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Abstract 

A passive walker can walk down a gentle slope powered only by gravity without 

any actuator and control. Its similarity to human gait implies that human walking may 

sufficiently utilize passive dynamics, and passive walkers have high energy efficiency. 

Therefore, study of passive walking contributes to an understanding of the mechanism 

of biped walking and to design and control of biped robots.   

  Stable passive walking can be realized under the condition of appropriate design, 

appropriate initial state and appropriate slope angle. However, it is difficult to 

stabilize passive walkers in variable environments, such as a variable slope with 

different slope angles and elastic coefficient. Therefore, addition of some stabilization 

control is necessary to stabilize the walking gait of passive walkers. Some researchers 

have focused on actuation of the hip, ankle and knee. However, most of these 

quasi-passive walkers can only walk on flat ground. In the previous study, it has been 

experimentally demonstrated that synchronization of the period of lateral motion TL 

with the period of swing leg motion TS is a necessary condition for stable 3D passive 

walking, which is used as a necessary stabilization condition and is named period 

stabilization condition in this research. In the next step, a mechanical oscillator 

actuated by a stepping motor has been mounted on a 3D passive walker with spherical 

feet, and can roll in the frontal plane to control TL and to synchronize TL into TS. The 

movement of the mechanical oscillator is always entrained into the lateral motion of 

the quasi-passive walker based on forced entrainment realized by Van der Pol 

oscillator, and the quasi-passive walker can be stabilized on flat ground. 

  However, the problems of excess or deficiency of input energy from the mechanical 

oscillator exist under uncertain ground conditions due to the determination method of 

the amplitude of the mechanical oscillator based on period stabilization condition. In 

order to solve the problem, This research proposes a gait stabilization method based 

on energy balance and examines the method numerically and experimentally under 

uncertain ground condition. In this stabilization method, the target path of the 

mechanical oscillator is determined based on energy balance and forced entrainment. 

The energy balance means that the input energy in periodic stable walking is 

transformed to the dissipation energy and the change in potential energy of the 

quasi-passive walker during one step. If energy balance is satisfied, the change in 

kinetic energy during one step is equal to 0, which means that the quasi-passive 

walker can keep periodic stable walking. The stabilization method based on energy 

balance has two advantages. First, since energy balance can be satisfied in different 

ground conditions such as downward and upward slopes, the proposed method based 

on energy balance can stabilize the gait of the quasi-passive walker under complex 

and even uncertain ground conditions. Second, the control method does not rely on a 

specific parameter of gait, so the quasi-passive walker under the control based on 

energy balance is robust to the sudden change of the gait caused by the change of 

ground condition. Moreover, the energy transformation and the energy transfer of 

walking are investigated, and it is found that the input energy is transformed into the 

mechanical energy consumption and the change in potential energy during periodic 

stable walking.  



In chapter 1, the background of the research is introduced. In chapter 2, simulation 

model and experimental quasi-passive walker are introduced, and uphill-, 

level-waking and turn control methods based on stabilization control are proposed. 

The proposed methods are examined numerically and experimentally, and the results 

are indicated. In chapter 3, energy efficiency of downhill-, uphill- and level-walking 

are investigated numerically and compared with other biped robots and human 

walking. Energy transformation and energy transfer of walking are investigated to 

show the importance of energy balance for stable walking by using Open Dynamics 

Engine simulation. In chapter 4, a stabilization algorithm based on energy balance is 

proposed and examined numerically and experimentally under uncertain ground 

condition, and a direct method and an indirect method are proposed to calculate the 

input energy based on energy balance. Moreover, the dynamics of lateral motion of 

the quasi-passive walker is introduced, and the relation between the amplitude of the 

mechanical oscillator and mechanical work performed by the quasi-passive walker is 

investigated analytically based on the dynamics of the lateral motion of the 

quasi-passive walker. In chapter 5, the proposed methods including direct method and 

indirect method are examined under uncertain ground conditions. In chapter 6, some 

conclusions and findings of the research and future work are summarized. 
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1. Introduction 

1.1 Background 

  Biped walking robots, which have a similar gait to humans, can walk under 

complex ground conditions such as uneven terrain, upward or downward stairs or 

slopes. Biped walking robots can adapt to more complex environments in comparison 

to other kinds of mobile robots. It is thus expected that biped walking robots can 

substitute human beings in various environments including dangerous, tiresome or 

repetitive situations.  

  Humanoid robots, which are a kind of biped walking robots, have similar 

appearance and body structure as humans. It is possible for these robots to work in 

environments where humans live and work. For example, these robots can function in 

entertainment and public service sectors. 

  Research of biped walking robots can help us to understand the mechanism of 

biped walking and also human walking. The mechanism of biped walking can be 

applied to rehabilitation therapy and biomedical engineering. Moreover, the research 

of biped walking robots also contributes to the theory and technology of designing 

lower extremity exoskeletons, rehabilitation devices, and intelligent prosthesis [1]-[4]. 

  However, controlling biped walking robots and stabilizing their gaits are 

challenging, because biped walking robots are multi-variable, non-linear, unstable, 

and hybrid dynamic systems. Some successful attempts have been made to build 

humanoid robots, and one of the most successful examples is the ASIMO of Honda 

[5]-[7]. In order to ensure stability of walking, the target path of the zero moment 

point (ZMP), which is proposed by Vukobratović and Stepanenko [8][9], is calculated 

before walking. If the ZMP remains strictly inside the support polygon of the support 

foot, the support foot does not turn over on the ground, and thus the robot can be 

treated and controlled as a fixed manipulator. This method is not only used for 

ASIMO but also for most of humanoid robots, such as HPR-4C [10] and QRIO [11].  

All joint trajectories are planned based on the method using ZMP, and the position 

of limbs and the angle of joints are controlled with servo motors, like the control 

method for robotic manipulators. Since electrical motors usually have relatively low 
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torque but high speed, it is necessary to use reduction gear to increase the output 

torque of servo motors. However, since reduction gear increases both inertia of the 

segments and friction of joints, it is difficult to control the actual torque output on the 

limbs. Moreover, due to the drawback of the trajectory tracking control method, it’s 

hard to utilize the natural dynamics of legs, such as the natural pendulum motion of a 

swing leg, resulting in low energy efficiency of walking and unnatural gait as 

compared with human walking. For example, the mechanical cost of transport (Cmt), 

which is an index of measuring the energy efficiency of transport, of ASIMO is 20 

times of a human’s [12]. The trajectory tracking control method cannot reveal the 

mechanism of natural dynamics and the energy efficient gait of human walking. 

Therefore, it is necessary to study the mechanism of natural dynamics of walking to 

improve the energy efficiency of biped walking robots, and to improve the practical 

application of biped walking robots.  

  Research of passive walkers provides a new and different research paradigm of the 

biped walking robots in comparison to the biped robots mentioned above. Passive 

walkers are a class of machines which can walk stably on a slightly downward slope 

without sensors, control, or actuators. Passive walkers display a steady gait, which is 

energy efficient and incredibly natural like human walking. The research of passive 

walking mainly focuses on the analysis of passive gait, control method, walking 

stability, and the dynamics of passive walking.  

Passive walker was first studied in depth by McGeer [13]-[15]. McGeer 

successfully designed and analyzed several planar passive walkers with and without 

knees. His walkers exhibited stable, natural and human-like walking on a slightly 

downward slope. Unlike the biped walking robots, which are controlled to follow 

pre-designed trajectories, passive walkers exhibit natural gaits resulted from the 

natural interaction between passive walkers and their environment including the slope 

angle, friction and collision condition etc. McGeer thought that, the passive dynamics, 

stability and control of biped walking could be learned by studying passive walkers 

[13], in the same way that the aviation engineers studied aerodynamics from gliders, 

which are also passive machines. Studies of passive walking may contribute to the 
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understanding of the mechanism of stability and the energy efficient gait of human 

walking, as well as the design and control of biped walking robots.  

  Stable passive walking can be realized under the condition of appropriate 

mechanical design, appropriate initial state and appropriate ground condition, such as 

slope angle and coefficient of restitution of ground. [16] However, it is difficult to 

stabilize passive walkers in complicated environments, such as a variable slope with 

different slope angles and coefficient of restitution. For this reason, addition of some 

control and actuation based on the characteristics of passive walking is necessary to 

stabilize passive walkers under variable ground conditions. Inspired by the simplicity 

of passive walkers, some researchers have attempted to realize two-dimensional (2D) 

[15]-[23] and three-dimensional (3D) [24]-[27] passive walking on level ground. 

These passive walkers with control and actuation are named quasi-passive walkers, 

which are different from those biped walking robots based on trajectory tracking 

control such as the common humanoid robots. Although some joints of quasi-passive 

walkers are actuated and controlled, quasi-passive walkers still preserve the natural 

dynamics, which means that the interaction between the passive walkers and their 

environment still exists.  

Most quasi-passive walkers proposed by researchers can walk on flat ground only 

at present. It is necessary to stabilize their gait under more complex and even 

uncertain ground conditions, because it is difficult to measure the precise ground 

condition in an actual environment. Here, uncertain ground condition means that the 

ground information such as the slope angle and coefficient of restitution of ground is 

unknown. Since the passive walking gait is a result of the interaction between the 

passive walkers and their environment, the gait contains the information of the 

environment (or ground condition). If the information can be used to control 

quasi-passive walkers in an appropriate way, it is possible to stabilize the gait of 

quasi-passive walkers under complex and even uncertain ground conditions. 
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1.2 Research about passive walking 

1.2.1 Passive walkers 

The first passive walker, which had a huge impact on the research of biped walking, 

was McGeer’s 4-legged passive walker that had 4 side-by-side legs with knees but no 

torso. The passive walker could be treated as a planar biped passive walker and was 

built for the analysis of gait, dynamics, and stability of walking [13]. Despite the 

4-legged design, the passive walker had a gait that was incredibly natural like human 

walking. Other planar passive walkers were also studied by some researchers. Ikemata 

et al. built a planar biped passive walker with arc feet, and studied the dynamic effects 

of arc feet on the leg motion of the passive walker [28]. 

Two dimensional (2D) research of passive walking was extended to 3D by some 

researchers [29]-[35]. The first successful 3D experimental passive walker was the 

Tinkertoy walker built by Coleman et al. [29] without knees, and it was later 

mathematically modeled and shown stable [29][30]. However, Tinkertoy walker 

requires large masses to be put on extended booms to obtain sufficient moments of 

inertia. Collins et al. built a 3D biped passive walker which successfully demonstrated 

downhill walking [31].  

Further research about passive walking has been performed. For example, Coleman 

et al. studied bifurcation and chaos phenomenon of passive gaits [36]. And Smith and 

Berkemeier discovered and analyzed a passive quadruped walking mechanism [37].  

  The research about gait stability of passive walkers and quasi-passive walkers is 

less encouraging. Although stability of several passive walkers has been numerically 

predicted by simulations, there are almost no rigorous analytic theories of stability of 

passive walking, and thus there are almost no rigorous analytic methods to improve 

stability. 

  An objective measure of stability is the norm of the largest eigenvalue of the 

Jacobian of the state transition equation of the periodic walking cycle [13]. The norm 

of this eigenvalue indicates how fast the disturbances would grow or shrink after a 

small disturbance which deviates the passive walker from a steady-state periodic 

motion. If the largest eigenvalue has a norm less than one, the periodic cycle is stable. 
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According to this analysis method, when the norm of all eigenvalues is far less than 

one in value, the passive walker has strong stability. In general, typical passive 

walkers have only mild stability by this measure, because their norm of the largest 

eigenvalues are usually larger than 0.6 [30][38]. 

  Some researchers treated passive walking as one kind of periodic motion and 

studied the stability of passive walking using limit-cycle and Poincaré map of the 

periodic motion [39]-[47]. These methods are essentially same to the one using 

transition equation proposed by McGeer, and the fixed point of Poincaré map is the 

periodic solution of transition equation. 

 

1.2.2 Quasi-passive walkers 

  There have been attempts to realize passive walking on level ground by adding 

actuation and control while preserving the passive dynamics. Collins and Ruina [24] 

built a 3D quasi-passive walker which walks successfully on level ground. The 

quasi-passive walker has passive hip joints and powered ankles, as shown in Fig. 1-1 

(a). The ankle motor loads up an ankle spring during the single support phase. When 

the swinging leg touches the ground, the ankle spring is released. And the released 

spring generates an ankle push-off that actuates the quasi-passive walker to walk. The 

quasi-passive walker based on passive dynamics is quite energy efficient. For 

example, the 12.7 kg quasi-passive walker built by Collins and Ruina [24] uses only 

12 W to walk at 0.44 m/s on level ground. The walking energy efficiency of the 

quasi-passive walker is close to human efficiency [12][24]. Harata et al. reported a 

biped quasi-passive walker with only knee actuation controlled by a parametric 

excitation method [48]. Russ Tedrake et al. [25] investigated a 3D biped passive 

walker “Toddler” with large curved feet and active ankle joints, rolling motions of 

which are controlled by utilizing a sine oscillator in order to excite the overall lateral 

motion of the quasi-passive walker, as shown in Fig. 1-1 (b). 

  Some researchers have focused on pitching control of the upper body based on 

planar walking models. McGeer added an upper body to his planar walking model and 

maintained a constant gesture of the upper body by using a PD controller [49]. Wisse 
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et al. investigated a planar walking model with the upper body constrained to the 

middle angle of the two legs [46]. Narukawa et al. showed that a planar walking 

model can walk on level ground efficiently by utilizing upper body and swing leg 

control [50]. However, few researchers have focused on rolling control of the upper 

body based on 3D passive walkers. In walking of humans, the upper body not only 

pitches in the sagittal plane but also rolls in the frontal plane. Kuo reported that upper 

body control can be utilized to stabilize lateral motion of a 3D passive walker, but his 

method was energy-inefficient for his walking model and was thus not investigated 

sufficiently [51].  

 

 

 

 

 

 

Fig. 1-1 Two quasi-passive walkers 

 

 

 

 

 

 

 

(a) Collins’s quasi-passive 

walker [24] 

(b) Tedrake’s quasi-passive 

walker [25] 
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1.3 Introduction of the thesis  

In this study, it has been experimentally demonstrated that synchronization of the 

period of lateral motion TL with the period of swing leg motion TS was a necessary 

condition for stable 3D passive walking [32]. In the next step, a 3D passive walker 

with large spherical foot sole is built to increase the success rate of walking, and a 

mechanical oscillator actuated by a motor is mounted on the passive walker. The 

mechanical oscillator can roll in the frontal plane to control TL and to synchronize TL 

into TS to stabilize the gait of the quasi-passive walker on level ground [52]. The 

movement of the mechanical oscillator is always entrained into the lateral motion of 

the quasi-passive walker based on forced entrainment realized by forced Van der Pol 

oscillator, and the quasi-passive walker can be stabilized on flat ground [52][53]. The 

control method is named “stabilization control algorithm” in this study. 

In this thesis, to improve the environmental adaptability of the 3D quasi-passive 

walker, a gait stabilization method based on energy balance is proposed and examined 

under more complex ground conditions including uncertain ground conditions. Here, 

the environmental adaptability means that quasi-passive walkers can stably walk 

under variable ground conditions and adapt to the changing ground conditions such as 

slope angle and coefficient of restitution.  

First, uphill walking, level walking and turn control methods are proposed and 

examined based on the “stabilization control algorithm”. Second, the energy 

efficiency, energy transformation and energy transfer of walking of the quasi-passive 

walker are investigated. Third, the dynamics of lateral motion of the quasi-passive 

walker is indicated. Further, the relationship between the amplitude of the mechanical 

oscillator and the mechanical work performed by the quasi-passive walker is 

investigated analytically based on the dynamics of the lateral motion. Fourth, based 

on energy balance and the “stabilization control algorithm”, a gait stabilization 

method is proposed and examined under uncertain ground conditions. The amplitude 

of the mechanical oscillator is determined by the required input energy in one step. 

The gait of quasi-passive walkers can be understood as a result of the interaction 

between the quasi-passive walkers, their controllers and their environment. The 

javascript:;
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interaction means that the change of quasi-passive walkers, their controllers or their 

environment can change the gait of the quasi-passive walkers. By understanding the 

generation patterns of the gait of quasi-passive walkers, it helps to design appropriate 

control algorithm for the quasi-passive walkers. The generation patterns of the gait of 

passive and quasi-passive walkers are shown in Fig. 1-2. The color lines represent the 

actions of the environment, quasi-passive walkers, and controllers on the gait. The 

generation pattern of the gait of passive walkers is an open-loop structure, as shown in 

Fig. 1-2 (a). Passive walkers can exhibit different gaits if the parameters of both 

environment and passive walkers are changed in stable region, which is generally 

very small.  

In contrast, the generation pattern of the gait of the quasi-passive walker proposed 

in this research is a closed-loop structure. The controller uses the gait information, 

which indirectly contains the information of the quasi-passive walker, its environment, 

and its controller, as shown in Fig. 1-2 (b). Here, the gait information of the 

quasi-passive walker refers to the information acquired from walking motion, 

including the attitude of the quasi-passive walker, the periods of swing leg motion, 

and the angular velocity of the segments of the quasi-passive walker and so on. 

Although no external sensor is used to detect the information of environment, it is 

possible to improve environmental adaptability of the quasi-passive walker by using 

the gait information in an appropriate way. Based on this idea, the periodic lateral 

motion (the gait in the frontal plane) of the quasi-passive walker has been utilized to 

entrain the periodic motion of the mechanical oscillator based on forced entrainment 

to stabilize the quasi-passive walker [52].  

This thesis extends the idea to stabilize the gait of the quasi-passive walker based 

on energy balance under complex and uncertain ground conditions. The energy 

balance means that the input energy in periodic stable walking is transformed to the 

dissipation energy and the change in potential energy of the quasi-passive walker 

during one step. If energy balance is satisfied, the change in kinetic energy during one 

step is equal to 0, which means that the quasi-passive walker can keep periodic stable 

walking. The stabilization control method based on energy balance has two  
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Fig. 1-2 Generation patterns of the gait of passive and quasi-passive walkers 
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advantages. First, since energy balance can be satisfied in different ground conditions 

such as downward and upward slopes, the proposed method based on energy balance 

can stabilize the gait of the quasi-passive walker under complex and even uncertain 

ground conditions. Second, the control method does not rely on a specific parameter 

of gait, so the quasi-passive walker under the control based on energy balance is 

robust to the sudden change of the gait caused by the change of ground condition. 

Two quasi-passive walkers similar to ours are the Tedrake’s “Toddler” [25] and the 

quasi-passive walker proposed by D. Nakanishi et al [54]. “Toddler” was used to test 

the utility of motor learning, and it is demonstrated that “Toddler” could learn to walk 

on flat ground by using its passive walking trajectory as the target [12]. Another 

similar quasi-passive walker proposed by Nakanishi et al. also has curved feet and 

excites its lateral motion by a sine oscillator. The difference between “Toddler” and 

the Nakanishi et al.’s quasi-passive walker is that the oscillator moves from side to 

side on its hip axis in the method proposed by Nakanishi et al.. 

 “Toddler” is stabilized by direct excitation of a sine oscillator. As a result, the 

entrainment can occur only when the frequency of the sine oscillator is tuned to near 

the passive step frequency of the quasi-passive walker. Furthermore, the “Toddler” 

must be initialized in phase with the sine oscillator and the entrainment is very 

sensitive to disturbance in phase [25]. 

In contrast, our quasi-passive walker is robust against initial condition and 

disturbance, because the dynamics of the mechanical oscillator is always forcedly 

entrained into the dynamics of lateral motion in order to excite or damp the lateral 

motion of the quasi-passive walker. Even when the gait of the quasi-passive walker is 

changed in varying environments, the gait of the quasi-passive walker can still be 

stabilized. Consequently, the environmental adaptability of “Toddler” is worse than 

ours. More detailed investigation and comparison about the two methods are 

performed, and the results and analysis are presented in section 2.4 of the thesis. 
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1.4 Thesis outline 

In chapter 2, simulation model and experimental quasi-passive walker are 

introduced, and uphill walking, level walking and turn control methods based on 

“stabilization control algorithm” are proposed. The proposed methods are examined 

numerically and experimentally, and the results are presented.  

In chapter 3, energy efficiency of downhill, uphill and level walking are 

investigated numerically, and compared with other biped robots and human walking. 

Energy transformation and energy transfer of walking are also investigated using 

ODE simulation to show the importance of energy balance.  

In chapter 4, first, in order to calculate the amplitude of the mechanical oscillator β, 

the relationship between β and mechanical work performed by the quasi-passive 

walker is investigated analytically based on the dynamics of lateral motion. Second, 

energy balance is defined, and the gait stabilization method based on energy balance 

is proposed. In order to determine the amplitude the mechanical oscillator based on 

energy balance, a direct and an indirect method are proposed. 

In chapter 5, in order to verify the environmental adaptability of the quasi-passive 

walker under uncertain ground conditions including different slope angles and 

coefficients of restitution, the proposed stabilization methods based on energy balance 

is examined numerically and experimentally. The direct and an indirect method are 

compared with each other by simulation. 

In chapter 6, some conclusions of the research and future work are summarized. 
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2. Stabilization control based on forced entrainment 

2.1 Introduction 

In this chapter, in order to stabilize the quasi-passive walker in uncertain ground 

condition, the “stabilization control algorithm” based on forced entrainment is 

improved to enable the quasi-passive walker stably walk on a gentle upward slope and 

turn on a flat ground.  

In the previous researches [32], it was experimentally shown that synchronization 

of the period of lateral motion TL with the period of swing leg motion TS was a 

necessary condition for stable 3D passive walking, and the necessary condition is 

named “period stabilization condition”. In the next step, a mechanical oscillator 

actuated by a motor was mounted on a 3D passive walker with spherical feet, and can 

roll in the frontal plane to synchronize the period of lateral motion TL with the period 

of swing leg motion TS [52]. The period of the target trajectory of the mechanical 

oscillator is generated based on forced entrainment. If the movement of the 

quasi-passive walker is changed by disturbance in walking, the movement of the 

mechanical oscillator is always entrained into the lateral motion of the quasi-passive 

walker based on forced entrainment to stabilize the quasi-passive walker. Therefore, 

the quasi-passive walker is robust against disturbance. The amplitude and phase of the 

trajectory are planned separately.  

The quasi-passive walker can stably walk on a flat ground by utilizing the 

“stabilization control algorithm” [52]. However, it is difficult to stabilize the 

quasi-passive walker in uphill walking, because the amplitude of the mechanical 

oscillator is not large enough, and the input energy is not enough for uphill walking 

by using the previous “stabilization control algorithm”. In this chapter, the 

determination method of the amplitude of the mechanical oscillator is improved for 

uphill walking, and the control methods are numerically examined.  

Further, in variable environments, the ability to turn is necessary for a biped 

quasi-passive walker to change walking direction and avoid obstacles. For the purpose 

of improving adaptability of the quasi-passive walker to varying environments, a turn 

control method was proposed and numerically examined [55]. However, such method 

javascript:;
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cannot appropriately apply to our experimental quasi-passive walker, because the 

target trajectory of the mechanical oscillator becomes discontinuous when the stance 

leg changes. Because the power of the motor of the experimental quasi-passive walker 

is limited and the mechanical oscillator cannot follow the discontinuous target 

trajectory, the experimental quasi-passive walker fails to turn. In this chapter, a novel 

turn control method is proposed. Proposed method uses the central axis of oscillation of 

the mechanical oscillator to shift the gravity center of the quasi-passive walker to control 

turn radius, and enables the quasi-passive walker to turn stably on flat ground. This new 

method is examined experimentally and numerically. 

First, the simulation models, experimental quasi-passive walker and the 

“stabilization control algorithm” proposed in the previous researches are introduced. 

Two versions of the simulation models are introduced in this research. Version 1 is the 

simulation model of the former experimental quasi-passive walker, and version 2 is 

the simulation model of the current experimental quasi-passive walker, which is 

improved based on the former quasi-passive walker. Second, control methods for 

uphill walking, level walking, and turn control are proposed based on the 

“stabilization control algorithm”. The control methods are numerically and 

experimentally examined.  

2.2 Simulation model and experimental Quasi-passive walker 

2.2.1 Simulation model 

The quasi-passive walker consists of a mechanical oscillator, a motor, a trunk and 

two straight legs, as shown in Fig. 2-1. The simulation model in Fig. 2-1 is the version 

1 of the quasi-passive walker. The quasi-passive walker has three joints: two passive 

joints connecting the legs with a hip axis, and one active joint driven by a motor that 

actuates a mechanical oscillator in the frontal plane. At least six generalized 

coordinates are necessary to describe the dynamics of the quasi-passive walker by 

Lagrangian mechanics: three coordinates are used to describe the orientation of the 

stance foot and the other three are used to describe the rotational angles of the three 

joints. In addition, the quasi-passive walker is a non-holonomic system because the 

spherical stance-foot rolls on the ground during walking. In order to reduce the 
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mathematical complexity, Open Dynamics Engine [56] (ODE) (a 3D rigid-body 

physical simulation engine) is used to conduct simulations. 

In order to describe the position and orientation of the quasi-passive walker in ODE 

simulation, the global coordinate O–XYZ is defined as shown in Fig. 2-1. The 

orientation of the trunk relative to the coordinate O–XYZ is determined by the 

sequence of rolling (θ), pitching (γ), and yawing (ψ) about the axes of O–XYZ. The 

trunk and the mechanical oscillator have the same pitch (γ) and yaw (ψ) angles but 

can roll independently. 

Therefore, the relative roll angle of the mechanical oscillator to the trunk is defined 

as θw. The trunk and the legs have the same roll angle (θ) but different yaw and pitch 

angles. The pitch angles of the left and right legs are therefore denoted by γL and γR, 

respectively, and the yaw angles of the left and right legs are denoted by ψL and ψR, 

respectively. Finally, the state vector of the quasi-passive walker is described as 

shown in Eq. (2.1). 

],,,,,,,,,,,,,,,[ RLRLwRLRLwq             (2.1) 

The body coordinates of the mechanical oscillator and the trunk are defined as o1–

x1y1z1 and o2–x2y2z2, respectively, as shown in Fig. 2-1. The origins of the coordinates 

o1 and o2 are fixed on the centers of masses of the mechanical oscillator and the trunk, 

respectively. The body coordinates of the legs are omitted in Fig. 2-1. These body 

coordinates are used in the calculation of rotational kinetic energy of the segments of 

the quasi-passive walker. 

In the single support phase, the spherical stance foot purely rolls on the ground 

without slip, and the swing leg swings ahead like a pendulum. The swing leg 

continues to leave the ground until the roll angle θ becomes 0. The double support 

phase is assumed to be instantaneous, and the motion of the swing foot reaching the 

ground is regarded as heel-strike. The heel-strike is assumed to be inelastic and 

without sliding. The frictions of the joints are set to 0 in the ODE simulation. 

The pitching motion of the trunk is uncontrollable, but the rolling motion of the 

mechanical oscillator around the x1-axis is controllable. The trunk is fixed at the hip  
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Fig. 2-1 Overview of simulation model of the quasi-passive walker (Version 1) 

 

 

 

Table 2-1 Mass of segments of the quasi-passive walker 

 

 

Table 2-2 Moment of inertial of segments of the quasi-passive walker 

Moment of inertia 

 [N・m
2
] 

Trunk: IT Right leg: ILR Left leg: ILL 
Mechanical  

oscillator: Ii 

body axis x 0.1940 0.006300 0.006300 0.001399 

body axis y 0.1650 0.007968 0.007968 0.001399 

body axis z 0.1870 0.002926 0.002926 0.0002760 

 

 

 

 
Trunk: 

mT 

Right 

leg: 

mLR 

Left 

leg:  

mLL 

Mechanical  

oscillator: mo 
Total: M 

Mass[kg] 9.404 0.9760 0.9760 1.170 12.53 
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axis to mount the motor and the mechanical oscillator on the passive walker, and the 

trunk has the function of ballast to keep the mechanical oscillator upright. The 

mechanical oscillator is analogous to the upper portion of the human torso above the 

waist. The mass and moment of inertial of the segments of the quasi-passive walker 

are shown in table 2-1 and table 2-2. In table 2-2 the moment of inertia of each 

segment is defined about the body axes xyz of the segment, which pass through the 

center of mass of the segment. The soles of the feet of the quasi-passive walker are 

spherical. The centers of the spheres are designed to be higher than the center of mass 

of the quasi-passive walker in order to make the quasi-passive walker stable in a 

standing posture, as shown in Fig.2-2. Further, the quasi-passive walker is quite 

robust against disturbances due to the spherical feet.  

The geometric design of the feet is symmetric with respect to front and back, but 

the mass distribution of the feet is not symmetric. The center of masses of the feet are 

regulated backward to generate a rotation moment around hip axis, and thus the swing 

leg can naturally swing forward even on a slight upward slope, as shown in Fig. 2-3. 

The gravitational force of the left leg is represented by GL, δL is the pitch angle of the 

center of mass of the left leg relative to hip joint, GLsinδL is the component force of 

GL, τL is the rotational torque of the left leg generated by GLsinδL, the rotation axis is 

the hip axis, and LL is the moment arm of τL. In experimental quasi-passive walker, 

the mass distribution of the feet can be changed by putting a weight on each foot. 

When the quasi-passive walker walks on a slight upward slope, because of the 

design of the spherical foot sole, a rotational torque is generated around the contact 

point between the stance foot and the ground, as shown in Fig. 2-3. The gravitational 

force works on the quasi-passive walker is represented by Gr, δr is the pitch angle of 

the center of mass of the quasi-passive walker relative to the contact point with 

ground, Grsinδr is the component force of Gr, τr is the rotational torque of the 

quasi-passive walker generated by Grsinδr, the rotation center is the hip axis, and Lr is 

the moment arm of τr. 

In uncertain ground condition, for example an upward slope or soft ground, the 

quasi-passive walker needs more power to stabilize it, but the power of a real motor is 
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limited. One method is to decrease the mass of the quasi-passive walker. Therefore, 

the construction of the trunk of the simulation model is improved, as shown in Fig. 

2-4. The simulation model in Fig. 2-4 is the version 2 of the quasi-passive walker. 

Compared to the version 1, the height of the trunk is decreased, and the arm and 

batteries are fixed to the trunk to lower the center of mass of the trunk and to increase 

the moment of inertia about yaw axis. A low position of the center of mass of the 

trunk can keep the mechanical oscillator upright, and large moment of inertia about 

yaw axis can improve the stability of the quasi-passive walker about yaw axis. 

Besides the trunk, other construction of version 2 of the simulation model is the same 

as the construction of version 1. 

 

 

 

 

(a)  

Fig.2-2 Two dimensional simplified model with curved feet  
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Fig. 2-3 Rotational torques of the legs generated by gravity in uphill walking 
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Fig. 2-4 Simulation model (Version 2) with less mass and lower center of gravity than 

the version 1of the simulation model in ODE simulation  
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2.2.2 Experimental quasi-passive walker 

The construction of the experimental quasi-passive walker is the same as the 

construction of version 2 of the simulation model. The quasi-passive walker is 

composed of two straight legs, a trunk, a stepping motor and a mechanical oscillator, 

as shown in Fig.2-5 (a). In the experiment of turn control, a 1-axis acceleration sensor 

is fixed on the MCU circuit board to measure the acceleration in the direction which 

is parallel to the central line of the quasi-passive walker. 

The legs are connected to hip axis by two passive joints, and the relative angles 

between the legs and the hip axis are measured by utilizing two rotary encoders, as 

shown in Fig.2-5 (b). The center of mass of the feet is adjusted backward by weights 

so that the swing leg can naturally swing forward even on a flat ground, as shown in 

Fig.2-5 (b). 
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(a) Experimental quasi-passive walker 

 

(b) Back view of the legs and the hip axis 

Fig. 2-5 Experimental quasi-passive walker based on a passive walker. 
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2.3 Stabilization control algorithm 

In variable environments, a quasi-passive walker will changes its gait and the gait 

may become unstable because of the disturbance from the environments. If the change 

of gait caused by environments can be utilized in an appropriate way to stabilize the 

quasi-passive walker, the environmental adaptability of the quasi-passive walker may 

be improved. Based on this idea, the periodic lateral motion of the quasi-passive 

walker in walking is utilized to entrain the periodic motion of the mechanical 

oscillator based on forced entrainment.  

In previous study, it has been experimentally demonstrated that synchronization of 

the period of lateral motion TL with the period of swing leg motion TS is a necessary 

condition for stable 3D passive walking [32]. The necessary condition is called 

“period stabilization condition” in this research. In the next step, a mechanical 

oscillator actuated by a motor has been mounted on a 3D passive walker with 

spherical feet, and can roll in the frontal plane in order to change TL and to 

synchronize TL with TS [52]. Because swing leg motion is passive, TS cannot be 

changed directly. Thus, TL is changed and synchronized with TS by the motion of the 

mechanical oscillator in the frontal plane. In order to adjust the period of lateral 

motion TL, the mechanical oscillator can excite or damp the lateral motion by 

changing the phase of the mechanical oscillator. The motor of the simulation model is 

controlled by a simple PD controller to trace the target trajectory of the mechanical 

oscillator. The target trajectory of the mechanical oscillator θwt is planned according to 

the period, amplitude and phase, as shown in Fig. 2-6.  

The period of the target trajectory is controlled on the basis of forced entrainment, 

which is an interesting phenomenon in nonlinear vibrations [57], and forced 

entrainment is realized on the basis of forced van der Pol equation as follows [52]: 

,)1( 22  Kyyyy V                           (2.2) 

where the roll angle θ of lateral motion of the quasi-passive walker is input for Eq. 

(2.2) as a periodic force input. The self-excited angular frequency of Eq. (2.2) is 

represented by ΩV, and the angular frequency of θ is represented by ω. If “ΩV ω” or  

javascript:;
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Fig. 2-6 Stabilization control algorithm 
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“the coefficient K is sufficiently large” is satisfied, the system indicates a 

phase-locking phenomenon and oscillation of θ entrains the oscillation of y. 

According to forced entrainment, the periods of y and  ̇ are synchronized to the 

period of θ, and the phase of  ̇ agrees with the phase of θ, and phase difference of 

π/2 between y and θ exists. Numerical solutions of y and  ̇ are utilized to determine 

the phase progression of θwt. The period of the target trajectory θwt is also 

synchronized with the period of lateral motion θ. The trajectory of θ and θwt can be 

approximately expressed as harmonic function as  

)cos( t                            (2.3) 

)cos(   twt ,                         (2.4) 

where α and β are the amplitudes of θ and θwt, and φ is the phase difference between θ 

and θwt. θwt can be expanded as  

  sin)sin(cos)cos(cos ttwt  .                  (2.5) 

Because of Eq. (2.2) and characteristics of the forced entrainment of Vander Pol 

oscillator, y≈c2sin(ωt) and  ̇ ≈c1cos(ωt) are satisfied, and thus the target trajectory 

θwt can be determined by the phase progression of y and  ̇, amplitude 𝛽, and phase 

difference φ as follows[52]: 

)sin
1

cos
1

(
21

 y
c

y
c

wt   ,                   (2.6) 

where c1 and c2 are the amplitudes of y and  ̇. 

According to “period stabilization condition”, the amplitude of the target trajectory, 

β, is given by a proportional control (P-control) to synchronize TL with TS,  

  )( LSP TTK                            (2.7) 

where KP is the proportional gain for the period difference between TS and TL. When β 

is constrained into positive value, the phase difference φ between the target trajectory 

θwt and the roll angle of the quasi-passive walker θ is set to 90  or − 90  in order to 

increase or decrease TL most efficiently, respectively [52]. When φ is set to 90 , the 

phase difference is automatically selected as 90  or − 90  according to the sign of 𝛽, 
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because –sin90  is equal to sin(−90 ) and cos(±90 ) is equal to 0. 

 

2.4 Uphill and level walking 

  The “stabilization control algorithm” can stabilize the quasi-passive walker on flat 

ground. However, the determination method of the amplitude of the mechanical 

oscillator by proportional component leads to deficiency of input energy in uphill 

walking. In this section, the determination method of the amplitude of the mechanical 

oscillator is improved, and the uphill and level walking based on “stabilization control 

algorithm” are realized by ODE simulation. Further, the comparison of the control 

methods of our quasi-passive walker and Tedrake’s “Toddler” [27] are performed by 

ODE simulation, and the results shows that our control method is more robust against 

disturbance. 

2.4.1 Control algorithm 

In uphill and level walking control, the period and phase difference are determined 

by the same method as the “stabilization control algorithm” shown in section 2.3. The 

amplitude of the target trajectory β is improved in uphill and level walking control. In 

“stabilization control algorithm”, according to “period stabilization condition”, β is 

determined by a proportional algorithm, but that leads to steady state error. Because of 

the steady state error, it is difficult for the quasi-passive walker to walk from flat 

ground to an upward slope. 

In order to improve the adaptability of the quasi-passive walker in uphill and level 

walking, β is controlled by a proportional integral (PI) algorithm,  

  
t

LSILSP dtTTKTTK
0

)()( ,                    (2.8) 

where KP and KI are proportional and integral gains, respectively. The PI algorithm 

can suppress steady state error to synchronize TL with TS. Moreover, a simple method 

is used to deal with integral windup, which will cause large overshoots. Since the 

power and maximum speed of an actual motor are limited, the maximum value of the 

amplitude 𝛽 is limited to 18  in the ODE simulations. If the output is larger than 

the maximum value, the integral calculation of the I component will be stopped. 
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2.4.2 Simulation 

In order to generate the period of the target trajectory, the forced Van der Pol 

equation needs a periodical input of θ. The initial condition of the quasi-passive 

walker is thus set to q= [0.12, 0 …0] so as to let the quasi-passive walker periodically 

roll first. In the ODE simulation, the quasi-passive walker walked on a path with slope 

angle changed from 0° to 3° and started to walk on the slope of 3° after 5.59 [s]. The 

changes in TL and TS are shown in Fig. 2-7. The period of lateral motion TL was 

synchronized with TS, and the quasi-passive walker was stabilized despite the change 

in slope angle. The forced entrainment of lateral motion and motion of the mechanical 

oscillator is characterized by the roll angle θ and θwt, as shown in Fig. 2-8. In this 

figure, θw and θwt are the actual trajectory and the target trajectory of the mechanical 

oscillator, respectively. As shown in Fig. 2-8, TL is defined as the period of θ. The 

stable cycle of pitch angles of the legs is shown in Fig. 2-9. A stance phase and a 

swing phase of the right leg are also shown in Fig. 2-9. The period of swing-leg 

motion TS begins when the pitch angle γL matches γR, and the end of the period TS is 

defined as the moment when γL matches γR after one period, as shown in Fig. 2-9. 

  The improved control algorithm enables the quasi-passive walker to walk stably on 

upward slope, but the control algorithm leads to excess of input energy in downhill 

walking and the walker tumbles at last. In downhill walking the swing phase lasts 

until the swing leg touches the downward ground, and the swing phase lasts longer on 

downward ground than flat and upward ground. Therefore, the TS increases in 

downhill walking. According to “period stabilization condition”, the TL is 

synchronized with TS so that the lateral motion of the quasi-passive walker is further 

excited, which leads to excess of input energy. In order to solve the problem of excess 

of input energy, it is helpful to consider the energy balance, which is investigated in 

the later chapters. 
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Fig. 2-7 Synchronization of the period of lateral motion TL  

with the period of swing leg motion TS 
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Fig. 2-8 Forced entrainment of mechanical oscillator motion and the lateral motion 
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Fig. 2-9 Pitch angles of the legs 
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2.4.3 Comparison of control methods 

A three-dimensional (3D) quasi-passive walker similar to ours is “Toddler” [25] 

because it has curved feet and its lateral motion is controlled by the rolling motion of 

ankle joints. The trajectory of ankle’s rolling motion of “Toddler” is a sine function, 

which is determined by its amplitude and frequency. Its ankle rolling motion entrains 

the overall lateral motion of the quasi-passive walker for stable walking. 

Another similar quasi-passive walker proposed by Nakanishi et al. [54] also has 

curved feet. The quasi-passive walker excites its lateral motion by an oscillator, which 

moves from side to side on its hip axis. The trajectory of the oscillator is also a sine 

function, which is determined by its amplitude and period. The actuation method is 

similar to “Toddler” by entraining lateral motion into a sine oscillator. 

There are two major differences in the control methods between our quasi-passive 

walker and the above mentioned two quasi-passive walkers. First, the mechanical 

oscillator of our quasi-passive walker does not entrain the overall lateral motion, but 

is forcibly entrained into the lateral motion of the quasi-passive walker by using a 

forced van der pol oscillator. As a result, the forced entrainment always occurs even 

when the step frequency of the quasi-passive walker changes in variable environments. 

In contrast, “Toddler” is stabilized by direct excitation of a sine oscillator. As a result, 

the entrainment can occur only when the frequency of the sine oscillator is tuned to 

near the passive step frequency of the quasi-passive walker. Furthermore, the 

“Toddler” quasi-passive walker must be initialized in phase with the sine oscillator 

and the entrainment is very sensitive to disturbance in phase [25]. Consequently, the 

environmental adaptability of “Toddler” is worse than ours.  

Second, the phase of the sine oscillator is uncontrollable in the mentioned 

quasi-passive walkers, but the phase of the mechanical oscillator is controllable in our 

quasi-passive walker. The motion of mechanical oscillator of our quasi-passive walker 

can excite or damp the lateral motion of the quasi-passive walker to control TL, by 

adjusting the phase difference between the motion of the mechanical oscillator and the 

lateral motion of the quasi-passive walker. This is why our quasi-passive walker is 

very robust against disturbance in phase.  
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In order to compare the control methods of our quasi-passive walker and the above 

mentioned two quasi-passive walkers through ODE simulation, the control method 

with the sine oscillator [25], d(t)=Asin(2πt/Tsf), is applied to our quasi-passive walker 

in level walking. In stable walking with our control method, the amplitude of 

mechanical oscillator is near 0.3 rad, as shown in Fig. 2-8. Therefore, the amplitude of 

the sine function A is set to 0.3 rad to compare the results in the similar condition. 

When the period of the sine oscillator Tsf is changed from 0.4 s to 0.75 s the 

quasi-passive walker can walk stably. A longer or shorter period will cause unstable 

gait. The lateral motion of the quasi-passive walker and the mechanical oscillator 

motion in stable level walking are shown in Fig. 2-10. The period of the sine oscillator, 

Tsf, is set to 0.45 s, 0.65 s and 0.75 s in Fig. 2-10 (a), (b) and (c), respectively. Under 

the control with the sine oscillator, the phase difference between θ and θw changes as 

the period Tsf changes. Only when Tsf is near 0.75 s, the phase difference is near π/2, 

as shown in Fig. 2-10 (c). However, in our control method in level walking the phase 

difference between θ and θw is always constant at π/2 to excite the lateral motion of 

the quasi-passive walker, as shown in Fig. 2-8. 

Besides, under the excitation of the sine oscillator, the quasi-passive walker 

becomes sensitive to initial conditions, including initial period and phase of lateral 

motion of the quasi-passive walker. Therefore the environmental adaptability of the 

method is worse than that of our method in the model of our quasi-passive walker. 
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(c) Tsf  = 0.75 s 

Fig. 2-10 Entrainment of mechanical oscillator motion and  

 lateral motion under the excitation of a sine oscillator 
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2.5 Turn control 

In variable environments, the ability to turn is a necessity for a biped quasi-passive 

walker in order to steer and avoid obstacles, as an example. In order to improve the 

adaptability of the quasi-passive walker in changing environments, a turn control method 

has been proposed and been numerically examined [55]. However, the same method 

cannot appropriately apply to our experimental quasi-passive walker because the target 

trajectory of the mechanical oscillator becomes discontinuous when the stance leg 

changes. The power of the motor of the experimental quasi-passive walker is limited, so 

the mechanical oscillator cannot follow the discontinuous target trajectory. 

In this section, a novel turn control method by controlling the central axis of 

oscillation of the mechanical oscillator is proposed to enable the quasi-passive walker to 

turn stably on flat ground. This new method is examined experimentally and numerically. 

Since this method does not need to increase actuators or change the structure of the 

quasi-passive walker, the turn control and stabilizing methods for straight walking can 

switch to each other directly. Additionally, the gait of turn is compared with that of 

straight walking and analyzed in terms of mechanical work and energy. 

  The simulation model of version 2 and experimental quasi-passive walker are 

utilized to examine the turn control method. Because the simulation model of version 

2 and experimental quasi-passive walker have the same structure and mass 

distribution, the results of simulation and experiments can be compared to each other. 

 

2.5.1 Control algorithm 

A simplified model of lateral motion in turn control is shown in Fig. 2-11, where 

the trunk and legs are simplified to a block. Line segment AB represents the central 

axis of the block, and line segment AC represents the central axis of oscillation of the 

mechanical oscillator. 

The roll angle of the lateral motion of the block is represented by θ, the inclination 

angle of the mechanical oscillator relative to line segment AB is represented by θw, the 

inclination angle of the central axis of oscillation relative to line segment AB is 

represented by θ1, and the inclination angle of the mechanical oscillator relative to  
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Fig. 2-11 Simplified model of lateral motion in turn control. 
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line segment AC is represented by θ2. 

The target trajectory of θw, θ1 and θ2 are represented by θwt, θ1t and θ2t, respectively. 

The target trajectory θwt is planned by θ1t and θ2t, because θwt is equal to θ1t+θ2t. The 

turning radius is controlled by θ1t, and the gait of the quasi-passive walker is 

stabilized by periodic input of θ2t determined based on the “stabilization control 

algorithm”. 

In the “stabilization control algorithm”, the period of lateral motion TL is controlled 

and always synchronized with the period of swing leg motion TS by periodic 

oscillation of the mechanical oscillator. Following the method, in turn control θ2t is 

also periodic and thus is planned by controlling its period, amplitude and phase, 

respectively, as shown in Fig.2-12.  

The period and phase of θ2t is determined by the “stabilization control algorithm”. 

The amplitude β of the θ2t is determined by a proportional algorithm based on the 

“stabilization control algorithm”, 

   )( LSp TTK  ,                            (2.9) 

where KP is the proportional gain, and α, which is a constant value determined by 

preliminary simulation, determines the initial value of β. 

  According to y,  ̇, β, and phase difference φ, the target trajectory θ2t is determined 

as  

)sin
1

cos
1

(
21

2  y
c

y
c

t   ,                         (2.10) 

where c1 and c2 are the amplitudes of y and  ̇.  

The target trajectory of θ1 is represented by θ1t, which is planned to control the 

turning direction and turning radius r. When θ1 is positive, the quasi-passive walker 

turns right, and when θ1 is negative, the quasi-passive walker turns left. In order to 

investigate the relationship between the turning radius r and θ1, r is measured when θ1 

is set to a constant value in ODE simulation. The results are shown in Fig. 2-13. The 

vertical axis is r, and the horizontal axis is θ1. The symmetric curve about the vertical 

axis is obtained. The minimum turning radius is 0.53 m when θ1 is set to    60  or 60 .  
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Fig. 2-12 Turn control algorithm. 
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If the absolute value of θ1 is larger than 60 , the quasi-passive walker cannot turn 

stably in simulation, because the inclination of the central axis of oscillation changes 

the dynamics of lateral motion.  

In order to control r, based on Fig. 2-13, the relationship between θ1 and rt is 

expressed by a function obtained by a curve fitting method based on least squares 

method, as  

)935.1(

23.2
)sin( 1






t

t
r

  (rt > 0.53 [m])            (2.11) 

The plus and minus signs “ ” in Eq. (2.11) are used in left and right turn control, 

respectively.  

 

 

 

 

 

Fig. 2-13 Turn radiuses as a function of the inclination angle 

                  of the central axis of oscillation.  
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2.5.2 Simulation and experiment 

The turn control is demonstrated in the ODE simulation. As shown in Fig. 2-14, the 

quasi-passive walker walks straight on a flat ground for 3 seconds to stabilize the 

walking gait, then θ1 is set to -60  and the quasi-passive walker begins to turn right. 

The path of the center of mass of the quasi-passive walker in right turn, where the 

horizontal and vertical axis are X and Y axis of the global coordinate, respectively. 

The turning radius is about 0.53 m, and the path of the center of mass shows 

meandering shape because the quasi-passive walker rolls in the lateral plane and the 

center of mass of the quasi-passive walker moves between the left and right foot.  

The period of right lateral motion Tright is defined as the period of twice the time 

while θ is positive (the quasi-passive walker inclines to right) in one walking cycle, 

and the period of left lateral motion Tleft is defined as the period twice of the time 

while θ is minus  (the quasi-passive walker inclines to left) in one walking cycle. In 

straight walking, Tright and Tleft agree because of the symmetric left and right lateral 

motion.  

However, Tright and Tleft become different in turn control by the inclination of the 

central axis of oscillation θ1. The relation between θ1 and the period difference 

“Tright    Tleft” is investigated in simulations and experiments, and the results are as 

shown in Fig. 2-15, where the vertical axis is the period difference “Tright   Tleft” and 

the horizontal axis is the inclination angle θ1. The period difference increases when θ1 

increases. The results of the simulation and experiments show that the method is 

effective to control the period difference “Tright   Tleft”. From Fig. 2-13 and Fig. 2-15, if 

|Tright   Tleft| is larger, the turn radius becomes smaller, because larger |Tright   Tleft| leads 

larger difference between strides of the left and right leg and makes the quasi-passive 

walker turn with smaller turn radius. 

Turn is an important ability of the quasi-passive walker in variable environments, 

so the turn control method is examined with the experimental quasi-passive walker 

and simulation model walking on a path with different turn radiuses on flat ground. In 

the experiment, the path has two bends and the turn radiuses are 0.75 m and 2.0 m, as 

shown in Fig. 2-16 (a), so the quasi-passive walker has to switch its turn radius to 
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adapt to the changing environment. There are no external sensors on the quasi-passive 

walker to sense the changing environment, so θ1t is calculated in advance according to 

the turn radiuses. When the turn radiuses are set to 0.75 m and 2.0 m, θ1t is calculated 

by Eq. (2.11) and adjusted to -58  and 35 , respectively. The quasi-passive walker 

shows stable walking through the path in the experiments as shown in Fig. 2-16 (b), 

which shows that the turn control makes it possible for the quasi-passive walker to 

realize stable walking even under different conditions. 

In the simulation, a more complicated path is examined, and the same as the 

experiment is applied. Here, θ1t is also calculated in advance according to the turn 

radii. The quasi-passive walker shows stable walking through the path, as shown in 

Fig. 2-17, where the location of the quasi-passive walker is shown in the mini map of 

the path. 

 

 

 

Fig. 2-14 Trajectory of the center of mass of the quasi-passive walker in right turn. 

 

 

0.53 m 
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Fig. 2-15 Period differences between the right and left lateral motion  

        versus the inclination angle of the central axis of oscillation. 
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Fig. 2-16 Experiments of turn control. 
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Fig. 2-17 Simulation of turn control. 

 

 

 

 



43 
 

2.5.3 Comparison of turn and straight walking 

In order to investigate the gait of the quasi-passive walker in turn control, the pitch 

angles of the right and left legs in right turn are compared with that in straight walking 

by simulation as shown in Fig. 2-18. The vertical axis is the pitch angle, and the 

horizontal axis is time. In straight walking, the pitch angles of the two legs indicate 

similar curves with almost same periods, amplitudes and opposite phase, thus the time 

of left and right swing phase almost agrees as shown in Fig. 2-18(a). However, in 

right turn, the pitch angles of the two legs indicate different wave shape and phases, 

and the time of the left swing phase is larger than the time of the right swing phase as 

shown in Fig. 2-18(b). 

The lateral motion of the quasi-passive walker in right turn is compared with 

straight walking by using phase plane trajectories, as shown in Fig. 2-19. The 

horizontal axis is the roll angle of the lateral motion θ, and the vertical axis is the 

angular velocity of the lateral motion, where the black dots indicate the initial state, 

and the black arrows indicate the end of phase plane trajectories. In straight walking, 

the phase plane trajectories are almost symmetric with respective to the left and right 

half plane as shown in Fig. 2-19(a). However, in right turn, the phase plane trajectory 

is asymmetric with respective to the left and right half plane as shown in Fig. 2-19(b), 

and the asymmetry comes from the inclination of the central axis of the mechanical 

oscillator movement generated by turn control. In right turn the roll angle of lateral 

motion in right stance phase is larger than left stance phase. 

The asymmetric lateral motion of the quasi-passive walker can be understood from 

the viewpoint of mechanical work, so the positive and negative work performed by 

the motor on the quasi-passive walker in right turn are calculated and compared with 

that in straight walking in ODE simulation. The positive and negative works in right 

turn and straight walking are shown in Fig. 2-20. The positive and negative works are 

represented by Wp and Wn, respectively. The left vertical axis shows the work 

performed by the motor on the quasi-passive walker, and the right vertical axis shows 

the roll angle of the quasi-passive walker θ. From the roll angle θ, the right and left 

stance phase can be distinguished easily, because stance leg changes when θ is 0. In 
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the right stance phase under right turn control, the motor performs more positive work 

than negative work, thus the mechanical energy, the amplitude of lateral motion of the 

quasi-passive walker and the time of right stance phase increases as shown in Fig. 

2-20(a). In the left stance phase, the motor performs more negative work than positive 

work, thus the mechanical energy, the amplitude of lateral motion of the quasi-passive 

walker and the period of right lateral motion decreases. Therefore, the period 

differences between the right and left lateral motion increase, as shown in Fig. 2-15. 

In the other hand, under the straight walking, the negative work Wn, is almost zero as 

shown in Fig. 2-20(b), so effective walking is achieved by proposed method. 

Although the mechanical oscillator always accelerates and decelerates to 

periodically sway left and right in the frontal plane, positive work accounts for 91% 

of total mechanical work on average in both right and left stance phase. Therefore, the 

right and left lateral motions of the quasi-passive walker are symmetric, as shown in 

Fig. 2-20(b). 
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Fig. 2-18 Pitch angles of the legs in straight walking and right turn. 
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Fig. 2-19 Phase plane portraits of lateral motion of the quasi-passive 

                walker in straight walking and right turn. 
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Fig. 2-20 Positive and negative work in right turn and straight walking. 
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2.6 Conclusion 

  In this chapter the simulation model, experimental quasi-passive walker of a 3D 

quasi-passive walker and the “stabilization control algorithm” are introduced. In order 

to improve the environmental adaptability of the quasi-passive walker, the control 

method for turn, uphill and level walking are proposed based on the “stabilization 

control algorithm”, and are numerically and experimentally examined.  

First, we achieved uphill and level walking of a 3D quasi-passive walker on a 

variable slope in ODE simulation by improving the determination method of the 

amplitude of the target path for the mechanical oscillator by PI algorithm. The control 

method based on forced entrainment was compared with two similar quasi passive 

walkers proposed by other researchers. The two quasi-passive walkers are controlled 

by the sine forced oscillation by applying the sine oscillation to our quasi-passive 

walker. The results show that the quasi-passive walker becomes sensitive to initial 

conditions, initial period, and phase of lateral motion of the quasi-passive walker, 

under the control based on the sine oscillation. Therefore the environmental 

adaptability of the method based on sine force oscillation is worse than that of the 

“stabilization control algorithm” in the model of our quasi-passive walker. However, 

the determination method of the amplitude of the mechanical oscillator based on 

“period stabilization condition” leads to excess or deficiency of input energy, and the 

problem will be reconsidered and solved in viewpoint of energy balance. 

Second, in turn control, the turn radius of the quasi-passive walker can be 

controlled by the inclination angle of the central axis of oscillation of the mechanical 

oscillator. Based on the proposed turn control method, the quasi-passive walker 

successfully walks through a curved path with desired curvature radius, which 

indicates that it is possible for the quasi-passive walker to realize stable walking in 

variable environments. In addition, the gait and mechanical work of turn control are 

investigated and compared with that in straight walking. The negative work 

performed by the quasi-passive walker in turn control leads to the asymmetric left and 

right lateral motions, which enable the quasi-passive walker to turn. 
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3. Energy transfer, transformation and efficiency of walking 

3.1 Introduction 

  The energy efficiency of passive or quasi-passive walkers can approach that of 

human, and is much higher than that of humanoid robots [12]. The high energy 

efficiency of passive or quasi-passive walking is because of passive dynamics and 

fewer actuators. In this chapter, the energy efficiency of passive walkers, 

quasi-passive walkers, humanoid robots, and human are investigated and compared 

with each other. The level and uphill waking of our quasi-passive walker are analyzed 

from the perspective of energy transformation and transfer, which can help us to 

further understand the energy efficiency of passive walking.  

  First, the energy efficiency of our quasi-passive walker is investigated and 

compared with human and other biped robots. Second, the walking of our 

quasi-passive walker is analyzed from the perspective of energy transformation and 

transfer to investigate energy balance. Third, the energy efficiencies of the 

quasi-passive walker under different control methods are compared based on ODE 

simulation. 

3.2 Mechanical cost of transport in uphill and level walking 

In level walking, to compare mechanical energy efficiencies of steady walking of 

different-sized robots and human, a useful measure of energy efficiency is the specific 

mechanical cost of transport [12][58][59] (cmt ): cmt = (mechanical energy used) / 

(weight × distance traveled), where “mechanical energy used” is divided by “weight” 

because different-sized robots have different weights. In quasi-passive walking, some 

robots only perform positive work in level walking, such as a Cornell biped [24], and 

thus their “mechanical energy used” is equal to the positive work. However, for 

humans and most biped robots, both positive work and negative work are performed 

by actuators, and thus the “mechanical energy used” during one walking cycle is 

equal to “Wp – Wn”, where Wp is positive work, and Wn is negative work during one 

walking cycle (Wn has negative value). 

 In uphill walking, a part of the mechanical work is not consumed but transformed 

into potential energy, so “Mechanical energy used” is equal to “Wp – Wn – ΔEp”, 
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where ΔEp represents the total change in potential energy during one walking cycle. 

Therefore, cmt can be extended to measure the efficiency of uphill and level walking 

as follows:  

 travelleddistance×weight

pnp

mt

EWW
c


 .                   (3.1) 

Equation (3.1) can still be used for passive walkers and robots that perform only 

positive work. For passive walkers, “Wp – Wn – ΔEp” is equal to “– ΔEp”, which is 

positive in passive walking and equal to the loss of potential energy. For quasi-passive 

walkers which perform only positive work in level walking, “Wp – Wn – ΔEp” is equal 

to Wp. Therefore, the energy efficiencies of uphill walking, level walking and 

downhill walking can be calculated and compared with each other by cmt extended by 

the Eq. (3.1). 

Average values of cmt of our quasi-passive walker in level walking, uphill walking, 

and passive walking are shown in Table 3.1, which also shows cmt of humans and 

several other biped walking robots investigated by Collins et al. [24]. In this table, cmt 

of uphill walking was measured when our quasi-passive walker walked on an upward 

slope with inclination of 3 degree. In uphill walking, since both “mechanical energy 

used” and “distance travelled” decrease during one walking cycle, cmt of uphill 

walking and the level walking are similar. The collision at the heel strike of our 

quasi-passive walker is set to inelastic collision in the ODE simulation, and the 

simulation model therefore consumes more mechanical energy than some other 

experimental quasi-passive walkers. 

Some understanding of the energy efficiency of humans and robots can be obtained 

from the perspective of energy transformation. In level walking of humans, most of 

the mechanical energy is dissipated by humans themselves rather than by the external 

factor such as heel strike etc.. The positive work of muscles offsets most of the 

negative work of muscles, and small amount of mechanical energy is dissipated at 

heel strike in each walking cycle. For example, during a double support phase of 

human walking, most of the negative work is performed by the leading leg to redirect 

the velocity of the center of mass and to maintain steady walking [60]. Although 
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human walking is self-resistive, humans can walk much more efficiently than 

humanoid robots. Humanoid robots need to accelerate and decelerate their joints to 

trace a planned trajectory, and if the trajectory is planned inappropriately, much more 

negative work consumes its positive work. Although the walking of humanoid robots 

and walking of humans are both self-resistive, humans can utilize mechanical energy 

much more efficiently than can humanoid robots. 

Energy transformations of passive and quasi-passive walking are different from that 

in human walking. Passive walkers perform no work but consume potential energy in 

walking on a downward slope, and their mechanical energy is dissipated at heel strike. 

Some quasi-passive walkers can perform only positive work in level walking, and 

their mechanical energy is also dissipated at heel strike. Although our quasi-passive 

walker performs both positive work and negative work in walking, the quasi-passive 

walker can still walk efficiently. Moreover, passive walkers utilize potential energy in 

downhill-walking, but our quasi-passive walker performs positive work against the 

pull of gravity in uphill and level walking. Investigation Energy transformation of our 

quasi-passive walker is necessary to understand the efficient uphill and level walking 

of the quasi-passive walker. 

 

 

Table 3-1 Energy efficiencies of human and several biped robots 

 

 

 

 

 

 

 

 

 

 

Human and robots 

Humans 

ASIMO 

Our quasi-passive walker  

(uphill walking) 

 (level walking)  

 (passive walking) 

Delft’s Denise 

Cornell Biped 

McGeer’s Dynamite 

 cmt 

0.05 

1.60 

 

0.108 

0.095 

0.052 

0.08 

0.055 

0.04 
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3.3 Energy efficiency and energy transformation 

The torque of the motor is a non-conservative force (generalized force), and the 

mechanical energy of the quasi-passive walker is therefore not conserved. According 

to the law of conservation of energy, the relationship between mechanical work and 

mechanical energy of the quasi-passive walker during some time can be expressed as 

rir EEW  ,                             (3.2) 

where Wr is the total mechanical work performed by the motor on the quasi-passive 

walker, ΔEr is the total change in mechanical energy of the quasi-passive walker, and 

Ei is total energy loss at heel strike during some time. The work of the motor changes 

the mechanical energy during a single support phase, and some of the energy is 

dissipated at heel strike. In a single support phase without heel strike, Eq. (3.2) can be 

simplified as 

  
rr EW  ,                              (3.3) 

which shows that the work performed by the motor only changes the mechanical 

energy during a single-support phase. 

Wr, ΔEr and Ei are calculated to investigate energy transformation in walking. The 

mechanical oscillator and the trunk roll in the frontal plane by actuation of the motor. 

Therefore, work performed on the mechanical oscillator Wo, work performed on the 

trunk Wb, and work performed on the quasi-passive walker Wr, which are performed 

by the motor only in the frontal plane, are obtained by  

dtttTW
t

xo )()(
0

1                            (3.4) 

    dtttTW
t

xb )()(
0

2                          (3.5) 

        ,)()()(
0

21 dttttTWWW
t

xxbor                    (3.6) 

where T(t), ωx1(t) and ωx2(t) are the torque of the motor, angular velocity of the 

mechanical oscillator and angular velocity of the trunk around the shaft of the motor, 

respectively. In Eq. (3.5), the minus sign “−” in front of T(t) indicates reaction torque 

of the motor. In Eq. (3.6), “ωx1(t)−ωx2(t)” is the rotational speed of the motor, or the 

relative angular velocity of the mechanical oscillator to the trunk.  
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Aforementioned ΔEr during some time is the total change in mechanical energy Er , 

which is the sum of potential energies, translational kinetic energies and rotational 

kinetic energies of the each segments of the quasi-passive walker. Translational 

kinetic energy is calculated from the masses of the segments and the translational 

velocities of the centers of masses of the segments, and the rotational kinetic energy is 

calculated from the angular velocities of the segments and moments of inertia about 

their body axes through the centers of the masses. Potential energy is calculated from 

the height of the centers of masses from the ground. 

The energy loss Ei_1s at heel strike in one step is expressed as 

  ,11

1_

  t

r

t

rsi EEE                           (3.7) 

where 𝐸𝑟
𝑡1− and 𝐸𝑟

𝑡1+ are both the mechanical energies of the quasi-passive walker, 

“t1-” represents the moment immediately before heel strike, and “t1+” represents the 

moment immediately after heel strike. Ei is the sum of Ei_1s during some time. 

The work Wr obtained by Eq. (3.2), energy loss Ei obtained by Eq. (3.7) and the 

total change in mechanical energy ΔEr in one uphill walking cycle are calculated by 

the ODE simulation, as shown in Fig. 3-1. The sampling period of the simulation is 

set to 0.01 s. The walking cycle begins immediately after heel strike at 5.97 s and 

ends immediately before heel strike at 6.71 s. The walking cycle includes a swing 

phase, a double support phase and a stance phase for each leg. The results show that 

Er is decreased at heel strike and energy loss Ei is increased at 6.35 s, but Er is restored 

by Wr in a single-support phase. The difference between Wr and (ΔEr + Ei) can be 

caused by the first order semi-implicit integrator of the ODE, in which inaccuracy in 

implicit integrators damps the system energy, and inaccuracy in explicit integrators 

increases the system energy
 
[56]. To minimize the error, the bounce parameter and 

constraint force mixing parameter (CFM) of the ODE, which are related with 

heel-strikes, are set to 0 and 0.0001, respectively. 

In order to investigate the energy utilization rate of the motor, the energy utilization 

rate (reu) is defined to be “(Wp+Wn) / (Wp−Wn)”, where “Wp+Wn” is equal to the 

increase in mechanical energy of the quasi-passive walker inputted by the motor, and  
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Fig. 3-1 Dissipated energy Ei, change in mechanical energy ΔEr  
                   and work performed by the motor on the robot Wr 
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“Wp−Wn” is equal to the total work performed by the motor, because Wn always has 

negative value according to the definition in section 3.1. Wp accounts for 

approximately 88.65 % of “Wp−Wn” on average, and “−Wn” accounts for 11.35 % of 

“Wp−Wn” in level walking, so reu of our quasi-passive walker in level walking is 

77.3 %. This means that 77.3 % of “Wp−Wn” is transformed into mechanical energy 

of the quasi-passive walker, and the remaining 22.7 % is consumed by the motor itself. 

Direct actuation methods can achieve higher reu, such as push-off in ankle joints of the 

Cornell biped [24], and the higher reu is one reason why the Cornell biped can walk 

more efficiently than our quasi-passive walker. 

In order to optimize and improve the energy efficiency and energy utilization rate 

in uphill and level walking, the phase difference of the target trajectory of the 

mechanical oscillator, φ mentioned in Eq. (2.4), is set to 90 . The relationship of 

phase difference φ with the energy efficiency and energy utilization rate is shown in 

Fig. 3-2. The horizontal axis is phase difference, and the vertical axis is cmt and reu, 

respectively.  

When φ is set to 90 , cmt is 0.095 in level walking and 0.108 in uphill walking on 

average, and reu is 77.3 % in level walking and 74.9 % in uphill walking. When φ 

becomes larger or smaller than 90 , reu decreases and cmt increases, because more 

energy is consumed by the motor itself.  

The total mechanical energy of the quasi-passive walker Er consists of kinetic 

energy Ek and potential energy Ep as shown in Fig. 3-3. The height of the center of 

mass of the quasi-passive walker changes because of the roll and pitch motion of the 

stance leg, and mechanical energy is transformed between Ep and Ek. Fig. 3-3 shows 

that the kinetic energy of the walker changes periodically when the energy balance is 

satisfied in stable walking. In addition, 18.7 % of Ek in uphill walking and 23.3 % of 

Ek in level walking are dissipated at heel strike on average.  
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                   difference φ 



57 
 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

0

1

2

3

5.97 6.17 6.37 6.57

E
n
er

g
ie

s 
[J

] 

Time [s] 

r_e_k

r_e_p

r_e

Ek 

Ep 

Er Collision 

Fig. 3-3 Energy transformation between kinetic energy  
                            and potential energy in a walking cycle 
 



58 
 

3.4 Comparison of energy efficiency under different control methods 

  In order to investigate the energy efficiency of a similar control method used in a 

quasi-passive walker “Toddler” [25], which is mentioned in section 2.4.3, the sine 

oscillator used by “Toddler”, d(t)=Asin(2πt/Tsf), is applied to our quasi-passive walker 

to determine the target trajectory of the mechanical oscillator. In the sine function, A 

is the amplitude, and Tsf is the period. Under the control method based on sine 

oscillator, the phase difference, between the lateral motions of the mechanical 

oscillator and the quasi-passive walker, automatically changes with the change of Tsf 

(the period of sine function). It is an interesting phenomenon that has never been 

found in the simulation or experiments.  

The next question is that how Tsf affects the energy efficiency under the control 

method. The amplitude of the sine function A is set to 0.3 rad to compare the method 

based on sine oscillator in the same amplitude condition with the method proposed by 

this study. When the period of the sine oscillator Tsf is changed from 0.4 s to 0.75 s the 

quasi-passive walker can walk stably. When a longer or shorter period is given, the 

gait becomes unstable. The relationship of the period of the sine function Tsf with cmt 

and reu in stable level walking is shown in Fig. 3-4. The horizontal axis is period of 

the sine function Tsf, and the vertical axes are cmt and reu. When Tsf is set to the value 

between 0.4 and 0.55, reu increases and cmt decreases with the increase of Tsf, which 

means that the energy efficiency of walking becomes higher as the Tsf increases. 

When Tsf is set to the value between 0.55 and 0.75, reu and cmt do not change 

obviously, and the energy efficiency of walking keeps high value. In this case, reu is 

larger than 95% and cmt is between 0.06 and 0. 07. The maximum of reu is 97.8%, and 

the minimum of cmt is 0.061.  

In comparison with the control method proposed by this thesis, the control method 

based on sine oscillator is more energy efficient. One reason is that θw generated by 

proposed control method, which uses forced Van der Pol oscillator, is not harmonic 

wave. In section 2.4.2 and 2.4.3, Fig. 2-8 shows the motion of the quasi-passive 

walker under the control method based on forced Van der Pol oscillator, and Fig. 2-10 

(c) shows the motion of the quasi-passive walker under the control method based on 
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sine oscillator. By comparing Fig. 2-8 with Fig. 2-10 (c), it is easily seen that the 

amplitude, period and phase of θ and 𝜃w  are almost same. However, the level 

walking shown in Fig. 2-8 shows lower energy efficiency because non-harmonic 

oscillation can cause deterioration of energy efficiency. 
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3.5 Mechanical energy transfer and transformation 

Muscles generate and dissipate mechanical energy to actuate segments in human 

walking. Segments of passive walkers are actuated by gravity in passive walking. Our 

quasi-passive walker has only a motor that directly performs work on the mechanical 

oscillator and the trunk, and there are no actuators in other passive joints. Although 

the motor does not directly perform work on the legs, the work performed by the 

motor is transferred to the legs so that the quasi-passive walker can still walk on level 

ground and upward slopes. In order to investigate the energy transfer between the 

each segments of the quasi-passive walker, the relationships between work and energy 

for the mechanical oscillator, trunk and legs in a single-support phase are expressed as  

 ,ocoo EWW                               (3.8) 

 ,bcbb EWW                               (3.9) 

 ,LcL EW                                (3.10) 

 ,RcR EW                               (3.11) 

respectively. With respect to the mechanical oscillator, Wo, Wco and ΔEo in Eq. (3.8) 

are the total work performed by the motor on the oscillator, the total work performed 

by constraint forces of the joint on the oscillator, and total change in mechanical 

energy of the oscillator, respectively. The rolling motion of the mechanical oscillator 

is controlled by the motor, but its pitching and yawing motions are constrained by its 

joint, as shown in Fig. 2-1. And the constraint forces of the joints perform work on the 

oscillator. With respect to the trunk, Wb, Wcb, and ΔEb in Eq. (3.9) are the total work 

performed by the motor on the trunk, the total work performed by the constraint 

forces of the joint on the trunk, and total change in mechanical energy of the trunk, 

respectively. With respect to the left leg, WcL and ΔEL in Eq. (3.10) are the total work 

performed by constraint forces of the joint on the left leg and total change in 

mechanical energy of the left leg, respectively. With respect to the right leg, WcR and 

ΔER in Eq. (3.11) are the total work performed by the constraint forces of joint on the 

right leg and total change in mechanical energy of the right leg, respectively. The 
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constraint forces of the joints perform work on each segment, but these constraint 

forces do not change the total mechanical energy of the whole system by assuming 

ideal constraints. Thus, following equation 

 .0 cRcLcbco WWWW                      (3.12) 

is satisfied because of the assumption of ideal constraints. 

The work performed by the motor and mechanical energy of the quasi-passive 

walker can be directly calculated in numerical simulation, and then the works 

performed by constraint forces (Wco, Wcb, WcL, WcR) can be calculated by using 

equations (3.8), (3.9), (3.10) and (3.11). 

According to Eq. (3.8), the work performed by the motor Wo, the constraint forces 

on the mechanical oscillator Wco and the change in mechanical energy ΔEo in two 

steps are shown in Fig. 3-5(a). According to Eq. (3.9), the work performed by the 

motor Wb, the constraint forces on the trunk Wcb and the change in mechanical energy 

ΔEb in two steps are shown in Fig. 3-5(b). The constraint forces perform more 

negative work than positive work on the mechanical oscillator and trunk (Wco in Fig. 

3-5(a) and Wcb in Fig. 3-5(b)). According to Eq. (3.12), if Wco and Wct are negative, 

“WcL + WcR” are positive. Some of the mechanical energy is transferred to the legs by 

the constraint forces. As shown in Fig. 3-5(c), WcL and WcR are calculated by 

equations (3.10) and (3.11), and Ei_L and Ei_R are the dissipation energy of the left and 

right legs in the collision. The swing leg acquires more mechanical energy than the 

stance leg does in a single-support phase. In the process of energy transfer, constraint 

forces neither change the total mechanical energy nor consume additional energy, and 

there is therefore no energy loss in the process. 
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3.6 Conclusion 

There are several findings or conclusions in this chapter. First, the energy efficiency 

of the quasi-passive walker was investigated and analyzed from the viewpoint of 

energy transformation. The results show that high energy utilization rate of the motor 

helps to increase the energy efficiency in walking. In a future work, in order to further 

improve energy efficiency of the quasi-passive walker, we will focus on improving 

the trajectory of the mechanical oscillator and on reducing the energy loss at heel 

strike by improvement in the design or by additional control. Besides, the 

quasi-passive walker can walk efficiently even though the target trajectory of the 

mechanical oscillator is generated online.  

Second, the energy efficiency of the quasi-passive walker under different control 

methods is compared based on ODE simulation. The results show that the control 

method based on sine oscillator shows higher energy efficiency than our method 

based on forced Van der Pol oscillator, but our control method is more robust. 

Third, energy transfer and transformation from the trunk to the legs were analyzed 

qualitatively based on mechanical energy. The constraint forces of joints transfer 

mechanical energy to the legs, and potential energy is transformed to kinetic energy of 

the legs, and thus the legs can move forward without active hip joints. By the energy 

transformation of the quasi-passive walker, the change in kinetic energy of the 

quasi-passive walker is periodic in stable walking when energy balance is satisfied. 

The next chapter indicates that it is possible to stabilize the quasi-passive walker even 

under uncertain ground condition by recovering the kinetic energy loss in walking. 
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4. Stabilization method based on energy balance 

4.1 Introduction 

  In section 2.3, the “stabilization control algorithm” is introduced. According to the 

control algorithm, the motion of the mechanical oscillator is always entrained into the 

lateral motion of the quasi-passive walker based on forced entrainment, and thus the 

motor of the walker can efficiently change the period of the lateral motion TL and 

input mechanical energy into the quasi-passive walker. Further, based on the “period 

stabilization condition”, the amplitude of the mechanical oscillator is determined by 

the period difference of the lateral motion and swing leg motion by multiplying 

proportional gain to synchronize the two motions and to stabilize the gait of the 

walker.  

However, the determination method of the amplitude leads to deficiency of input 

energy in uphill walking. In section 2.4, the determination method of the amplitude of 

the mechanical oscillator based on the “period stabilization condition” is improved by 

PI components, and uphill walking is realized. However, the method improved by PI 

components leads to excess of input energy in downhill walking. The “period 

stabilization condition” is only the necessary but not sufficient condition for stable 

walking. The determination method of the amplitude of the mechanical oscillator 

based on “period stabilization condition” cannot provide appropriate input energy for 

stable walking under more complex ground conditions, such as a path with both of 

upward and downward slopes.  

In this chapter, a stabilization method based on energy balance is proposed to 

improve the environmental adaptability of the quasi-passive walker even under 

uncertain ground condition. The proposed method is a development of the 

“stabilization control algorithm”, and the method combines energy balance and the 

merits of “stabilization control algorithm”. According to the proposed method, the 

target path of the mechanical oscillator is determined by period, phase and amplitude, 

respectively. The determination method of period and phase of the mechanical 

oscillator are the same as “stabilization control algorithm”. In order to provide 

appropriate input energy for stable walking, the amplitude of the mechanical oscillator 
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β is determined by the required input energy EN_1s in one step based on energy 

balance.  

First, in order to calculate β by EN_1s, the relationship between β and mechanical 

work performed by the quasi-passive walker Wr_1s (=EN_1s in stable walking) is 

investigated based on the dynamics of the quasi-passive walker. Second, energy 

balance in stable walking is defined from the viewpoint of energy transformation, and 

the energy balance equation for stable walking is proposed. Third, a direct method for 

the determination of β based on the energy balance equation is proposed in section 4.4. 

Fourth, an indirect method based on a transformation of energy balance equation is 

proposed for the experimental quasi-passive walker. In ODE simulation, the accurate 

value of the required motion information used for the direct method can be acquired. 

However, it is difficult to acquire the accurate value of the required motion 

information of the experimental quasi-passive walker, the reason of which is analyzed 

in section 4.5. Therefore, an indirect method is proposed to solve the problem. 

 

4.2 Relationship between the amplitude of the mechanical oscillator and the 

work performed by the quasi-passive walker 

  First, the dynamics of a simplified model of the quasi-passive walker and the 

simplified model of the switching of stance leg are presented. Second, the relationship 

between the amplitude of the mechanical oscillator β and the mechanical work 

performed by the motor Wr_1s is investigated based on the dynamics of the simplified 

model. 

 

4.2.1 Dynamics of lateral motion of the quasi-passive walker with spherical foot 

sole 

Since the mechanical oscillator is actuated by the motor in the frontal plane, the 

input energy is generated in the lateral motion of the walker in the frontal plane. 

Therefore, a simplified model of the lateral motion of the quasi-passive walker is used 

to investigate the relationship between β and Wr_1s. The simplified model of the 

quasi-passive walker is shown in Fig. 4-1, where θ and θw represent the absolute  
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Fig. 4-1 A simplified model of the lateral motion of the quasi-passive walker 
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rotational angle of the trunk and the rotational angle of the mechanical oscillator 

relative to the trunk. The model retains one important motion features of the lateral 

motion of the walker. The feature is the pure roll motion of the spherical foot sole on 

the ground during walking. The trunk and legs of the experimental quasi-passive 

walker, which is shown in Fig. 2-5, are simplified to a block with curved bottom, 

which represents the spherical foot sole of the quasi-passive walker. The spherical 

foot sole is important for stability of gait and the energy transformation between 

kinetic energy and potential energy during walking.  

It is supposed that the stance leg rolls on the ground without slip, and the friction of 

joints is negligible. The torque of the motor is the only non-conservative force 

(generalized force). The parameters of the model are shown as follows: 

W: Half length of the clearance between the left and right feet [m] 

G: The center of mass of the block 

Gw: The center of mass of the mechanical oscillator 

Hlg: Vertical distance of the center of mass of the block from the bottom of the  

block [m]  

Hug: Vertical distance of the center of mass of the mechanical oscillator from the  

top of the block [m] 

HL: Vertical distance of the block [m] 

O1: The center of the circle of the curved foot 

R: The radius of foot sole [m] 

θ: Roll angle of the quasi-passive walker [rad] 

θw: Roll angle of the oscillator relative to the block [rad] 

mb : Mass of the block which models the trunk and the feet of the quasi-passive 

walker [kg] 

mw: Mass of the mechanical oscillator [kg] 

Ib: Moment of inertia of the block around the axis passing through the center of  

mass of the block [kg･m
2
] 

Iw: Moment of inertia of the mechanical oscillator around the axis passing through 



68 
 

the center of mass of the mechanical oscillator [kg･m
2
] 

T1: Torque of the motor [N･m] 

The value of the parameters, which are used in the calculation of Wr_1s(β), are 

shown in Table 4-1. 

 

Table. 4-1 Parameters of the simplified model 

W [m] HL [m] Hug [m] Iw [kg·m
2
] mw [kg] R [m] 

0.015 0.349 0.149 0.0031 1.241 0.8 

 

By using Lagrange Equation, the equations of dynamics for the model shown in Fig. 

4-1 are  

 

0)()()()(2)()( 6

2

5

2

4321  JtJtJttJtJtJ www   ,     (4.1) 

110

2

987 )()()( TJtJtJtJ w    ,              (4.2) 

 

where the parameters J1~J10 are shown as follows.  

 

    )(sin2)(cos2 lg

2

lg1 tRWmmtRHmHmHmIIJ wbLwbbwb    

    )()(cos)(cos1)(cos)(sin2 ttHtRHttWm wugLw    

  )()(sin)(cos)(sin)(sin2 tttWHtRtHm wugLw    

   )()(sin)(cos)(sin)(sin2 ttHtWtRtHm wugLw    

  LLugw RHHWtRHm 2)(cos12 2222    

  lg

22 2)(cos12 RHtRWmb    

 

    )(cos)(sin)(cos1)()(cos2 tHtWtRttHmIJ Lwugww    

   2)(cos)(sin)(sin)()(sin ugwLwugw HmtWtRtHttHm    

 

   )(cos)(sin)(sin)()(cos3 tWtRtHttHmJ Lwugw    
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    )(cos)(sin1)(cos)()(sin tHtWtRtt Lw    

 

   )(sin)(cos)(sin lg4 tHmtWtRmmRJ bwb    

 )()(sin)(sin ttHmtHm wugwLw    

 

     )(cos)(sin1)(cos)()(sin5 tHtWtRttHmJ Lwugw               

  )(cos)(sin)(sin)()(cos tWtRtHtt Lw    

 

 

 )(cos)(sin)(sin lg6 tWtHtRgmJ b    

  )()(sin)(sin)(cos)(sin ttHtHtWtRgm wugLw    

 

  )(cos)(sin)(sin)()(sin7 tWtRtHttHmJ Lwugw    

    
wugwLwugw IHmtHtRtWttHm  2)(cos)(cos1)(sin)()(cos           

 

wugw IHmJ  2

8   

 

  )(cos)(sin)(cos)()(sin9 tRtWtHttHmJ Lwugw    

  )(sin)(sin)(cos)()(cos tRtHtWttHm Lwugw    

 

 )()(sin10 ttgHmJ wugw    

 

Equation (4.1) describes the lateral motion of the block and Eq. (4.2) describes the 

lateral motion of the mechanical oscillator.  

 

4.2.2 Simplified model of switching of stance leg 

  The switching of stance leg in walking is a discrete event, and leads to the state 

jump and energy loss because of the collision (heel strike) of the swing leg with 
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ground. The collision occurs in double support when both of the points B and C in Fig. 

4-1 simultaneously contact with ground.  

The collision model of the quasi-passive walker can be simplified to a model of a 

rocking block, as shown in Fig. 4-2. The points B and C represent the inside edge of 

left and right feet. In Fig. 4-2, point C is the support point, and point B collides with 

ground. The center of mass of the quasi-passive walker is represented by Gr, which 

exists at left or right side of the geometrical central line of the quasi-passive walker in 

double support, because the center of mass of the mechanical oscillator exists at the 

left or right side of the trunk. Other parameters and variables are shown as follows: 

mr: Mass of the quasi-passive walker [kg] 

θ: Roll angle of the quasi-passive walker [rad] 

𝜃̇−: Angular velocity of the quasi-passive walker immediately before collision 

[rad/s] 

𝜃̇+: Angular velocity of the quasi-passive walker immediately after collision [rad/s] 

Hg: Vertical distance of center of mass of the quasi-passive walker [m] 

WL: Horizontal distance between Gr and inside edge of left foot [m] 

WR: Horizontal distance between Gr and inside edge of right foot [m] 

Ig: The moment of inertia of the quasi-passive walker around the axis passing 

through Gr [kg･m
2
] 

The collision is supposed to be inelastic, and slip of support points B and C are 

ignore at the moment of collision. The angular momentum of the quasi-passive walker 

around the axis passing through point B immediately before the collision is expressed 

as  

2 2 2 2

1 1( )( ) cosr g L g R gL m H W H W I       ,           (4.3) 

 

where cosϕ1 is  

2

1 2 2 2 2
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 
 

given from geometrical relationship. 
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  The angular momentum of the quasi-passive walker around the axis passing 

through the point B immediately after collision is expressed as 

2 2

2 ( )r g L gL m H W I     .                   (4.4) 

  The angular momentum of the quasi-passive walker around the axis passing 

through the point B is conserved at collision. Therefore, conservation law of angular 

momentum, 

L1=L2, 

is satisfied. 

  From Eq. (4.3) and Eq. (4.4), the angular velocity of the quasi-passive walker 

immediately after collision can be derived as  

2

2 2

( )

( )

r g L R g

r g L g

m H W W I

m H W I
  

 


   

    .                                 (4.5) 

From Eq. (4.5), 0< λ <1 is satisfied, because WL≠0 and WL
2
>‒WLWR in double support. 

Besides, Eq. (4.5) can be utilized to optimize the parameters of the quasi-passive 

walker to decrease the energy consumption at collision. 

 

4.2.3 Relationship between the amplitude and the work  

  The relationship between the amplitude of the mechanical oscillator β and the work 

performed by quasi-passive walker Wr_1s in one step is analytically investigated based 

on dynamics of the simplified model, in order to determine β by the required input 

energy EN_1s in one step. Wr_1s can be defined as shown in Eq. (4.6) in one walking 

cycle, in which the roll angle of the mechanical oscillator θw changes from 0 degree to 

β and then returns to 0 degree. 

 

0

1

0

1_1s )()()(




 wwwwr dTdTW ,               (4.6) 

where T'1(θw)is the torque of the motor when θw changes from β to 0 degree. 

Equation (4.6) is a general definition of Wr_1s(β). If the analytical solutions of Eq. (4.1) 

and Eq. (4.2) can be obtained, T1(θw) can be calculated from Eq. (4.2). However, it is 
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very difficult to find the analytical solutions of Eq. (4.1) and Eq. (4.2), so the T1(θw) 

cannot be calculated and Wr_1s(β) cannot be obtained from Eq. (4.6). 

If the integrating range of the Eq. (4.6) can be transformed from angle to time, 

Wr_1s(β) can be calculated by using T1(t) based on Eq. (4.2). Based on the assumption 

of θw and θ in the “stabilization control algorithm” proposed by reference [50], θw and 

θ are shown as Eq. (4.7) and Eq. (4.8). 

)cos(   tw ,                        (4.7) 

cos( )k t   ,                         (4.8) 

where kβ is the proportionality factor of the amplitude. The value of kβ depends on the 

conditions and parameters of environment, such as the coefficient of restitution and 

the inclination angle of slope. And kβ is a constant value in stable periodic walking. 

Here, the phase difference φ is set to π/2, because in level and uphill walking φ is 

automatically selected to π/2 when β is positive. Therefore, from Eq. (4.7), dθw can be 

expressed by 

 cos( )wd t dt    .                    (4.9) 

Besides, when φ is equal to ‒π/2, the problem can be investigated in the same manner.  

The integration ranges of θw in Eq. (4.6) is [0, β) and [β, 0) in one walking cycle. 

When θw becomes to 0 rad,  

sin( ) 0w t     
n

t



 ,                    (4.10) 

where n means n step. Therefore the integrating range [0, β) and [β, 0) of the Eq. (4.6) 

can be transformed to the integrating range [nπ/ω, (n+1)π/ω) given by time, which is 

one walking cycle. Based on equations (4.6) ~ (4.10), Wr can be obtained by 

( 1)

_1s 1( ) ( ) cos( )
n

nrW T t t dt







  


  ,               (4.11) 

where T1(t) is expressed by Eq. (4.1). However, some terms in Eq. (4.1) cannot be 

integrated because of nonlinear terms, such as sin(θw+θ), sin(θ) and cos(θ). To solve 

the problem, the non-integrable terms are approximately simplified to 



74 
 

sin( )w w      ,                          

cos( ) 1w   ,                            

             ,                             

cos( ) 1  ,                             

by assuming that θw and θ changes near 0 rad. Based on the above approximation, 

Wr_1s (β) can be calculated from Eq. (4.11) as follows:   

   2 2 3 2 2 5 5
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  The parameters of Eq. (4.9) are shown in table 4-1, and the angular frequency ω of 

θ is set to an average value of 20π/7 rad/s. Because of the error caused by 

approximation, there are two results of Wr_1s (β) when n is an odd or even number. 

When n is odd number, Wr_1s (β) is shown as Eq. (4.13). 

3 5 3 4 4

_1s ( ) 0.059531 5.295041 2.61245rW k k k        
         (4.13) 

3 20.148826 9.187551k k                    

3 2 3 3

max max max0.059531 5.295041 2.61245                    

2

max max0.148826 9.187551 ,                                 

Where θmax is the amplitude of lateral motion of the robot and is equal to kββ. The 3D 

function of Eq. (4.13) is shown in Fig. 4-3.  

  When n is an even number, Wr_1s(β) is shown as Eq. (4.14). 

3 5 3 4 4

_1s ( ) 0.059531 5.295041 2.61245rW k k k       
         (4.14) 

  
3 2+0.148826 9.187551k k                   

 sin( ) 
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3 2 3 3

max max max0.059531 5.295041 2.61245                    

2

max max0.148826 9.187551 ,                                 

where the sign of the first and fourth terms are opposite to Eq. (4.13). The 3D 

function of Eq. (4.14) is shown in Fig. 4-4. The surfaces shown in Fig. 4-3 and Fig. 

4-4 almost agrees with each other because the coefficients of the different terms in Eq. 

(4.13) and Eq. (4.14) are very small. When θmax is fixed, there is an approximate 

linear relationship between Wr_1s(β) and β. 

  The values of the first four terms are much smaller than the value of the last term in 

both of Eq. (4.13) and Eq. (4.14). Therefore, the relationship between Wr_1s(β) and β 

can be approximately simplified as 

  max

2

1_ 187551.9187551.9)(  kW sr                (4.15) 

  Because the change of θmax in continuous two steps is small in steady walking, the 

relationship between Wr_1s(β) and β can be approximated as linear relationship for 

simplicity of control algorithm.  
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Fig. 4-3 Mechanical work Wr_1s as a function of amplitude θmax and kβ 

          when n is an odd number. 
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4.3 Energy balance in stable walking 

Energy transformation of the quasi-passive walker is mentioned in section 3.3, and 

the energy transformation of the quasi-passive walker in one step can be expressed by  

sDsPsKsr EEEW 1_1_1_1_  ,                       (4.16) 

where Wr_1s is the work performed by the quasi-passive walker in one step, ΔEK_1s is 

the change of the kinetic energy of the quasi-passive walker in one step, ΔEP_1s is the 

change of potential energy in one step, and ED_1s is the dissipation energy in one step. 

In ODE simulation, ED_1s is equal to the energy loss at heel-strike Ei in one step, 

which is defined in Eq. (3.2), because the friction of the joints of the quasi-passive 

walker is set to 0. However, ED_1s includes both Ei and energy loss from friction. 

Moreover, one step has the same meaning as one walking cycle in this study, but the 

initial and final states of one step have different definition in direct and indirect 

methods. In direct method, initial state of one step is the moment immediately after 

heel-strike, and final state of one step is the moment immediately before the next 

heel-strike. 

Because the movement of the quasi-passive walker is periodic under steady-state 

walking, the kinetic energy of the quasi-passive walker varies periodically under 

constant ground condition. In the condition, the kinetic energies at the initial state 

agree with that of the final state in one step, and thus the change of kinetic energy 

ΔEK_1s is equal to 0. Therefore, Eq. (4.16) can be simplified as  

sDsPsr EEW 1_1_1_  .                       (4.17) 

Therefore, the energy balance equation is defined as  

sDsPsN EEE 1_1_1_  ,                      (4.18) 

which shows that input energy EN_1s in one step is transformed into potential energy 

and dissipation energy in stable walking. According to Eq. (4.18), if the input energy 

EN_1s in one step is equal to “ΔEP_1s +ED_1s”, the quasi-passive walker can be 

stabilized even under uncertain ground condition. Based on the idea, a stabilization 

method based on energy balance is proposed in section 4.4. 
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4.4 Direct method for the determination of the amplitude of the mechanical 

oscillator 

  The direct method keeps the energy balance of the quasi-passive walker to stabilize 

the quasi-passive walker. The input energy EN_1s is determined by the sum of ED_1s 

and ΔEP_1s according to Eq. (4.18). The amplitude β is determined based on EN_1s. The 

calculation methods of the dissipation energy ED_1s, the change in potential energy 

ΔEP_1s and the amplitude of the mechanical oscillator β are introduced in this section.  

 

4.4.1 Dissipation energy 

The dissipation energy ED_1s of the quasi-passive walker is mainly caused by the 

heel strike of the swing leg with ground. In the ODE simulation, assuming that the 

deformation of body and the friction of joints can be ignored, the dissipation energy 

ED_1s at heel strike is expressed as 

  11

1_

t

r

t

rsD EEE ,                       (4.19) 

where 𝐸𝑟
𝑡1− and 𝐸𝑟

𝑡1+ are both the mechanical energies of the quasi-passive walker, 

“t1-” represents the moment immediately before heel strike, and “t1+” represents the 

moment immediately after heel strike. 

The mechanical energy of the quasi-passive walker Er is the sum of potential 

energy EP, translational kinetic energy ETK and rotational kinetic energy ERK as 

follows 

RKTKPr EEEE  .                        (4.20) 

  The translational and rotational kinetic energy of the segments are calculated 

separately in this study. The mass and moment of inertia of each segment, around 

body axes passing through the center of mass, are shown in Table 2-1 and Table 2-2. 

Translational kinetic energy ETK and rotational kinetic energy ERK can be calculated as  

)(
2

1 2222

ooLLLLLRLRTTTK VmVmVmVmE  ,              (4.21) 

and 

                  RORLLRLRRTRK EEEEE  ,                  (4.22) 
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where mT, mLR, mLL and mo are the masses of the trunk, right leg, left leg and 

mechanical oscillator; VT, VLR, VLL, Vo are the translational velocities of the trunk, 

right leg, left leg and mechanical oscillator; ERT, ERLR, ERLL and ERO are the rotational 

kinetic energies of the trunk, right leg, left leg and mechanical oscillator. And ERT can 

be expressed as  

)(
2

1 222

TZTZTYTYTXTXRT IIIE   ,                    (4.23) 

where ITX, ITY and ITZ are the moments of inertial of the trunk around the body axes of 

the trunk, and ωTX, ωTY and ωTZ are the rotational angular velocity of the trunk around 

the same body axes. ERLR, ERLL and ERO can be calculated in the same manner with Eq. 

(4.23). 

 

4.4.2 Potential energy 

  The change in potential energy in one walking cycle can be calculated from the 

geometrical relationship of foot sole with ground, as shown in Fig. 4-5. The double 

support phase of the quasi-passive walker is instantaneous because of the geometrical 

constrain of the quasi-passive walker, so “double support phase” is called “double 

support” for simplicity in this study. The attitudes of the quasi-passive walker in 

double support are indicated by the broken line model and the solid line model. The 

broken line model represents the attitude of the initial state of one walking cycle, and 

the solid line model represents the attitude final state of one walking cycle. Point A′, B 

and C are the tangency points of spherical foot sole with ground, point O′ and O are 

the hip joint of the quasi-passive walker, point D, E are the center of the spherical foot 

sole, and point F is the center of the segment DE. The radius of the foot sole is R, and 

the length of the leg is L (<R). In double support the quasi-passive walker is always 

symmetrical about the central axis OF because of the geometric constrain.  

The change of potential energy can be calculated by the change of vertical height of 

O′O. The length of the segment O′O is indicated by X. In stable periodic waking, O′O 

is parallel to the ground, and X agrees with the translational distance of one step. The 

right foot sole of the dotted line model is not showed for simplicity, because it does  



81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D F E 

α 

  

Forward direction 

R 

X 

 

Right leg 

Right leg 

Left leg 

 
 

A 

 

δ 

B C  

L 

ε 

 

 

 

Fig. 4-5 Geometrical relationship of foot sole with ground in the 

       sagittal plan in one walking cycle. 
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not affect the calculation of potential energy. The change of the potential energy can 

be expressed as   

hgmE RsP
 1_ ,                         (4.24) 

where h′ can be expressed as 

sinXh  .                         (4.25) 

Here, h′ and ε represent the change of the vertical position of the gravity center of the 

quasi-passive walker and the inclination angle of the slope. And from the geometrical 

relationship,  

X=O′O=A′B=A′C BC,                       (4.26) 

A′C=AC=α·R RLR )(   ,                     (4.27) 

BC=δ=2(R-L)·sinγ )sin()(2
2

LRLR
 

 ,               (4.28) 

       2

LR 



 ,                          (4.29) 

are obtained. In Equations (4.24) ~ (4.29), α represents the angle between the legs, ζR 

and ζL represent the angle of right and left leg relative to vertical line of horizontal 

plane, and γ represents the angle of right and left leg relative to vertical line of the 

slope. Based on the Equations (4.24) ~ (4.29), the change of the potential energy can 

be expressed as  

2

)(
sin

2
sin)(2)(1_

LRLR
LRRsP LRRgmE










 
     (4.30) 

 

4.4.3 Determination of the amplitude based on input energy 

 The relationship between amplitude of the mechanical oscillator and mechanical 

work W′r_1s can be obtained by  

wwwwsr dTdTW 




)()(
0

0
1_  



 ,                  (4.31) 

where β′ is the amplitude of the mechanical oscillator and W′r_1s is the mechanical 

work performed by the quasi-passive walker in the last walking cycle. W′r_1s is equal 

to the integral of the torque of motor T(θw) and T ′(θw) over the roll angle of the 

mechanical oscillator θw, where T(θw) represents the motor torque when θw changes 
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from 0 to β′, and T ′(θw) represents the motor torque when θw changes from β′ to 0. 

Assuming that θw and θ have sufficiently close value to 0, the approximate linear 

relationship between amplitude β and mechanical work Wr can be expressed by 

sr

sN

sr

sr

W

E

W

W

1_

1_

1_

1_









.                         (4.32) 

Therefore, β1, which is the amplitude of the mechanical oscillator determined by 

energy balance, can be calculated from Eq. (4.18) and Eq. (4.32), as follows 

 








sr

sDsP

sr

sN

W

EE

W

E

1_

1_1_

1_

1_

1
.                  (4.33) 

  In Eq. (4.30), ΔEP_1s is calculated in double support in the sagittal plane by 

assuming that the roll and yaw angles of the quasi-passive walker are 0. Note that the 

roll and yaw angles of the quasi-passive walker change even in straight walking and 

slight yaw motion occurs in double support, which leads to the error in the calculation 

of ΔEP_1s. Besides, β1 is calculated by using the approximate linear relationship of 

mechanical work and amplitude given by Eq. (4.32), which leads to the error in the 

calculation of the amplitude β1.  

  The errors make it difficult to stabilize the quasi-passive walker under uncertain 

ground condition only by only the control method. If the amplitude is determined only 

by β1, the input energy is not enough to recover the kinetic energy for keeping stable 

walking. Lack of the input energy, the stride of the quasi-passive walker decreases 

gradually, and ΔEP_1s and ED_1s decreases.  

  To solve the problem, the integral of the change of the period of swing leg motion 

Tint given by 

Tint =


 
n

i

sisi TT
1

1 )( ,                        (4.34) 

which is utilized to determine the assistant component of the amplitude beside β1. In 

Eq. (4.34), Tsi is the current period of the swing leg motion and Tsi-1 is the period of 

the swing leg motion of the last walking cycle. By multiplying integral gain KS to Tint, 

the assistant component β2 of the amplitude is given as 
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SK2 Tint.                            (4.35) 

From Eq. (4.34) and Eq. (4.35), the amplitude of the mechanical oscillator β is 

obtained by 

21   .                            (4.36) 

From Eq. (4.36), if Ts is constant during stable walking, β is mainly determined by β1 

based on energy balance. In the other hand, if the Ts changes, β2 can slow down the 

change of Ts. For example, if Ts gradually decreased, β2 increases and enlarge the 

input energy to recover the kinetic energy for stable walking. 

 

4.4.4 Simulation in the condition of a flat ground 

The direct method is examined by ODE simulation in the condition of a flat ground 

in this section. The version 1 of the simulation model shown in Fig. 2-1 is used for the 

ODE simulation. The center of masses of the feet is adjusted backward for 0.01 m to 

generate a rotation moment around hip axis (as shown in Fig. 2-3), so as to enable the 

swing leg to naturally swing forward even on a flat slope. 

The gait of the quasi-passive walker is stabilized for 3 seconds by “stabilization 

control algorithm” introduced in the section 2.3 at the beginning of the simulation, 

and then the “stabilization control algorithm” is switched to the direct method based 

on energy balance, because the proposed method can keep steady walking in the 

condition that the initial state of the gait of the quasi-passive walker is stable. The 

gain for β2 in Eq. (4.35) KS is set to 0.8, and the maximum amplitude βmax is set to 30 

degree. 

The gait of the quasi-passive walker is stabilized on a flat ground in the ODE 

simulation with the proposed method given by section 4.6. The sampling period of the 

simulation is set to 0.01 s. The change in the period of lateral motion TL and the 

period of swing leg motion TS in level walking are shown in Fig. 4-6. The horizontal 

axis is time, and the vertical axis is period. The dash line shows the time when the 

proposed method is switched from the “stabilization control algorithm” introduced in 

section 2.3. The level waking is stabilized and TL is synchronized with TS from Fig. 
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4-6. 

  The input energy and mechanical work performed by quasi-passive walker in one 

step are indicated by EN_1s and Wr_1s
 
, respectively. In the stable level walking, EN_1s 

and Wr_1s are shown in Fig. 4-7. The horizontal axis is time, and the vertical axis is 

energy and work. When the quasi-passive walker is stabilized in level walking Wr_1s is 

a little larger than EN_1s, because the minor component β2 of β increases the value of 

Wr_1s.  

 

 

 

 

 

 

Fig. 4-6 The period of lateral motion TL and the period  

of swing leg motion TS in level walking 
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Fig. 4-7 The Input energy EN_1s and the mechanical work performed  

by quasi-passive walker Wr_1s in one step of level walking 
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4.5 Indirect method for the determination of the amplitude of the mechanical 

oscillator 

  In section 4.4, the direct method based on the energy balance is proposed to 

calculate the input energy EN_1s for the simulation model. And the change in potential 

energy ΔEP_1s and dissipation energy ED_1s in the energy balance equation can be 

directly calculated based on the gait information from the ODE simulation.  

However, it is difficult to directly calculate ΔEP_1s and ED_1s for the experimental 

quasi-passive walker. First, ΔEP_1s is calculated by estimating the slope angle of 

ground based on the gait information in the direct method, and the estimation method 

relies on the accuracy of the pitch angles of the two legs. The accurate value of the 

pitch angles of the two legs can be acquired in simulation. However, the accuracy of 

the pitch angles of the two legs significantly decreases in experiments because of the 

unsmooth rotation of the gears, which connect the hip axis and the rotary encoders, as 

shown in Fig. 2-5(b). Moreover, the pitch angle of one leg is calculated by the sum of 

pitch angle of the trunk and the rotational angle of the leg relative to the trunk. The 

rotational angles of the two legs can be acquired from the rotary encoders, and the 

initial values of the rotational angles are set to 0 in experiment. However, it is difficult 

to adjust the initial rotational angles of the legs to 0 degree, so the initial errors exist 

and cause low accuracy of the estimation of slope angles.  

Second, ED_1s of the experimental quasi-passive walker consists of the dissipation 

energies caused by friction, deformation of ground and heel-strike. It is difficult to 

estimate or calculate the dissipation energies caused by friction and deformation of 

ground in experiments, so ED_1s cannot be calculated.  

In this section, an indirect method is proposed to calculate EN_1s based on a 

transformation of energy balance equation and to stabilize the gait of the experimental 

quasi-passive walker. According to the indirect method, the calculation of the change 

in potential energy is performed by utilizing the data of energy transformation during 

the last step, and does not rely on the estimation of slope angles and ED_1s.  

  First, the transformation of the energy balance equation is presented in the section 

4.5.1. Second, the calculation methods of the potential energy and the kinetic energy 
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are introduced in the sections 4.5.2 and 4.5.3. Third, a calculation method for the 

mechanical work Wr_1s performed by the experimental quasi-passive walker in one 

step is proposed in the section 4.5.4. Fourth, the determination method of the 

amplitude of the mechanical oscillator β is introduced in the section 4.5.5. 

 

4.5.1 Transformation of the energy balance equation 

In this section, the initial and final states during one step are redefined, and the 

energy balance equation given by Eq. (4.18) is transformed under the definition of 

one step. The initial and final states of one step are defined as the state when the roll 

angel of the quasi-passive walker becomes to the left and right maximum, as shown in 

Fig. 4-8. The trunk and legs are simplified to a block with curved bottom, which 

represents the spherical foot sole of the quasi-passive walker. One step is defined as 

the phase from the state A to the state B or the phase from the state B to the state A, 

because the left and right lateral motions of the quasi-passive walker alternately occur. 

The mechanical oscillator is always at the central line of the quasi-passive walker in 

the state A and B, because the phase difference between the mechanical oscillator and 

the quasi-passive walker is π/2 or ‒π/2. The parameters in Fig. 4-8 are shown as 

follows: 

GR: The center of mass of the quasi-passive walker 

HR: Vertical distance of the center of mass of the quasi-passive walker GR from the 

bottom of the block [m] 

HG: Vertical distance of the center of mass of the quasi-passive walker GR from the 

ground [m] 

R: The radius of foot sole [m] 

W: Half length of the clearance between the left and right feet [m] 

θ: Roll angle of the quasi-passive walker [rad] 

In one step, the change in potential energy ΔEP_1s is determined by the slope angel 

and the change of the roll angel of the quasi-passive walker. Therefore, the energy 

balance equation can be expressed as 
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Fig. 4-8 The initial and final states with the maximum 

of roll angle during one step 
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sDsrollPsslopePsDsPsN EEEEEE 1_1__1__1_1_1_  ,     (4.37) 

where ΔEP_slope_1s is the change in potential energy determined by the slope angle, and 

ΔEP_roll_1s is the change in potential energy determined by change of the roll angel of 

the quasi-passive walker during one step. In steady walking the left and right lateral 

motions are symmetric, and thus ΔEP_roll_1s is equal to 0. Therefore, in steady walking 

the Eq. (4.37) can be simplified to  

sDsslopePsN EEE 1_1__1_  .                 (4.38) 

  If the initial state of one step is the state A in Fig. 4-8 and the final state is the state 

B in Fig. 4-8, the relationship between mechanical work and mechanical energy of the 

quasi-passive walker during the last one step is expressed as 

sDsKsrollPsslopePsr EEEEW 1_1_1__1__1_
 ,         (4.39) 

where W'r_1s, ΔE'P_slope_1s, ΔE'P_roll_1s, ΔE'K_1s and E'D_1s are the mechanical work 

performed by the quasi-passive walker, the change in potential energy determined by 

the slope angle, the change in potential energy determined by change of the roll angel 

of the quasi-passive walker, the change in kinetic energy of the quasi-passive walker 

and the dissipation energy during the last one step, respectively.  

  If it is assumed that ΔEP_slope_1s≈ΔE'P_roll_1s and ED_1s≈E'D_1s in continuous two 

steps in steady walking, energy balance equation can be transformed into 

sKsrollPsrsN EEWE 1_1__1_1_
 ,              (4.40) 

from the Eq. (4.38) and Eq. (4.39). The calculation method of ΔE'P_roll_1s, ΔE'K_1s and 

W'r_1s are introduced in the following sections to calculate EN_1s.  

 

4.5.2 Potential energy 

  The change in potential energy ΔE'P_roll_1s caused by the lateral motion during one 

step is expressed by 

RsrollP mE  1__ gΔHG,                      (4.41) 

where mR is the mass of the quasi-passive walker, and ΔHG is the change in the height 

of the center of the mass of the quasi-passive walker in states A and B. From the 
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geometrical relation of the quasi-passive walker in Fig. 4-8, HG can be expressed by 

  ,             (4.42) 

where the definition of the parameters are introduced in the section 4.8.1. The roll 

angle of the quasi-passive walker θ can be measured by the 6-axis (3-axis Gyro and 

3-axis Accelerometer) motion-tracking sensor on the experimental quasi-passive 

walker. The change in potential energy ΔEP_roll_1s caused by the lateral motion during 

one step can be calculated from Eq. (4.41) and Eq. (4.42).  

 

4.5.3 Kinetic energy 

  The general calculation method of the kinetic energy is introduced in the section 

4.6.1, where the translational and rotational kinetic energy of the segments of the 

quasi-passive walker can be calculated separately in simulation. However, it is 

difficult to use the method for the experimental quasi-passive walker, because the 

translational velocities of the all segments of the quasi-passive walker cannot be 

measured by the sensors of the quasi-passive walker.  

  When the quasi-passive walker is in the state A or B as shown in the Fig. 4-8, the 

angular velocity in the roll direction and the translational velocities of the trunk and 

legs in the frontal plane are equal to 0, and thus the kinetic energy of the lateral 

motion of the trunk and the legs is equal to 0. Moreover, the kinetic energy of the 

mechanical oscillator in the frontal plane is equal to the rotational kinetic energy of 

the mechanical oscillator around the motor axis in the state A or B. Therefore, the 

kinetic energy of lateral motion of the quasi-passive walker can be calculated without 

the information of translational velocity in the state A or B. Besides, the yaw motion 

of the quasi-passive walker is very small in the states A and B, and thus the yaw 

motion can be ignored in the calculation of the kinetic energy for simplicity. 

  In order to improve the calculation accuracy of the kinetic energy of the 

quasi-passive walker motion in the sagittal plane in the states A and B, the rotational 

kinetic energy of the legs is calculated based on the moment of inertia of the legs 

around the hip axis, because the translational velocity of the legs cannot be directly 

  sincos)( WHRRH RG 
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measured in experiments. Therefore, in the state A or B, the kinetic energy of the 

quasi-passive walker can be expressed as 

TKrollOrollOpitchTpitchOTpitchLpitchLpitchRpitchRK EIIIIE   )(
2

1 2

__

2

__)(

2

__

2

__  , (4.43) 

where IR_pitch and IL_pitch are the moment of inertia of the right and left legs around the 

hip axis, respectively; IO_roll is the moment of inertia of the mechanical oscillator 

around the motor axis, and I(T+O)_pitch is the moment of inertia of the trunk and 

mechanical oscillator around the axis passing through the center of mass of them. In 

Eq. (4.43), ωR_pitch, ωL_pitch and ωT_pitch are the angular velocities of the right leg in the 

pitch direction, left leg and the trunk, respectively. And ωO_roll is the angular velocity 

of the mechanical oscillator around the motor axis. And E'TK is the kinetic energy of 

the quasi-passive walker motion in the sagittal plane in the states A or B, and includes 

a part of the translational kinetic energy of the quasi-passive walker motion in the 

sagittal plane.  

Angular velocity of the trunk in the pitch direction ωT_pitch can be measured by the 

6-axis motion-tracking sensor. Angular velocity of the right leg in the pitch direction 

ωR_pitch is equal to the sum of ωT_pitch and the angular velocity of the right leg relative 

to the trunk ωR_T. The experimental quasi-passive walker can measure the angle of the 

right leg relative to the trunk by the rotary encoder fixed at the hip joint, and the 

differential of the relative angle is equal to ωR_T. In the same manner, ωL_pitch can be 

calculated. And ωO_roll is the differential of the roll angle of the mechanical oscillator 

with respect to time, and is equal to the target path θwt because the mechanical 

oscillator is driven by the stepping motor which realizes accurate tracking to the target 

path. The moment of inertia of the segments is shown in the Table 4-2. 

The change in the kinetic energy ΔE'K_1s is the difference of the kinetic energy of 

the final and initial state during one step. Since the kinetic energy E'TK in the states A 

or B does not change significantly in steady walking, E'TK is deleted in the calculation 

of the ΔEK_1s for the experimental quasi-passive walker. Therefore, ΔE'K_1s is 

expressed by 
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where ω'R_pitch, ω'L_pitch and ω'T_pitch are the angular velocities of the right leg, left leg 

and the trunk in the pitch direction at the initial state of one step, respectively. And 

ω'O_roll is the angular velocity of the mechanical oscillator around the motor axis at the 

initial state of one step. 

 

 

 

Table 4-2 Parameters of the model shown in Fig. 4-8 

R [m]: The radius of foot sole  0.8 

HR [m]: Vertical distance of the center of mass of the 

quasi-passive walker GR from the bottom of the block  

0.237 

W [m]: Half length of the clearance between the left and 

right feet  

0.015 

IR_pitch [kg·m
2
]: The moment of inertia of the right leg 

around the hip axis  

0.0115 

IL_pitch [kg·m
2
]: The moment of inertia of the left leg around 

the hip axis  

0.0115 

I(B+O)_pitch [kg·m
2
]: The moment of inertia of the trunk and 

mechanical oscillator around the axis passing through their 

center of mass  

0.181 

IO_roll [kg·m
2
]: The moment of inertia of the mechanical 

oscillator around the motor axis  

0.0246 
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4.5.4 Mechanical work performed by the quasi-passive walker 

  The work of the experimental quasi-passive walker Wr_1s in one step is performed 

by the stepping motor, the torque of which can be measured by sensors, such as a 

torque meter. However, no sensors for measuring torque are used for the simplicity of 

the structure of the experimental quasi-passive walker. In this study, the relation of 

Wr_1s, the amplitude of the mechanical oscillator β and the maximum of the roll angle 

of the quasi-passive walker θmax is investigated by ODE simulation to acquire Wr_1s 

based on β and θmax.  

From the viewpoint of dynamics of the lateral motion of the quasi-passive walker, 

the torque of the motor determines the lateral motions of the quasi-passive walker and 

the mechanical oscillator. The amplitudes of the lateral motion of the quasi-passive 

walker and the mechanical oscillator are indicated by θmax and β, respectively. 

Moreover, Wr_1s is the path integral of the torque of the motor, and the integrating 

range is [0, β]. Therefore, the relation between Wr_1s, θmax and β is connected by the 

torque of the motor, and thus it is possible to acquire WR_1s by utilizing θmax and β for 

experimental quasi-passive walker.  

The relation between Wr_1s, θmax and β is investigated in ODE simulation. The 

version 2 of the simulation model is used, as shown in Fig. 2-4, because the model has 

the same structure, size and mass distribution with the current experimental 

quasi-passive walker. In simulation, β is set to a constant value, the range of which is 

set to 6~12 degree and the coefficient of restitution of the flat ground is changeable so 

that θmax changes as the coefficient of restitution changes. The data of Wr_1s versus 

θmax and β acquired from the simulation are shown in Fig. 4-9, the three axes of which 

represent Wr_1s, θmax and β, respectively. The function Wr_1s(θmax, β) is calculated by 

curve fitting based on least square method, and is expressed as 

maxmax1_ 00323.000188.000049.06034.0  srW ,     (4.45) 

which is shown in Fig. 4-10. Based on the Eq. (4.45), Wr_1s can be calculated by using 

β and θmax in experiment. The amplitude of the quasi-passive walker θmax can be 

measured by the 6-axis motion-tracking sensor.  
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Fig. 4-9 Data of Wr_1s versus θmax and β from the simulation  
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Fig. 4-10 Wr_1s as a function of θmax and β  
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4.5.5 Determination of amplitude based on input energy 

  The input energy EN_1s can be calculated from Eq. (4.40) in experiments, and by 

assuming that θw and θ have sufficiently close value to 0, the approximate linear 

relation between amplitude β and mechanical work Wr can be expressed by  

sr
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sr

sr

W

E

W

W

1_

1_

1_
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




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
,                     (4.46) 

which is also used in the direct method for the determination of amplitude, as shown 

in Eq. (4.32). Therefore, β can be calculated from Eq. (4.40) and Eq. (4.46) as follows 
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1_ .           (4.47) 

  In actual experiments, the gait of the quasi-passive walker can be stabilized by 

using β, which is determined only by Eq. (4.47), so the integral Tint shown in Eq. (4.34) 

is not used in the indirect method. 
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4.6 Conclusion 

  In this chapter the energy balance equation of stable walking was defined based on 

the energy transformation during walking, and a stabilization method based on energy 

balance was proposed. A direct method based on energy balance for the determination 

of β is examined by simulation. However, the some error of required input energy in 

one step caused by the direct method exists, and the direct method cannot be realized 

in experiment. To solve the problems, a novel indirect method based on energy 

balance for the determination of β was proposed to decrease the error in the 

calculation of input energy and to realize the proposed stabilization method in 

experiment. There are several conclusions and findings. 

  First, in the proposed direct method and indirect method, the amplitude of 

mechanical oscillator β is determined by using the required input energy. The results 

of the simulation showed that the gait of the quasi-passive walker was stabilized by 

the proposed control method.  

  Second, the indirect method uses the information of energy transformation during 

the last one step to calculate the required input energy. It is expected that the accuracy 

in the calculation of required input energy could be increased by decreasing the error 

in the calculation of potential energy and dissipation energy.   

  Third, the required input energy for keeping steady walking can be calculated based 

on energy balance. The calculation of input energy is only based on the information of 

the gait, and does not rely on the information from external sensors. 

Fourth, an estimation method of mechanical work performed by the quasi-passive 

walker Wr_1s was proposed and applied to the calculation of input energy EN_1s and the 

amplitude β. To estimate Wr_1s, a 3D map was constructed based on the data of 

simulation, and Wr_1s was shown as a function of the amplitudes of the quasi-passive 

walker and the mechanical oscillator. 
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5. Examination of the environmental adaptability of the quasi-passive walker 

5.1 Introduction 

  In chapter 4, a stabilization method based on energy balance was proposed to 

improve the environmental adaptability of the quasi-passive walker, and a direct and 

an indirect method based on energy balance were proposed to determine the 

amplitude of the mechanical oscillator. The environmental adaptability means that 

quasi-passive walkers can stably walk under variable ground conditions and adapt to 

the changing ground conditions such as different slope angles and coefficients of 

restitution. Therefore, in order to verify the environmental adaptability of the 

quasi-passive walker, the proposed method based on energy balance is examined 

under uncertain ground conditions including variable slopes and a path with different 

coefficients of restitution. 

  First, the stabilization method based on energy balance is examined under different 

ground conditions by ODE simulation in section 5.2. The direct method for the 

determination of the amplitude of the mechanical oscillator is used for the simulation 

model. Second, the stabilization method based on energy balance is examined under 

different ground conditions by using experimental quasi-passive walker in section 5.3. 

The indirect method for the determination of the amplitude of the mechanical 

oscillator is used in experiment. 
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5.2 Examination of the direct method for the determination of the amplitude by 

simulation 

  The direct method for the determination of the amplitude of the mechanical 

oscillator based on energy balance is proposed in section 4.4. In this section, the gait 

stabilization method based on the direct method and “stabilization control algorithm” 

is examined by ODE simulation. First, the stabilization method is examined on 

several slopes with constant inclination angle. Second, the stabilization method is 

examined on a slope with variable inclination angles. Third, the stabilization method 

is examined on a flat path with variable coefficients of restitution. 

  The version 1 of the simulation model shown in Fig. 2-1 is used for the ODE 

simulation. The center of masses of the feet is adjusted backward for 0.01 m to 

generate a rotation moment around hip axis (as shown in Fig. 2-3), so as to enable the 

swing leg to naturally swing forward even on a slight upward slope.  

The gait of the quasi-passive walker is stabilized for 3 seconds by “stabilization 

control algorithm” introduced in the section 2.3 at the beginning of the simulations, 

and then the “stabilization control algorithm” is switched to the proposed method 

based on energy balance, because the proposed method can keep steady walking in 

the condition that the initial state of the gait of the quasi-passive walker is stable. The 

gain for β2 in Eq. (4.35) KS is set to 0.8, and the maximum amplitude βmax is set to 30 

degree. The sampling period of the simulation is set to 0.01 s. 

 

5.2.1 Walk on a constant angle slope 

The proposed method is examined by simulation under different conditions with 

different slope angles, which are set to 1.5 degree, 1 degree, 0.5 degree, −0.5 degree, 

−1 degree and −1.5 degree. The downward slopes are represented by the negative 

value of the slope angles, and upward slopes are represented by the positive value of 

the slope angles. The period of lateral motion TL and the period of swing leg motion 

TS in the different ground conditions are shown in Fig. 5-1. The horizontal axis is time, 

and the vertical axis is period. The input energy EN_1s and the mechanical work 
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performed by quasi-passive walker Wr_1s in one step under the different ground 

conditions are shown in Fig. 5-2. The horizontal axis is time, and the vertical axis is 

work and energy.  

  The average values of β in the each ground condition are shown in Fig. 5-3. The 

correlation coefficient R of the average values of β and the approximate straight line is 

equal to 0.984. The range of the correlation coefficient R is (0,1), and when R is equal 

to 1, the correlation is highest. The average values of β1 determined based on energy 

balance and β2 determined by the change of the period of swing leg ΔTS are also 

shown in Fig. 5-3. As the slope angle increases, β1 almost linearly increases, but β2 

almost linearly decreases. Moreover, β1 is larger than β2 except the ground condition 

of -1.5 degree slope, so the principal component of β is β1, which is determined by the 

proposed method based on energy balance. Therefore, based on the proposed method, 

the amplitude of the mechanical oscillator β is changed automatically, and the desired 

energy is inputted into the quasi-passive walker so that the quasi-passive walker can 

walk stably.   
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Fig. 5-1 The changes of the period of swing leg motion TS and the period 

of lateral motion TL under different ground conditions 
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Fig. 5-2 The input energy EN_1s and mechanical work performed by the  

       quasi-passive walker Wr_1s under different ground conditions 
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Fig. 5-3 Average values of β, β1 and β2 versus of slope angle 
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5.2.2 Walk on a changeable slope 

  The direct method for the determination of the amplitude of the mechanical 

oscillator is examined in ODE simulation in the condition of a changeable slope, the 

angles of which change in the sequence of 0 degree, -1.5 degree, 0 degree, 1.5 degree 

and 0 degree, as shown in Fig. 5-4(a). The length of the first 0 degree slope is 1.5 

meter, and the length of the other slopes is 1 meter. The quasi-passive walker can 

walk stably on the changeable slope in simulation, and thus the proposed method is 

effective and can improve the environmental adaptability of the walker. The desired 

input energy EN_1s and the mechanical work performed by the quasi-passive walker 

Wr_1s in the simulation are shown in Fig. 5-4 (b). The horizontal axis is time, and the 

vertical axis is energy and work. From the Fig. 5-4, Wr_1s can supplies the desired 

energy in one step so that the quasi-passive walker can walk stably even on 

changeable slopes. However, there are obvious differences between Wr_1s and EN_1s 

during downhill and uphill walking, because the period of swing leg motion TS 

changes during downhill and uphill walking, and the assistant component β2 

determined by TS causes the additional input energy relative to EN_1s.  

The change of the kinetic energy of the quasi-passive walker in the simulation is 

shown in Fig. 5-5. According to energy balance, if EN_1s is estimated correctly and 

supplied by Wr_1s, the kinetic energy of the quasi-passive walker changes periodically. 

However, the kinetic energy of the quasi-passive walker changes obviously as the 

change of the slope angles especially during downhill and uphill walking. There are 

two reasons for the problem. One reason is the estimation error of ΔEP_1s, which is 

calculated based on the slope angle and walking distance in one step only with the 

consideration of the sagittal motion for simplicity. However, the lateral motion of the 

stance leg leads to estimation error of walking distance. Another reason is that the 

assistant component β2 leads to additional energy input, but without β2 it is difficult to 

stabilize the gait during uphill walking. 

The change of the amplitude of the mechanical oscillator β in the simulation is 

shown in Fig. 5-6. The horizontal axis is time, and the vertical axis is the amplitude.  
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Fig. 5-4 The change of the input energy EN_1s and the mechanical work 

performed by the robot Wr_1s on a changeable slope  
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Fig. 5-5 The change of kinetic energy of the quasi-passive walker on a changeable 

slope in the control of the direct method 

 

 

 

 

Fig. 5-6 The change of the amplitude of the mechanical oscillator β 

on a changeable slope in the control of the direct method 
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From the Fig. 5-6, the average value of β varies relative to the slope angles, because 

the change of slope angle causes the change of ΔEP_1s and EN_1s.  

The change of the roll angle θ of the quasi-passive walker is shown in Fig. 5-7(a). 

Relative to the change of slope angles, the roll angle θ changes obviously. The limit 

cycle of the roll angle θ is shown in Fig. 5-7(b). The phase plane trajectory does not 

converge to the initial stable trajectory because of the estimation erorr of EN_1s. 

The change of pitch angle of the two legs is shown in Fig. 5-8, where γR and γL are 

the pitch angles of the right and left legs. The result shows that the gait varies as the 

change of slope angles.  
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Fig. 5-7 The change of roll angle of the quasi-passive walker on a changeable slope 

in the control of the direct method 
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Fig. 5-8 The change of pitch angle of the two legs on a changeable slope 

            in the control of the direct method 
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5.2.3 Walk on a flat ground with different coefficients of restitution   

  In this section, the direct method is examined by simulation on a flat path with 

different coefficients of restitution. The coefficients of restitution of each flat path is 

set to 0.1, 0.4, 0.1 and 0.4 in sequence, and the lengths of the each flat path is set to 

1.5 m, 1.0 m, 1.0 m and 1.0 m in sequence, as shown in Fig. 5-9. In simulation the 

quasi-passive walker can adapt to the uncertain ground condition of different 

coefficients of restitution in the control of the direct method. 

The input energy EN_1s and the mechanical work performed by the quasi-passive 

walker Wr_1s in one step are shown in Fig. 5-10. The result shows that EN_1s almost 

agrees with Wr_1s, so Wr_1s supplies the desired energy that enables the quasi-passive 

walker to walk stably. Moreover, the average values of EN_1s and Wr_1s change 

according to the coefficients of restitution of the path, because the dissipation energy 

changes according to the coefficients of restitution of the path. There are differences 

between Wr_1s and EN_1s, because the period of swing leg motion TS changes according 

to the changes of coefficients of restitution of the ground, and the assistant component 

β2 which is determined by the change of TS causes the additional input energy relative 

to EN_1s.  

The change of the kinetic energy of the quasi-passive walker is shown in Fig. 5-11. 

In the control of direct method, the kinetic energy of the quasi-passive walker changes 

obviously as the change of the coefficients of restitution. The reason is that the 

estimation error of EN_1s and the assistant component β2 lead to additional energy 

input into the kinetic energy. 

The change of the amplitude of the mechanical oscillator β is shown in Fig. 5-12. 

When the coefficients of restitution of the path change, the average values of the 

amplitude β change significantly, and thus the quasi-passive walker can adapt to the 

changing ground conditions.  

The change of the roll angle θ of the quasi-passive walker is shown in Fig. 5-13. 

The roll angle θ changes as the change of slope angles because of the additional 

energy input caused by the assistant component β2. The change of pitch angle of the 



112 

 

two legs is shown in Fig. 5-14, where γR and γL are the pitch angles of the right and 

left legs. The result shows that the gait changes as the change of slope angles.  

 

 

 

Fig. 5-9 Profile of a flat path with different coefficients of restitution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 [m] 1.0 [m] 1.0 [m] 1.0 [m] 

0.1 0.4 0.1 0.4 

Coefficients 

of restitution: 

Length: 

Horizontal distance [m] 

Flat path 

0.0

0.4

0.8

1.2

0 5 10 15 20 25 30

W
o

rk
 a

n
d
 e

n
er

g
y
 [

J]
 

Time [s] 

E
N_1s

 W
r_1s

 

0.4 0.1 0.1 0.4 
Coefficient of 

restitution: 

Fig. 5-10 The change of the input energy EN_1s and the mechanical work performed  

      by the robot Wr _1s on a flat path with different coefficients of restitution 
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Fig. 5-11 The change of kinetic energy of the quasi-passive walker on a flat path 

with different coefficients of restitution 
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Fig. 5-12 The change of the amplitude of the mechanical oscillator β 

on a flat path with different coefficients of restitution 
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Fig. 5-14 The change of pitch angle of the two legs on a flat path 

with different coefficients of restitution 
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5.3 Examination of the indirect method for the determination of the amplitude  

by simulation 

The indirect method for the determination of the amplitude of the mechanical 

oscillator based on energy balance is proposed in section 4.5. In this section, the gait 

stabilization method based on the indirect method is examined by ODE simulation. In 

order to compare the indirect method to direct method, the same simulation model and 

walking paths are utilized in simulation. First, the stabilization method is examined on 

a slope with variable inclination angles. Second, the stabilization method is examined 

on a flat path with variable coefficients of restitution.  

The gait of the quasi-passive walker is stabilized for 3 seconds by “stabilization 

control algorithm” introduced in the section 2.3 at the beginning of the simulations, 

and then the determination method of the amplitude of the mechanical oscillator is 

switched to the indirect method. The maximum amplitude βmax is set to 30 degree. The 

sampling period of the simulation is set to 0.01 s. 

 

5.3.1 Walk on a changeable slope 

The changeable slope is shown in Fig. 5-15(a), and the slope angles the change in 

the sequence of 0 degree, -1.5 degree, 0 degree, 1.5 degree and 0 degree. The 

quasi-passive walker can walk stably on the changeable slope in simulation in the 

control of indirect method. The desired input energy EN_1s and the mechanical work 

performed by the quasi-passive walker Wr_1s in the simulation are shown in Fig. 5-15 

(b). The horizontal axis is time, and the vertical axis is energy and work. From the Fig. 

5-15(b), Wr_1s almost supplies the desired energy in one step. In comparison to the 

direct method, there are fewer differences between Wr_1s and EN_1s during walking, 

because the indirect method does not use the assistant component β2 to determine the 

amplitude of the mechanical oscillator.  

The change of the kinetic energy of the quasi-passive walker in the control of 

indirect method is shown in Fig. 5-16. According to energy balance, if EN_1s is 

correctly estimated and supplied by Wr_1s, the kinetic energy of the quasi-passive  
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Fig. 5-15 The change of the input energy EN_1s and the mechanical work performed by  

the robot Wr_1s on a changeable slope in the control of the indirect method 
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walker changes periodically. In comparison to the direct method, the indirect method 

makes the kinetic energy of the quasi-passive walker almost change periodically even 

during downhill and uphill walking. It is because that the indirect method utilizes the 

information of energy transformation during last one step to improve the estimation 

accuracy of EN_1s. 

The change of the amplitude of the mechanical oscillator β in the control of indirect 

method is shown in Fig. 5-17. From the Fig. 5-17, the average values of the amplitude 

β vary relative to the change of the slope angles, because the change of slope angle 

causes the change of EN_1s. 

The change of the roll angle θ of the quasi-passive walker is shown in Fig. 5-18(a). 

Relative to the change of slope angles, the roll angle θ does not change hugely. The 

limit cycle of the roll angle θ is shown in Fig. 5-18(b). The phase plane trajectory 

converges to the area near the initial stable trajectory. Therefore, the lateral motion of 

the quasi-passive walker is stabilized in the control of indirect method. In comparison 

to the direct method, the indirect method can enable the walker to walk more stably 

under uncertain ground conditions. 

The change of pitch angle of the two legs is shown in Fig. 5-19, where γR and γL are 

the pitch angles of the right and left legs. In comparison to the lateral motion of the 

quasi-passive walker, the sagittal motion of the walker varies relative to the slope 

angles and can be still stabilized during walking.  
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Fig. 5-16 The change of kinetic energy of the quasi-passive walker on a  

     changeable slope in the control of the indirect method 

 

 

 

 

Fig. 5-17 The change of the amplitude of the mechanical oscillator β 

on a changeable slope in the control of the indirect method 
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Fig. 5-18 The change of the roll angle of the quasi-passive walker on a  

     changeable slope in the control of the indirect method 

 

 

 

 

-3

-2

-1

0

1

2

3

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

d
θ
/d

t 
[r

ad
/s

] 

θ [rad] 

-1.5 deg 0.0 deg 0.0 deg 1.5 deg Slope angle: 0.0 deg 

-20

-10

0

10

20

0 5 10 15 20 25 30 35 40

A
n
g
le

 [
d
eg

] 

Time [s] 

θ 

(a) Roll angle θ of the quasi-passive walker 

(b) Phase plane portraits of lateral motion of the quasi-passive walker 

walker 



120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-19 The change of pitch angle of the two legs on a changeable slope 

             in the control of the indirect method 
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5.3.2 Walk on a flat ground with different coefficients of restitution 

In this section, the indirect method is examined by simulation on a flat path with 

different coefficients of restitution. In order to compare the indirect method with 

direct method, the same path is used as shown in Fig. 5-9. The coefficients of 

restitution of each flat path is set to 0.1, 0.4, 0.1 and 0.4 in sequence, and the lengths 

of the each flat path is set to 1.5 m, 1.0 m, 1.0 m and 1.0 m in sequence.  

The desired input energy EN_1s and the mechanical work performed by the 

quasi-passive walker Wr_1s in one step are shown in Fig. 5-20. The result shows that 

EN_1s almost agrees with Wr_1s, so Wr_1s supplies the desired energy and enables the 

quasi-passive walker to walk stably. In comparison to the direct method, there are 

fewer differences between Wr_1s and EN_1s during walking, because the indirect 

method does not use the assistant component β2 to determine the amplitude of the 

mechanical oscillator.  

The change of the kinetic energy of the quasi-passive walker is shown in Fig. 5-21. 

According to energy balance, if EN_1s is correctly estimated and supplied by Wr_1s, the 

kinetic energy of the quasi-passive walker changes periodically. In comparison to the 

direct method, the indirect method makes the kinetic energy of the quasi-passive 

walker almost change periodically even when the coefficient of restitution of the path 

changes. It is because that the indirect method utilizes the information of energy 

transformation during last one step to decrease the estimation error of EN_1s. 

The change of the amplitude of the mechanical oscillator β is shown in Fig. 5-22. 

When the coefficients of restitution of the path change, the average value of the 

amplitude β does not change significantly in comparison to the condition of the 

changeable slope as shown in Fig. 5-17 even in the same control method. It is because 

that the change of slope angles causes more change of EN_1s in comparison to the 

change of coefficients of restitution in this simulation condition. 

 The change of the roll angle θ of the quasi-passive walker is shown in Fig. 5-23. 

Relative to the change of coefficients of restitution, the roll angle θ does not change  
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Fig. 5-20 The change of the input energy EN_1s and the mechanical work performed  

         by the robot Wr _1s on a flat path in the control of the indirect method 

 

 

 

Fig. 5-21 The change of kinetic energy of the quasi-passive walker on a flat path with  

different coefficients of restitution in the control of the indirect method 
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Fig. 5-22 The change of the amplitude of the mechanical oscillator β on a flat path  

with different coefficients of restitution in the control of the indirect method 

 

 

Fig. 5-23 The change of roll angle of the quasi-passive walker on a flat path with 

         different coefficients of restitution in the control of the indirect method 
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hugely. Therefore, the lateral motion of the quasi-passive walker is stabilized in the 

control of the indirect method.  

The change of pitch angle of the two legs is shown in Fig. 5-24, where γR and γL are 

the pitch angles of the right and left legs. The result shows that the gait does not 

change hugely relative to the change of coefficients of restitution in comparison to the 

change of slope angles.  

 

 

 

 

 

 

 

Fig. 5-24 The change of pitch angle of the two legs on a flat path with different  

    coefficients of restitution in the control of the indirect method 
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5.4 Examination of the environmental adaptability by experiments  

5.4.1 Hardware structure  

  The hardware structure of the control system of the quasi-passive walker is 

composed of a stepping motor, a motor driver, two microcomputers, two rotary 

encoders, and a 6-axis motion-tracking sensor, as shown in Fig. 5-25.  

The microcomputer “H8/3052F” calculates the trajectory of the mechanical 

oscillator and sends control pulse to motor driver to actuate the stepping motor. 

The 6-axis motion-tracking sensor “MPU 6050” can measure the roll, pitch, and 

yaw angle of the trunk, and the angular velocities around the three body axes of the 

sensor. The data from the sensor is send to the microcomputer “Arduino Uno” through 

I
2
C, and “Arduino Uno” sends the data to the microcomputer “H8/3052F” through 

RS232. Here, the microcomputer “Arduino Uno” is used only for data 

communication. 

The two rotary encoders can measure the pitch angles of the legs relative to the 

trunk. From the roll, pitch, and yaw angle of the trunk acquired from 6-axis 

motion-tracking sensor, the roll, pitch, and yaw angle of the legs can be calculated. 

The angular velocity of the legs can also be calculated in the same manner. Moreover, 

the period of the swing leg TS can be measured by using the data from rotary encoders. 

The beginning of one period of the swing leg is judged when the pitch angles of the 

legs become the same. 

The rotational kinetic energies of the trunk and legs and the change in potential 

energy of the quasi-passive walker ΔEP_roll_1s caused by lateral motion can be 

calculated by using the data form the rotary encoders and the 6-axis sensor.  
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Fig. 5-25 Hardware structure of the control system 
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5.4.2 Experiment on a changeable slope 

  The indirect method proposed in section 4.8 is examined experimentally on a 

changeable slope in order to verify the environmental adaptability of the quasi-passive 

walker. The walking path with different slope angles is shown in Fig. 5-26. The slope 

angles are set to 1°, 0°, and −1° in sequence, but the ground condition is unknown to 

the quasi-passive walker. The gait of the quasi-passive walker is stabilized by setting 

β to 10° for 8 seconds at the beginning of the experiment on the slope with the 

inclination of 1 degree. And then the determination method of β is switched to the 

indirect method based on energy balance proposed in section 4.8, because the 

proposed method can keep steady walking in the condition that the initial state of the 

gait is stable. Besides, the sampling period of the control system is 0.02 s. 

  The quasi-passive walker shows stable gait in the experiment as shown in Fig. 5-27, 

which indicates that the indirect method based on energy balance can also stabilize the 

gait of the quasi-passive walker even under uncertain ground conditions of different 

slope angles.  

  The period of lateral motion TL and the period of swing leg motion TS during 

walking is shown in Fig. 5-28. Since the stride of the quasi-passive walker is very 

small during uphill walking, it is difficult to judge the matching of the two legs by the 

sensors and to measure TS correctly during uphill walking. Therefore, TL does not 

agree with TS during uphill walking before 26 s. However, TL agrees with TS during 

level- and downhill-walking after 26 s because the stride of the quasi-passive walker 

becomes larger. From the data during level- and downhill-walking after 26 s, TL is 

synchronized with TS. 

  The change of β during walking is shown in Fig. 5-29. Since the steady state gait of 

the quasi-passive walker is greatly changed when the slope angle changes, the 

required input energy EN_1s is changed and thus β changes greatly at the moment. 

Besides, β shows different values during steady walking under different ground 

conditions. It means that the determination method of β based on energy balance is 
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effective and the proposed control method can stabilize the gait of the quasi-passive 

walker under uncertain ground conditions. 

  The change of required input energy EN_1s and the mechanical work performed by 

the motor Wr_1s in one step is shown in Fig. 5-30. During steady walking EN_1s almost 

agrees with Wr_1s. It means that the required input energy is provided by the motor so 

that the quasi-passive walker can keep steady walking. 

 

 

 

 

 

 

 

Fig. 5-26 The walking path for the experiment 
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Fig. 5-27 The experiment of walking under uncertain ground conditions 
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Fig. 5-28 The changes of the period of lateral motion TL and 

the period of swing leg motion TS on a variable slope 

 

 

 

Fig. 5-29 The change of the amplitude of the mechanical oscillator 

                on a variable slope 
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Fig. 5-30 The changes of the input energy EN_1s and the mechanical work 

             performed by the quasi-passive walker Wr_1s 
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5.4.3 Experiment on a flat ground with different coefficient of restitution 

The indirect method is examined experimentally on a flat path with different 

coefficient of restitution to verify the environmental adaptability of the quasi-passive 

walker under different ground conditions. The walking path with different slope 

angles is shown in Fig. 5-31. The coefficient of restitution of the wooden path is 0.042, 

and the coefficient of restitution of the path covered by rubber blanket is 0.021. The 

gait of the quasi-passive walker is stabilized by setting the amplitude of the 

mechanical oscillator β to 10° for 8 seconds at the beginning of the experiment. And 

then the determination method of β is switched to the indirect method based on energy 

balance. Besides, the sampling period of the control system is 0.02 s. 

The result shows that the quasi-passive walker can walk stably on a flat path with 

different coefficient of restitution, as shown in Fig. 5-32. The period of lateral motion 

TL and the period of swing leg motion TS during walking is shown in Fig. 5-33. The 

result shows that TL almost agrees with TS during walking, so the gait of the 

quasi-passive walker is stabilized by the proposed method. The walking path changes 

from wooden path to rubber path, so the gait of the quasi-passive walker becomes 

unstable at 16 second, but the TL is synchronized with TS after 20 second. 

The change of β during walking is shown in Fig. 5-34. The amplitude β changes 

greatly after 16 second, because the steady state gait of the quasi-passive walker 

changes according to the coefficient of restitution. It means that the determination 

method of β based on energy balance is effective. 

The change of required input energy EN_1s and the mechanical work performed by 

the motor Wr_1s in one step is shown in Fig. 5-35. During steady walking EN_1s almost 

agrees with Wr_1s even under the ground conditions of different coefficient of 

restitution. It means that the energy balance is satisfied so that the quasi-passive 

walker can keep steady walking. According to the experiment, the quasi-passive 

walker can adapt the changing ground condition of different coefficient of restitution. 
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  for the experiment 
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Fig. 5-32 The experiment of walking on a flat path  

with different coefficients of restitution 
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5.5 Conclusion 

  In this chapter the stabilization method based on energy balance was numerically 

and experimentally examined under uncertain ground conditions including different 

slope angles and coefficients of restitution. The direct and indirect method for the 

determination of β is examined by simulation. The results of the simulation showed 

that the environmental adaptability of the quasi-passive walker is significantly 

improved by the indirect method. The estimation accuracy of the desired input energy 

is improved by the indirect method. 

Moreover, the indirect method for the determination of β was experimentally 

examined. The results of the experiments showed that the gait of the quasi-passive 

walker could be stabilized by the proposed stabilization method even under uncertain 

ground conditions including different slope angles and coefficients of restitution.  
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6. Conclusion 

  This research focuses on stabilizing the gait of a 3D quasi-passive walker based on 

energy balance to improve its environmental adaptability by utilizing the information 

of gait.  

First，in order to improve the environmental adaptability of the quasi-passive 

walker under complex ground condition, the control methods for turn, uphill and level 

walking were proposed and examined numerically and experimentally. However, the 

problem of excess or deficiency of input energy exists because of the determination 

method of the amplitude of the mechanical oscillator based on “period stabilization 

condition”. Besides, the quasi-passive walker and the control method based on forced 

entrainment were compared with two similar quasi passive walkers and their control 

methods based on sine oscillator by applying the sine oscillator to our quasi-passive 

walker in ODE simulation.     

Second，energy efficiency of the quasi-passive walker was investigated and 

analyzed from the viewpoint of energy transformation. Moreover, energy transfer and 

transformation during walking were defined and analyzed qualitatively to further 

understand the mechanism of energy efficient gait of the quasi-passive walker. 

Third, according to the energy transformation, energy balance equation in steady 

walking was proposed. Further, a stabilization algorithm based on energy balance was 

proposed and examined numerically and experimentally under uncertain ground 

condition. 

Fourth, the dynamics of the lateral motion of the quasi-passive walker and the 

model of changing motion of stance leg were indicated. Since the approximate linear 

relationship between the amplitude of the mechanical oscillator β and mechanical 

work performed by the motor was used to calculate β, the approximate linear 

relationship was investigated based on the dynamics of the quasi-passive walker. 

Further, the energy balance equation of stable walking was defined, and a stabilization 

method based on energy balance was proposed. 

Fifth, the stabilization method based on energy balance was numerically and 

experimentally examined under different ground conditions different slope angles and 
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coefficients of restitution. The results showed that the environmental adaptability of 

the quasi-passive walker was significantly improved by the indirect method. 

There are several conclusions and finding in this thesis: 

(1) Uphill and level walking of the 3D quasi-passive walker was realized on a 

changeable slope in ODE simulation by improving the determination method of 

the amplitude of the mechanical oscillator. It was demonstrated that passive gait 

could be realized even under changeable ground condition by appropriate 

actuation and control. 

(2) In comparison to the control method based on sine oscillator, the control 

method proposed by this thesis made the quasi-passive walker more robust to 

initial conditions, because the control method proposed in this research utilized 

the information of gait. It is demonstrated that appropriate utilization of the 

information of the gait can improve the environmental adaptability of the 

quasi-passive walker. 

(3) A novel turn control method based on passive walking was proposed and 

examined. This founding improved the possibility of application of 

quasi-passive walker under complex ground condition. 

(4) The relation between energy utilization rate and energy efficiency of walking 

was investigated, and it was found that high energy utilization rate could 

improve the energy efficiency of walking. 

(5) Energy transfer, transformation, input and dissipation from the quasi-passive 

walker to environments were analyzed. The constraint forces of joints transfer 

mechanical energy to the legs. This founding can explain why a quasi-passive 

walker with passive hip joints can walk on flat ground and even upward slope. 

(6) The dynamics of lateral motion of a model with curved feet was indicated. The 

relation between the amplitude of the mechanical oscillator and the mechanical 

work performed by the quasi-passive walker was investigated and clarified 

based on dynamics.  

(7) Energy balance equation in steady walking was proposed and defined according 

to the energy transformation. Energy balance equation is a necessary condition 
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of steady walking, and provides a possibility to stabilize the gait of the 

quasi-passive walker. 

(8) A stabilization algorithm based on energy balance was proposed and examined 

numerically and experimentally. The required input energy of the quasi-passive 

walker in one step was calculated based on energy balance equation. The 

environmental adaptability of the quasi-passive walker is significantly 

improved by the indirect method. The estimation accuracy of the desired input 

energy is improved by the indirect method. 

(9) Based on the idea that utilize the interaction between the quasi-passive walker 

and environment, the required input energy of the quasi-passive walker in one 

step can be calculated even under uncertain ground condition by using the 

information of the gait of the quasi-passive walker. It is because that the gait of 

the quasi-passive walker is the result of the interaction, and contains the 

information of uncertain ground conditions. Therefore, the idea was 

successfully extended to the stabilization control under uncertain ground 

conditions. 

In future work, first, the energy balance of turn will be investigated, and the 

proposed method based on energy balance will be extended to turn control. Second, 

the disturbance of external force will be considered in the proposed method, because 

the disturbance changes the mechanical energy of the quasi-passive walker. Third, the 

proposed method will be examined in a more human-like quasi-passive walker, such 

as a quasi-passive walker model with knees. Fourth, the stabilization method based on 

energy balance can be also applied to stabilize periodic motion other systems. 
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