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Efficient Scattering Analysis of Arbitrarily Shaped Local Defect in
Diffraction Grating

Jun-ichiro SUGISAKA†a), Takashi YASUI†, and Koichi HIRAYAMA†, Members

SUMMARY We propose an algorithm for the scattering analyses of
gratings with various local defects based on the difference-field boundary-
element method (DFBEM). In the algorithm, the defect in the grating is
partitioned, and the DFBEM is sequentially applied for each defect sec-
tion. We validate the proposed algorithm by demonstrating its flexibility
for various defect topologies for a locally deformed grating.
key words: diffraction grating, boundary-element method, defect, scatter-
ing, numerical analysis

1. Introduction

Local defects in diffractive optical elements (DOEs) with
periodic groove patterns affect the optical properties. When
analyzing and detecting the defects in such DOEs, numeri-
cal simulation is an essential process. The analyses of de-
fective gratings require considerable calculation resources.
In general, the DOEs have wavelength-order grooves, and
incident waves illuminate over a large spatial area. Thus,
we must discretize the electromagnetic (vectorial) field dis-
tribution over a large spatial area with an interval that is less
than the wavelength. Bloch’s boundary conditions, which
reduce the analysis area to one period, cannot be applied be-
cause the periodicity in the DOE disappears owing to the
defects. So far, defective DOEs have been analyzed by
using a finite-difference time-domain (FDTD) method [1],
rigorous coupled-wave analysis (RCWA) [2], and finite el-
ement method (FEM) [3]. Several unique methods for the
analyses of defective grating structures have also been pro-
posed [4], [5].

In our previous work, we have developed a difference-
field boundary-element method (DFBEM) [6]. The field for
the defective DOE (called the total field) is decomposed into
a base field (a field for a nondefective structure) and a dif-
ference field. The base-field component is easily found by
solving a wave equation with Bloch’s boundary conditions.
On the other hand, the difference-field component is found
by solving boundary-integral equations (BIEs). So far, we
have derived BIEs for three types of defects: (I) a projection
defect (e.g., the air region outside of the grating is partially
replaced by the substrate material), (II) a crack defect (e.g.,
the substrate region inside of the grating is partially replaced
by air), and (III) a buried-pillar defect. However, the BIEs
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depend on the defect topology; thus, we must derive BIEs
for other defect topologies. It is impractical to derive BIEs
every time when we analyze the various defective DOEs.

In this paper, we propose another approach for the anal-
yses of various defect types; the defect is partitioned into
sections that belong to either defect-type (I), (II), or (III)
and sequentially apply the DFBEM to each defect section.
We describe the calculation method in the following section
by showing an analysis of a locally deformed grating.

2. Numerical Method and Demonstration

The cross sections of the original (periodic) grating and the
locally deformed grating are shown in Figs. 1 (a) and 1 (b),
respectively. The cross section is in the x − y plane, and
the structure along z axis is uniform. The refractive indices
inside and outside the grating are 1.5 and 1.0, respectively.
The grating period T , groove depth, and groove width were
set to 3.5λ, 0.3T , and 0.5T , respectively. The parameter λ is
the wavelength of the incident wave. The incident wave is a
plane wave of p-polarization propagating in the direction of
−45◦.

We label the integral paths and region around the de-
fect as shown in Fig. 2 (a). C11 and C12 are the surface of
the original grating, and C21 and C22 are the surface of the
deformed grating. The filled circles indicate the boundary-
element nodes. The node positions on C21 and C22 are listed
in Table 1. These boundaries partition the defect into two
sections (S31 and S32). In the following process, these two
defect sections are sequentially added to the periodic grat-
ing, and the field distribution is updated by using the DF-
BEM.

Fig. 1 Cross sections of (a) the original periodic grating and (b) the lo-
cally deformed grating.
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Fig. 2 (a) Integral paths of the deformed grating discretized by boundary
elements. The numbers 1, 16, and 31 indicate the node number listed in
Table 1. (b) Integral paths for adding the S31 defect section. (c) Integral
paths for adding the S32 defect section.

Table 1 Positions of the element nodes on C21 and C22

node x/T y/T node x/T y/T
1 0.4577 0.3000 17 0.2361 0.1314
2 0.4461 0.2871 18 0.2229 0.1216
3 0.4338 0.2745 19 0.2108 0.1116
4 0.4224 0.2624 20 0.1992 0.1010
5 0.4113 0.2515 21 0.1876 0.08995
6 0.3982 0.2399 22 0.1760 0.07861
7 0.3845 0.2284 23 0.1649 0.06753
8 0.3706 0.2173 24 0.1536 0.05644
9 0.3562 0.2064 25 0.1412 0.04485
10 0.3420 0.1964 26 0.1281 0.03325
11 0.3268 0.1861 27 0.1162 0.02371
12 0.3106 0.1758 28 0.1031 0.01469
13 0.2961 0.1668 29 0.08918 0.007474
14 0.2812 0.1577 30 0.07577 0.002577
15 0.2649 0.1485 31 0.06160 0.0
16 0.2500 0.1399

In preparation, we calculated the base field, i.e. the field
for the original rectangular grating in Fig. 1 (a). Many nu-
merical methods such as the FDTD method, RCWA, FEM,
and BEM provide the field for the periodic structure. We
selected a method using a BEM with Bloch’s boundary con-
dition [7]. The grating surface was discretized by boundary
elements (constant elements) with element lengths less than
λ/12. We denote the field (the z component of the magnetic
field) distributions in S1 ≡ S10 ∪ S32 and S2 ≡ S20 ∪ S31 as
f (1)
1 and f (1)

2 , respectively. Fields of the grating at arbitrary
points, for example, distribution around the grating surface
and diffracted waves (far fields) correspond to f (1)

1 and f (1)
2 .

At least f (1)
1 and ∂ f (1)

1 /∂n (n represents the outward normal
direction on the boundary) on C11 and C12, f (1)

1 on C22, and
f (1)
2 on C21 must be obtained. These values appear in the

following BIEs as constant terms.
First, we added the defect section S31 to the periodic

grating. The defect section S31 corresponds to Pattern (I),
because the air region in S31 is replaced by the substrate
material. In the computation for Pattern (I) defect, we define
three regions S1 (inside of the grating), S2 (outside of the
grating), and S3 (inside of the defect). We also denote the
fields in S1, S2, and S3 as f (1)

1 + Δ f (1)
1 , f (1)

2 + Δ f (1)
2 , and

f (1)
3 . BIEs for Pattern (I) consist of three integral paths; C0,

C1, and C2. C0, C1, and C2 are defined as the boundary
between S1 and S2, the boundary between S1 and S3, and
the boundary between S2 and S3. As shown in Fig. 2 (b),
those regions and paths are defined as follows:

S1 =S10 ∪ S32, S2 =S20, S3 =S31,

C0 =C01 ∪C12 ∪C02, C1 =C11, C2 =C21.

We truncated the infinitely long path C0 at x = ±5.25T ,
because the integrand in the path integral on C0 converges
to zero at far distance.

The BIEs for Pattern (I) defect are written in Eqs. (14),
(15), and (20)–(23) in [6]. The constant terms of the BIEs
are given by the base field f (1)

1 and ∂ f (1)
1 /∂n on C1 and f (1)

2
on C2. The BIEs are numerically solved as a set of simul-
taneous equations. By solving the BIEs, we obtain Δ f (1)

1

on C0, f (1)
3 on C1, and f (1)

3 on C2 and their derivatives with
respct to n. The fields Δ f (1)

1 , Δ f (1)
2 , and f (1)

3 at other po-
sitions are given by the integral expressions for Pattern (I)
(Eqs. (24)–(26) in [6]), which are defined by the path in-
tegrals of the solution of the BIEs and free-space Green’s
functions on C0, C1, and C2. For the following DFBEM pro-
cess, we must compute f (1)

1 + Δ f (1)
1 and ∂( f (1)

1 + Δ f (1)
1 )/∂n

on C12 and f (1)
1 + Δ f (1)

1 on C22. The difference-field com-
ponents Δ f (1)

1 and ∂Δ f (1)
1 /∂n on C12, which is a part of C0,

are included in the solution of the BIEs. The difference-field
component Δ f (1)

1 on C22 is given by the integral expressions.
Next, we regarded the total field as a new base field.

Then, we added the remaining defect section S32. This de-
fect topology corresponds to Pattern (II), because S32 is a
part of the substrate region and is replaced by air. The re-
gions S1, S2, and S3 are defined similarly to those for Pattern
(I). We denote the fields in S1, S2, and S3 as f (2)

1 + Δ f (2)
1 ,

f (2)
2 + Δ f (2)

2 , and f (2)
3 . f (2)

1 and f (2)
2 are the new base-field

components, which are defined by

f (2)
1 = f (1)

1 + Δ f (1)
1 in S10, (1)

f (2)
1 = f (1)

3 in S31, (2)

f (2)
2 = f (1)

2 + Δ f (1)
2 . (3)

The BIEs for Pattern (II) consist of path integrals on three
boundaries; C0 (between S1 and S2), C1 (between S2 and
S3), and C2 (between S1 and S3). As sketched in Fig. 2 (c),
those regions and paths were defined by

C0 =C01 ∪C21 ∪C02, C1 =C12, C2 =C22,

S1 =S10 ∪ S31, S2 =S20, S3 =S32.
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Fig. 3 Two sequential procedures for obtaining a deformed-groove struc-
ture: (a) Flow 1 and (b) Flow 2. These procedures differ in the order of
adding two defect sections.

We truncated the infinitely long path C0 at x = ±5.25T .
The BIEs for Pattern (II) defect is written in Eqs. (31),

(32), and (37)–(40) in [6]. The constant terms also consist
of f (2)

1 and ∂ f (2)
1 /∂n on C1 and f (2)

1 on C2. These values are
given by the preparation process and the previous DFBEM
process. The BIEs give the solution Δ f (2)

1 on C0, f (2)
3 on

C1, Δ f (2)
3 on C2, including their derivatives with respect to

n. The fields at other points are given by the integral expres-
sions for Pattern (II) (Eqs. (41)–(43) in [6]). The obtained
total field corresponds to the field for the deformed-groove
grating [Fig. 1 (b)].

In the above process, the defect sections were added
to the periodic grating by Flow 1 in Fig. 3 (a). Even if the
two defect sections are added in a different order (Flow 2),
as shown in Fig. 3 (b), we must obtain identical results. We
next calculated the field distribution by Flow 2. In Flow 2,
we first added the defect section S32 to the periodic grating
and solved the BIEs for Pattern (II) with the following defi-
nition:

C0 =C01 ∪C11 ∪C02, C1 =C12, C2 =C22,

S1 =S10, S2 =S20 ∪ S31, S3 =S32.

Then, we added the defect section S31 and solved the BIEs
for Pattern (I) with the following definition:

C0 =C01 ∪C22 ∪C02, C1 =C11, C2 =C21,

S1 =S10, S2 =S20 ∪ S32, S3 =S31.

The resultant field distributions obtained by Flow 1 and
Flow 2 are shown in Figs. 4 (a) and 4 (b), respectively. These
field distributions are normalized by the amplitude of the in-
cident wave. The shapes of the wavefronts for Flow 1 and
Flow 2 agree well overall. In Fig. 4 (c), we plot the error be-
tween the total fields of Flow 1 and Flow 2 (absolute value of
the difference). The error is at most 1.160 × 10−2 (0.4468%
of the maximum value of the total field); the field distri-

Fig. 4 Total field distributions for the deformed-groove structure calcu-
lated by (a) Flow 1 [Fig. 3 (a)] and (a) Flow 2 [Fig. 3 (b)]. The error of these
field distributions is plotted in (c).

butions obtained by Flow 1 and Flow 2 are in good agree-
ment. This error is due to the error in the integrands (the
fields at the boundaries) of the integral expressions. For a
smaller error, more accurate expressions of the fields at the
boundaries are necessary by using finer (shorter) or higher-
order elements. The convergence of the error between Flow
1 and Flow 2 is shown in Fig. 5. The error is the differ-
ence in the total fields for Flow 1 and Flow 2 at the posi-
tion (x, y) = (0.16T, 0.033T ). This position belongs to S31,
where we observed larger error than that in the other regions
in Fig. 4 (c). The lateral axis N indicates that the lengths of
the boundary elements were set so as to be less than λ/N.
The result shows that the error between Flow 1 and Flow 2
exponentially decreases as the element length λ/N becomes
shorter.

Next, we evaluated the error at the far field for the
deformed-groove grating between Flow 1 and Flow 2. The
difference field at a long distance away from the defect is
given by the integral expressions of the DFBEM by replac-
ing the Green’s function with its asymptotic form at far dis-



BRIEF PAPER
79

Fig. 5 Convergence of the error in the total field at (x, y) =

(0.16T, 0.033T ) between Flow 1 and Flow 2. The lengths of the bound-
ary elements are set so as to be less than λ/N.

Fig. 6 The far-field distribution for the deformed-groove structure in
Fig. 1 (b). The base-field component [far field for Fig. 1 (a)] (cross marks)
was defined by the amplitude of diffracted plane waves normalized by that
of the incident wave. The difference-field components [the difference in
the far fields between Fig. 1 (a) and 1 (b)] (solid lines for Flow 1 and open
circles for Flow 2) were computed by the integral expressions of DFBEM,
and normalized by the maximum value in the result for Flow 1.

tance. The far field obtained by the asymptotic form of the
Green’s function becomes a function of the direction from
the defect. We computed the far field of the transmission
side (S10) with angles from −180◦ to 0◦ in 1◦ increments.
The total field for the deformed grating in S10 is expressed
as f (2)

1 + Δ f (2)
1 = f (1)

1 + Δ f (1)
1 + Δ f (2)

1 . The difference-field
components, Δ f (1)

1 +Δ f (2)
1 , for Flow 1 and Flow 2 are plotted

in Fig. 6 with solid lines and open circles, respectively. They
are normalized by the maximum of the difference field for
Flow 1. The base-field component, f (1)

1 corresponds to the
plane waves diffracted from the original periodic grating.
These amplitude normalized by that of the incident wave
is plotted in Fig. 6 with cross marks. The base-field com-
ponent and difference-field component were plotted sepa-
rately because the base field is defined by the amplitude of
the diffracted plane wave, whereas the difference-field com-
ponent is defined by the integral expression. The difference
fields obtained by Flow 1 and Flow 2 were very close. We
found the maximum error at −50◦, which is 0.348% of the
maximum irradiance of the difference field at −53◦. This rel-
ative error is as small as that in the field distribution around
the defect.

Finally we validated the proposed DFBEM algorithm
by comparing with the standard BEM. The standard BEM

Fig. 7 Convergence of the error in the total field (absolute of the differ-
ence in two complex values) at (x, y) = (0.16T, 0.033T ) between DFBEM
(Flow 1) and the standard BEM. The lengths of the boundary elements are
set so as to be less than λ/N.

cannot be applied to the deformed grating [Fig. 1 (b)] with
a plane-wave incidence because infinitely long path integral
along the grating surface is necessary. Thus, we reduced the
width of the incident wave with a window function [8]:

g(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, (0 ≤ |x| < W
2 ),

cos2
[ |x|−W/2

2(D−W)π
]
, ( W

2 ≤ |x| < D − W
2 ),

0, (D − W
2 ≤ |x|),

(4)

where D = 18T and W = 16T . We assumed that the fields
on the integral paths C01 (x ≤ −10.5T ) and C02 (10.5T ≤ x)
are zero, and therefore truncated those integral paths at x =
±10.5T . Refractive indices in S10, S31, S20, S32 were set to
1.5, 1.5, 1.0, and 1.0, respectively.

Calculation by DFBEM for comparison was also per-
formed with the plane wave truncated by g(x) and integral
paths truncated at x = ±10.5T for both the base field and
the difference field. The base field is given by setting the
refractive indices in S10, S31, S20, S32 to 1.5, 1.0, 1.0, and
1.5. After that, the defects were added in the sequence of
Flow 1.

The convergence of the total field at the observation
point (x, y) = (0.16T, 0.033T ) is plotted in Fig. 7. As the
element length becomes shorter, the error between DFBEM
and the standard BEM exponentially converged to zero.

3. Conclusion

For analyses of various defect structures in gratings, we have
developed an algorithm with defect partitioning and the se-
quential application of a DFBEM for different defect pat-
terns. The proposed algorithm was validated by the conver-
gence of the error between solutions for two different defect-
addition sequences, and by the convergence of that between
the proposed algorithm and the standard BEM. Therefore,
DFBEM provides a unique solution not depending on the
defect-addition sequence, and also provides a rigorous so-
lution that satisfies the wave equation and boundary condi-
tions on dielectric interfaces as well as the standard BEM.
In this demonstration, the sequential application of the DF-
BEM to the projection defect (to add a dielectric to the grat-
ing surface) and the DFBEM to the crack defect (to remove
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a dielectric from the grating surface) enables us to freely
deform the grating surface. In general, the defects can be
partitioned into more than two sections, and the DFBEM
can then be applied to each section. This process is help-
ful for expressing and analyzing complicated local defects
such as buried grooves, rounded-edge grooves, local posi-
tional shifts in the grooves, rough grooves, mesa-structured
grooves, and buried pillars on deformed grooves.
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