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Abstract.  Plastic deformation and dislocations accumulation in a steel alloy dispersed with 

vanadium carbide particles is numerically analyzed by a crystal plasticity finite element technique 

and work hardening characteristics are discussed.  Increment of dislocation density that contributes to 

work hardening is calculated from the mean free path of dislocations.  The mean free path is defined 

by the spacing of forest dislocations and the average spacing of dispersed particles.  Obtained yield 

stress and work hardening characteristics was close to that of experimental result, except that the 

value of work hardening rate was higher than that of experimental one.  

Introduction 

Dispersion hardening where fine particles are dispersed in metal matrix is a typical strengthening 

method of metals.  When hard particles are dispersed in the matrix, dislocations need to pass through 

them when metals deform by slip.  Yield stress and plastic flow stress level as well as the work 

hardening rate are increased, which is known as the Orowan mechanism.  So far, a number of  studies 

have been made on the Orowan mechanism and yield stress is successfully estimated from the 

spacing of dispersed particles.  After the movement of dislocations through particles, loops shaped 

dislocations [1] should theoretically be left around particles and the back stress that accompanies to 

the dislocation loops is considered to be the origin of work hardening.  In experiments, Orowan loops 

are often observed at an initial stage of plastic deformation.  However,  dislocations accumulation 

after some amount of plastic slip deformation consists of tangled structures between particles.  

Therefore, a further examination of dislocation accumulation and work hardening characteristics are 

needed. 

In this study, plastic deformation and dislocations accumulation in a steel alloy dispersed with 

vanadium carbide particles [2][3] is analyzed by a crystal plasticity finite element technique and work 

hardening characteristics are discussed. 

Crystal Plasticity Analysis 

We use a continuum mechanics-based crystal plasticity analysis code CLP and analyze plastic slip 

deformation.  Densities of the geometrically necessary (abbreviated as GN, hereafter) and 

statistically stored (abbreviate as SS, hereafter) dislocations are evaluated.   

Edge and screw components of the GN dislocation are defined from spatial gradient of plastic 

shear strain. 
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Here, b  and γ
(n)

 denote the magnitude of Burgers vector and the plastic shear strain on slip system n, 

respectively.  ξ and ζ denote directions parallel and perpendicular to the slip direction on the slip 

plane, respectively.  The density norm of the GN dislocation is defined by the following equation. 
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Increment of the SS dislocation density is calculated from the increment of shear strain and the 

mean free path of moving dislocations. 
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Here, L and D denote the mean free path of moving dislocation and a distance of dislocation 

annihilation. 

The mean free path is an average distance where the dislocations stop moving.  In this study, the 

distance is defined by the spacing of forest dislocations and the average spacing of dispersed particles, 

as follows.   
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Here, c* is a numerical factor of obstruction weight of moving dislocations.  w is the weight matrix 

which controls the contribution of SS and GN dislocations accumulated on the slip system m to the 

mean free path of moving dislocations on slip system n.  The value of w is 1 when the dislocations on 

the slip system m act as forest dislocations against the ones on slip system n, while w=0 when the 

dislocations on the m slip system are co-planar.  λ is the average spacing of dispersed particles and 

given by the distance of randomly dispersed particles on the slip plane subtracted by the diameter of 

particles [7]. 

The critical resolved shear stress for slip system n is given by the extended expression of the 

Bailey-Hirsch type model [6].   
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Here, the first term in the right hand side of eq.(5) stands for lattice friction stress for moving 

dislocations, the second term defines slip resistance of SS dislocations and the third term defines size 

effect of microstructure.  Here, Ω
(nm)

 is the interaction matrix between slip systems.  a is a numerical 

factor of the order of 0.1, μ denotes the elastic shear modulus and ρS
(m)

 denotes the density of SS 

dislocations accumulated on the slip system m.  cT and β are numerical factor for the moving 

dislocations and d is the representative length scale of microstructure.  The third term of dispersion 

strengthened alloy is the Orowan stress.  Therefore, cT and β are given 1 and d is equal to λ: the 

average spacing of dispersed particles. 

Analysis Model 

Fig.1 shows the geometry of the model employed.  Sphere shaped second phase is placed at the 

center of the cube shaped matrix.  Lateral dimension of the cube of 135.8 nm and the diameter of the 

particle of dp=39 nm are used in accordance with experimental data by Nakada et al [2][3].  With this 

dimensions, the volume fraction of the particles is Vf=1.24%.  For the purpose of comparison, another 

model with the lateral dimension of 101.2 nm and same diameter of particle of dp=39 nm was also 

made where the volume fraction was Vf=3%.  The average distance of randomly dispersed particles 

are 286.2 nm for the model with Vf=1.24% and 173.0 nm in the model with Vf=3%.  Crystal structure 

is body-centered cubic.  Crystal orientation is chosen so as that the normal to the primary slip plane 

and the slip direction make an angle of /4 to the y-axis.  Uniform tensile displacements are given on 

the surfaces perpendicular to the y-axis, while side surfaces are traction free.  Under this condition, 

the Schmid factor for the slip system is 0.5.  For the purpose of simplicity, we assume slip 

deformation only on the primary systems.   

Matrix and second phase of material are iron and vanadium carbide, respectively.  Table 1 shows 

material constants.  Lattice friction of iron matrix and vanadium carbide precipitate are decided as 

50MPa and 4GPa, respectively. 



 

 
Fig.1.   The geometry of the model for numerical analysis.  The diameter of particles is 39nm.  The 

slip direction and the slip plane of the primary slip system are shown. 
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Table 1  Material constans

iron VC

Elastic compliance

[×10
-11

m
2
/N]

0.7720 0.2325

-0.2850

Initial dislocations density [m
-2

] 24.0×10
9

-0.0512

0.9020 0.6369

Magnitude of Burgers vector [nm] 0.248 0.294

Lattice friction [MPa] 50 4000
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Fig.2.   (a) Nominal tensile stress-strain curves of models with Vf=1.24%, Vf=3% specimens and 

experimental result [3] and (b) change in average density of SS dislocations in the models with 

Vf=1.24% and Vf=3%. 

 



 

Results and Discussion 

Fig.2 shows the numerical results of the stress-strain relations with experimental result [3].  In the 

model with Vf=1.24%, deformation at an initial stage of deformation agrees very well with 

experimental one, but work hardening is higher than that of experimental one.  Yield stress of Vf=3% 

model is about 81MPa higher than that of Vf=1.24% model and plastic flow stress of Vf=3% model at 

nominal strain of 5% is about 191MPa higher than that of Vf=1.24% model.  That is, both yield stress 

and work hardening are higher in the model with higher volume fraction of secondary particle and 

this fact is consistent with existing theoretical and experimental results.  Fig.2(b) shows the evolution 

of the average density of SS dislocations plotted as against nominal strain.  Density of SS dislocations 

grows faster in the model of Vf=3% and this brings about the higher value of strain hardening. 

In the present model, the mean free path of moving dislocations is limited to the average spacing 

of dispersed particles and obtained work hardening characteristics was close to that of experimental 

one.  The average spacing of particles becomes smaller by increase of volume fraction and yield 

stress and work hardening are increased by the Orowan mechanism and dislocations accumulated. 

There were some discrepancies between the numerical and experimental results in the work 

hardening rate.  The reason for this is considered as follows.  In this study, we used the averaged 

values for diameter of particles and their spacing.  But in reality, the diameter and the spacing have 

distributions.  In that case, the increase of dislocation density is quicker in narrower space and this 

brings about a local work hardening there and requires an increase of stress, but plastic deformation 

will continue in another space where particle spacing is larger and the increase of dislocation density 

is lower.  In this way, plastic deformation is considered to expand from place to place without much 

increase in applied stress, and this will bring about a lower strain-hardening rate.  Details of this 

mechanism should be discussed further. 

Summary 

Slip deformations and macroscopic mechanical response of two-phase alloys with dispersion of 

fine particles were analyzed by a crystal plasticity finite element method.  The results obtained are 

summarized as follows. 

I. Scale dependent characteristics of the yield stress and strain hardening were successfully 

reproduced by an introduction of the extended Bailey-Hirsch type model for the critical resolved 

shear stress as well as the model for the dislocation mean free path where mean spacing of 

dispersed particles contribute. 

II. Numerical results for the yield phenomenon agreed very well with experimental results, while 

the strain hardening ratio was higher than that of experimental one.  This discrepancy was 

considered to come from the fact that present model consists of only one particle. 
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