
Proc. IUTAM symp. on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials, 
Marrakech, Oct. 2002 

  

THREE-DIMENSIONAL STRUCTURES OF THE 
GEOMETRICALLY NECESSARY 
DISLOCATIONS GENERATED FROM 
NON-UNIFORMITIES IN METAL 
MICROSTRUCTURES 

Tetsuya Ohashi 
 
Kitami Institute of Technology,  
Koencho 165, Kitami, 090-8507, Japan 
E-mail: ohashi@newton.mech.kitami-it.ac.jp 

 
Abstract: Slip deformation in microstructures of f.c.c. type metals are analyzed by a 

finite element technique and the density distribution of the geometrically 
necessary dislocations is evaluated.  Results show development of wall like 
structure of dislocations in some of single crystals and also dislocation half 
loops within grains and their pile up at grain boundaries in multiple crystal 
models.    

Key words: single and multiple crystals, microstructure, crystal plasticity analysis. 
 
 
1. INTRODUCTION 
 
     Development of dislocation structures during deformation has long 
been studied.  Two types of dislocation densities can be evaluated; the 
statistically stored (SS) and the geometrically necessary (GN) dislocations 
(Ashby, 1970).  Density increment of the SS dislocations is related to the 
increment of plastic shear strain and the mean free path of moving 
dislocations, while the density of the GN ones is related to the spatial 
gradient of the plastic shear strain on slip systems.  Scale dependent 
characteristics of the GN dislocations have been attracting much attention in 
the research field of solid mechanics and some models for scale dependent 



 
crystal plasticity constitutive laws were proposed (for example, Fleck, et al., 
1994).  On the other hand, the structure of the aggregate of the GN 
dislocations is less studied, although some typical structures such as the 
Orowan loops formed around precipitates or piled up dislocations at grain 
boundaries result from non-uniform deformation and thus, be understood as 
the ones made up of the GN dislocations. 
     In the present paper, we analyze slip deformation in single and 
multiple crystals of the face centered cubic type metals and evaluate edge 
and screw components of the GN dislocations.  Their density norm and 
direction vector of the dislocation line segments are also deduced from the 
edge and screw components.  After this process, we can reconstruct images 
for three-dimensional structures of the GN dislocations in deformed 
microstructures.   
 
2. BASIC EQUATIONS 
 

Slip deformation is supposed to take place on {111} crystal plane and 
in <110> crystal direction.  The activation condition of the slip system n is 
supposed to be given by the Schmid law; 
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where, ijσ and ( )nθ denote the stress and the critical resolved shear stress on 

the slip system n, respectively.  The slip plane normal ( )n
iν and the slip 

direction ( )n
ib  define the Schmid tensor ( )n

ijP .  Quantities with dot indicate 
increments of them.  Increment of the critical resolved shear stress is 
written as follows; 
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Here, T  and ( )mγ denote the increments of temperature and the plastic 
shear strain on slip system m, respectively.  If the deformation is small and 
rotation of the crystal orientation is neglected, the constitutive equation is 
written as follows (Hill, 1966, Ohashi, 1987, 1994), 
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e
ijklS , α, and klδ  denote elastic compliance, thermal expansion coefficient 

and the Kronecker’s delta, respectively.  Summation is made over the active 
slip systems.   

Let us suppose that the critical resolved shear stress is a function of 
the Bailey-Hirsch type and given by the following equation (Ohashi, 1987, 
1994); 
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where, 0 ( )Tθ  denotes the lattice friction term, which is, in general, 

dependent on temperature, and ( )m
aρ  denotes the dislocation density that 

accumulate on the slip system m.  Reaction between dislocations on slip 
systems n and m defines the magnitude of the interaction matrix ( )nmΩ .  In 
the present study, we choose parameters to express pseud-isotropic 
hardening character for every slip system.   

The dislocation density on the slip system n is given by the following 
equation; 
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where, ( )n

Sρ  and ( )n
Gρ  denote the densities of the SS and GN dislocations, 

respectively.   
     Increment of the SS dislocations is given as follows; 
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where, ( )nL  is the mean free path of dislocations on slip system n and, in 
this paper, we use the modified Seeger's model for it; 
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where, Λ is a material constant and γ** denotes the plastic shear strain when 
multiple slip start. 
     The edge and screw components of the geometrically necessary 
dislocations are obtained from the strain gradients (Ohashi, 1997); 
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Here, ξ and ζ denote directions parallel and perpendicular to the slip 
direction on the slip plane, respectively.  Norm of two components defines 
the scalar density for the GN dislocations, 
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Evaluation of the edge and screw components for the GN dislocations 
enables one to calculate the tangent vector ( )nl  of the dislocation line 
segments (Ohashi, 1999); 
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Data for GN dislocations are obtained for each finite element and then, we 
can draw line segments of dislocations in three-dimensional space.  We will 
draw one line segment at the center of each element.  Direction of the line 
segment is given by eq. (11) and its length and thickness is determined by 
the density norm ( )n

Gρ . 

     Numerical parameters s and g in the equation (6) are introduced to 
control the complexity of the simulation.  In the present paper, we suppose 
s=1 and g=0 for simplicity and the strain hardening coefficients in equation 
(3) are given by the following equation; 
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3.  RESULTS AND DISCUSSION 
 
3.1 Single crystals with non-uniform initial dislocation 
      densities 
 
     Let us examine tensile deformation of single crystal bars where 
distribution of the initial dislocation densities is not uniform.  Figure 1 
shows the geometry of the specimen employed for the analysis.  The 
specimen is divided into 8x30x8 finite elements of composite type with eight 
nodes and the top surface is subjected to a uniform displacement in y 
direction, while the bottom surface is fixed.  Initial dislocation densities on 
twelve slip systems in each elements are decided by a normally distributed 
deviates with the mean value ρ0 = 109 m-2.  Crystal orientation of specimens 
#1 - #3 is the same and positioned so as that the Schmid factor of the 
primary slip system is at the maximum value of 0.5.  Slip plane and slip 
direction for the primary system in the specimens #1 - #3 are schematically 
shown in Figure 1.  While, the orientation of the specimen #4 is very close 
to double slip orientation.  The standard deviations of the initial dislocation 
densities in the specimens #1 - #3 are 0, 0.1ρ0, and 0.25ρ0, respectively.  
The standard deviation for the specimen #4 is 0.1ρ0.   
     Figure 2 shows numerical results for the load-elongation curve.  In 
specimens #2 - #4, slip on a secondary (conjugate) slip system superimpose 
after some amount of slip on the primary one and this causes decrease in the 
mean free path of the dislocations as shown in eq. (8) and result in the onset 
of the deformation stage II.  Duration of the stage I depends on the crystal 
orientation and the magnitude of the non-uniformity of the initial dislocation 
density.  Figure 3 compares density distributions of the GN and SS 
dislocations on the primary slip system in the specimen #3 when the average 
tensile strain is 4.625%.  Walls of GN dislocations, which consist mainly of 
edge type dislocations, develop in the direction perpendicular to the slip 
plane and extend as wide as the width of the whole specimen.  On the other 
hand, the distribution of the SS dislocations remains to be random, although 
the density is one order higher than that of GNDs.  Tri-axial stress field, 
which accompanies to non-uniform slip is supposed to be responsible to the 
generation of the long-range structure of GNDs. 
 
3.2 A multi-crystal plate of copper 
 
     Figure 4(a) shows the multi-crystal model we employed in this study.   
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Figure 3 Cross sectional views for the distribution of the geometrically 
necessary dislocations (a), and statistically stored ones (b) in the single 
crystal specimen #3, when the mean tensile strain is 4.625 %.

Figure 2 Load-elongation curves calculated for single 
crystal specimens #1 - #4.  The initial dislocation 
density for the specimens #2 - #4 is not uniform and 
given by normally distributed deviates.  See text for 
details.

Figure 1 Geometry of the 
single crystal specimen 
employed in this study.  
Dimensions are given in 
unit of m.µ
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Figure 2 Load-elongation curves calculated for single 
crystal specimens #1 - #4.  The initial dislocation 
density for the specimens #2 - #4 is not uniform and 
given by normally distributed deviates.  See text for 
details. 

Figure 1 Geometry of the 
single crystal specimen 
employed in this study.  
Dimensions are given in 
unit of µm. 

Figure 3 Cross sectional views for the distribution of the geometrically 
necessary dislocations (a), and statistically stored ones (b) in the single 
crystal specimen #3, when the mean tensile strain is 4.625 %. 
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Figure 4(a) Geometry of the 
multi-crystal model.  
Dimensions are given in m.
(b) Crystal orientation of 
grains 1-6.
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Figure 5(a)-(c): Distribution of plastic shear strain 
on the primary slip system when the average tensile 
strain is 5.3, 6.1, and 6.8 x10 , respectively.
(d)-(f) Density distribution of the geometrically 
necessary dislocations which correspond to the 
primary slip shown in (a)-(c).
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Figure 6 Dislocation segments in a thin foil in the 
grain 1.  The foil is parallel to the primary slip 
plane and its thickness is 0.4 m.  View direction 
of this figure and position of the foil is illustrated 
in Figure 4(a).

µ

Figure 4(a) Geometry of 
the multi-crystal model.  
Dimensions are given in 
µm. 
(b) Crystal orientation of 
grains 1-6. 

Figure 5(a)-(c): Distribution of plastic shear strain on 
the primary slip system when the average tensile 
strain is 5.3, 6.1, and 6.8 x10-4, respectively. 
(d)-(f) Density distribution of the geometrically 
necessary dislocations which correspond to the 
primary slip shown in (a)-(c). 

Figure 6 Dislocation segments in a thin foil in the 
grain 1.  The foil is parallel to the primary slip 
plane and its thickness is 0.4 µm.  View direction 
of this figure and position of the foil is illustrated in 
Figure 4(a). 



 
 
The model is made from six copper crystal grains and their orientations are 
determined by random numbers and exhibited in Figure 4(b).  All grain 
boundary planes are flat and positioned perpendicular to the x-y plane.  The 
specimen is divided into 4864 finite elements and uniform tensile 
displacement is given to the top and bottom surfaces.   
     Figure 5(a)-(c) show evolution of the plastic shear strain on the 
primary slip systems at three stages of deformation.  The first plastic slip 
takes place in the grain 1 near a grain boundary between the grains 1 and 2, 
although the slip at the interior of the grain 1 starts immediately after it and 
grows faster.  Slip deformation in the grain 1 induces slip deformation in 
the grains 2, 3 and 4, which start from grain boundary triple junctions.  
Figure 5(d)-(f) show distribution of GN dislocations.  Rather uniform 
accumulation of GN dislocations in the grain 1 is observed first, and then the 
density near grain boundaries gradually builds up.  To examine the structure 
of GN dislocations in more detail, we cut out a foil from the grain 1 and 
observe the structure.  The foil is schematically illustrated as a platelet in 
the grain 1 in Figure 4(a).  The foil is parallel to the slip plane and its 
thickness is 0.4 µm.  Figure 6 shows the line segments of GN dislocations, 
which are positioned within the volume of the foil.  Half loop shaped 
structure of dislocations is observed to expand from specimen surface and 
the grain boundary pile up of dislocations is also observed. 
 
4. SUMMARY 
 
     We analyzed plastic slip deformation in FCC type single- and multi- 
crystals and three-dimensional structure of the geometrically necessary 
dislocations were evaluated.  Results for single crystals showed a 
development of wall shaped structure of GN dislocations and fairly random 
distribution of SS dislocations.  GN dislocations in a multi-crystal model 
were depicted to emerge from specimen surface and grow in the shape of  
half-loops before they pile-up at grain boundaries. 
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