensional represen-
tation of the fundamental group 7;(X*,*) by the multivalued function 7T'(u)~!.
Let P be the holomorphic line bundle on X having T5(u)~! as a meromorphic
global section. We have ¢;(P) = 0. Then Theorem 4.1 is reduced to the following

Corollary 5.1. (i) If P is not holomorphically trivial, then H'(X*, £) = H°(X, Q% (D)(P)),
and HP(X*,£) =0 (p # 1). We have dim H°(X, Q% (D)(P)) = n.

(i) If P is holomorphically trivial (i.e., P = 1), then H*(X*, £) = (H°(X,Q%(D))/C - V(1))®
HY(X,0x), and HP(X*,L) = 0 (p # 1), where V is defined by Vo = dp +

¢ d(logTy) for any differential form ¢. We have dim H°(X, Q% (D))/C - V(1) =
n—1and dim H'(X,0x) = 1.

Remark. This corollary is already proved in [8] by applying Mittag-Leffler theorem
in the complex analytical theory on Riemann surfaces.

Let o(u) be a meromorphic function with a unique pole at t; € D of order
2. Then the non-zero cohomology class [p(u)du] in H*(X,Ox) defined by the
1-form p(u)du € I'(X*,QL.) forms a basis of H'(X,Ox). Therefore the coho-
mology classes forming a basis of H°(X, Q% (D))/C - V(1) and the cohomology
class [p(u)du] in H*(X*, £) defined by p(u)du form a basis of H*(X*, L).
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