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In a new formalism of the Jost function method, the coupled first-order differential equations are
solved on a Lagrange mesh. To this end, we modify the original definition of the expansion in the
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1. Introduction

The Schrödinger equation has various types of solutions depending on the boundary conditions:
bound, scattering, and resonant states. From the viewpoint of the S-matrix, the bound and resonant
states are classified into “pole” states, which correspond to a pole of the S-matrix in the complex
momentum plane. Among the pole states, anti-bound states, in other words, virtual states, have a
particular nature. The complex momentum of the virtual state is purely imaginary with a negative
sign, while that of the bound states is also purely imaginary but with a positive sign. Hence, the
virtual states and bound states give the same negative sign for the energy eigenvalue.

Under the condition that the potential vanishes faster than the Coulomb one, the two-body
Schrödinger equation becomes simple in the asymptotic region. Therefore, one can define the asymp-
totic solution, and the scattering wave is constructed as the distortion by the presence of the potential.
The S-matrix can be represented by using the distortion from the asymptotic solution.

The Jost function method (JFM) has been developed in order to obtain the S-matrix accurately
using the properties of functions, which become constant in the asymptotic region and equal to the
Jost functions. In Refs. [1,2], a practical formalism is given to calculate the Jost functions by using
the technique of the variable-constant method. The method has been developed and applied to discuss
the partial decay widths in the coupled-channel problem [3], the property of the virtual states of the
4He+n and 9Li+n systems [4], and the application to the orthogonality condition model [5]. Based
on the above success, we found that the JFM approach is very useful in studying unstable systems.

The Lagrange-mesh method is one of the efficient ways to perform an approximate variational
calculation for the Hamiltonian with expressions discretized on mesh points. The calculation is sim-
plified with the help of the basis of Lagrange functions. The essential point is that the basis functions
are orthogonal to each other and vanish at all mesh points except one, the associate mesh point. The
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accuracy of the calculation is examined by using various orthogonal functions [7–11]. An appropri-
ately chosen mesh and scaling factor can provide sufficient accuracy for the calculation. Even for
very small numbers of mesh points, N ∼ 30, the accuracy is fulfilled [11].

One more important feature of the Lagrange-mesh method is its applicability to integro-differential
equations. In the cases that the potential is of a non-local type, in which separable-type potentials are
included, or the Schrödinger equation contains the projection operator such as in the orthogonality
condition model [6], we need to solve an integro-differential equation. Using the property of the
Lagrange basis, we do not have to perform any explicit integrations for the interaction or projection
operators, and only the value at each mesh point needs to be calculated. Therefore, the calculation
can be done very quickly compared to explicit integrations.

Even in 1D problems, one has to solve coupled-channel equations for studying various nuclear
systems. In the case that the system has many thresholds, one has to consider to which Riemann
sheet the pole belongs. Here, the JFM can trace the movement of the pole explicitly by defining the
phase of the complex momentum in each channel.

In other cases, e.g., the formalism of CDCC (the continuum-discretized coupled-channel
method) [12,13], one has to prepare the “pseudo states” by solving the equation for the system of
the projectile. After that, the CDCC equation is constructed by coupling the pseudo states of the
projectile to the target. Therefore, the equation becomes a coupled-channel one, and the number of
channels depends on the size of the set of pseudo states.

In coupled-channel problems such as that described above, if we apply the ordinary mesh-point
representation for solving the equation, the dimension of the matrix becomes huge. For example,
suppose that we take coordinates from 0 to 10 fm and a mesh step of the discretized coordinates
is δx = 0.01; the dimension of the matrix in one channel is N = 1000. Hence, in the M coupled
equations, the total dimension becomes N × M . For the case M = 200, which is a typical channel
size in CDCC calculations, the total dimension becomes 200 000. Therefore, it is necessary to reduce
the number of mesh points in each channel for performing calculations in multi-channel systems
including non-local operators in the equation.

In this work, we combine the Jost function method (JFM), which has the ability to study multi-
channel systems by defining the complex momentum explicitly, with the Lagrange-mesh method,
which is able to reduce the number of mesh points drastically with reasonable accuracy.

2. Formalisms

2.1. Lagrange mesh

First, we briefly show the essential formalism of the Lagrange-mesh method. Details and many
applications are shown in Refs. [7–11].

An integration of a function g(x) in the interval [a, b] can be approximated by using the Gauss
quadrature as follows:

∫ b

a
g(x) dx �

N∑
k=1

λk g(xk) (1)

where xk are the mesh points and λk are the weights. We require this quadrature to be exact for
products of two functions as

g(x) ⇒ fi (x) f j (x). (2)
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Here, fi (x) are the Lagrange-basis functions, which satisfy the conditions at the mesh point x j as
follows:

fi (x j ) = λ
−1/2
i δi j . (3)

These functions are exactly orthonormal,∫ b

a
fi (x) f j (x) dx =

N∑
k=1

λk fi (xk) f j (xk) = δi j . (4)

We use the above property for solving the Schrödinger equation. Let us consider the 1D
Schrödinger equation as

− d2 ψ(x)

dx2 + V (x)ψ(x) = Eψ(x), (5)

where we take �
2/2μ = 1 for simplicity. To solve the equation, we expand the solution ψ with the

Lagrange basis fi as follows:

ψ(x) =
N∑

j=1

c j f j (x). (6)

Using the property (3) of the Lagrange basis at the points x j , the coefficients of the expansion c j can
be obtained as

c j = λ
1/2
j ψ(x j ). (7)

Since the definition of the argument of the Lagrange functions is dimensionless, we can extend the
Lagrange function by scaling with a factor h as

f̂ j (x) = h−1/2 f j (x/h). (8)

This scaled function is simply denoted as f j below.
In order to solve the Schrödinger equation (5), we multiply by fi from the left and integrate in

the region [0,∞). With the help of the property (4), the equation can be written with the variational
equation for ci as follows:

N∑
j=1

(Ti j + Vi j ) c j = Eci . (9)

This equation can be solved once the matrix elements Ti j and Vi j are obtained. Here, Ti j ≡
〈 fi |(−d2/dx2)| f j 〉 are calculated analytically by using the functional form of the Lagrange basis.
The important point of the Lagrange-mesh method is that the matrix elements Vi j can be obtained
very easily without any integration due to the property of the Lagrange basis (4),

Vi j ≡ 〈 fi |V | f j 〉

�
N∑

k=1

λk V (xk) fi (xk) f j (xk)

= V (xi ) δi j . (10)

From the above equation, we find that the matrix of Vi j becomes diagonal with respect to the label
of the mesh points i, j . Therefore, the variational equation (9) is written as

N∑
j=1

(Ti j + V (xi ) δi j ) c j = Eci . (11)

We can obtain the solution within sufficient accuracy for ci by solving the system or matrix inversion.
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2.2. Jost function method

Next, we briefly review the Jost function method (JFM). The details are given in the original papers
of Sofianos and Rakityansky [1,2] and also in our previous papers [3–5].

We write the Schrödinger equation for the radial part as follows:[
∂2

∂r2 + k2 − 2ηk

r
− l(l + 1)

r2

]
φ(r) = 2μ

�2 V (r) φ(r), (12)

where the radial part of the wave function R(r) is replaced by φ(r) = r R(r).
The homogeneous solution H (±)

l (z) of Eq. (12) becomes known functions,

H (±)
l (z) =

{
Fl(η, z)∓ i Gl(η, z) for η �= 0,

z [ jl(z)∓ i nl(z)] for η = 0.
(13)

Here, Fl and Gl are the regular and irregular Coulomb functions, respectively, and jl and nl are
spherical Bessel functions. For η = 0, one has Fl(0, z) = z jl(z) and Gl(0, z) = znl(z).

In order to solve Eq. (12), we introduce two unknown functions F (±)(k, r) and express the regular
solution as follows:

φ(r) ≡ 1

2

[
H (+)

l (kr)F (+)(k, r)+ H (−)
l (kr)F (−)(k, r)

]
. (14)

The function F (+)(k, r) tends for r → ∞ to a constant, the Jost function. It can thus be considered
as a variable-r Jost function. Since we introduced two unknown functions F (±)(k, r) for solving
the equation, we can define a constraint to reduce the degrees of freedom. Hence, we introduce an
additional constraint condition, which is usually chosen in the variable-constant method:

H (+)
l

[
∂rF (+)

]
+ H (−)

l

[
∂rF (−)

]
= 0. (15)

Inserting Eq. (14) into Eq. (12) and using the condition (15), the second-order differential equation
(12) is reduced to the first-order one:

∂F (±)(k, r)
∂r

= ± μ

ik�2 H (∓)
l (kr)V (r)

{
H (+)

l (kr)F (+)(k, r)+ H (−)
l (kr)F (−)(k, r)

}
. (16)

This is the basic equation of the Jost function method.
At the origin, the functions F (±)(k, 0) become unity due to the boundary condition that the wave

function is regular,

lim
r→0

|φ(r)/Fl(η, kr)| = 1, (17)

since Fl(η, kr) is the regular solution of the homogeneous part of Eq. (12).
From the definition of the wave function φ(r) in Eq. (14), we obtain the boundary condition for

the functions F (±) at the origin as

lim
r→0

F (±)(k, r) = 1 + O(r2l+2). (18)

This boundary condition leads to a wave function regular at the origin,

lim
r→0

|φ(r)/Fl(η, kr)| = lim
r→0

∣∣∣∣12
[

H (+)
l (kr)F (+)(k, r)+ H (−)

l (kr)F (−)(k, r)
]
/Fl(η, kr)

∣∣∣∣
= lim

r→0

1

2

∣∣∣∣F (−)(k, r)+ F (+)(k, r)+ i
Gl(η, kr)

Fl(η, kr)
[F (−)(k, r)− F (+)(k, r)]

∣∣∣∣
= 1 + O(r) = 1. (19)

In the asymptotic region, with the condition that the potential vanishes faster than 1/r , F (±)(k, r)
become constant values, which are equivalent to the “Jost functions” of Eq. (12).
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2.3. Matrix representation of the equation of the Jost function method

To simplify the notation of Eq. (16), we use a matrix representation. For the right-hand side of
Eq. (16), we use a 2 × 2 matrix A as

A =
(

A++ A+−

A−+ A−−

)
. (20)

Here, the matrix elements are defined as

Aσiσ j (r) ≡ σi
μ

ik�2 H (−σi )
l (kr)V (r) H

(σ j )

l (kr) (21)

with σi = ±.
For the functions F±(r), we also use a matrix representation as

F(r) ≡
(
F (+)(r)
F (−)(r)

)
. (22)

Using the definitions (21) and (22), the equation of JFM is written in matrix form as

dF(r)

dr
= A(r)F(r). (23)

The aim of our work is to solve the above equation by applying the Lagrange-mesh method. The
ordinary way to solve this first-order differential equation is the Runge–Kutta method. This gives
an accuracy of O((δx)4) in the standard version. In the previous calculations with the JFM [3,4],
the typical value of the mesh size is δx = 0.01, which gives sufficient accuracy even for calculating
virtual states.

2.4. Expansion with the Lagrange basis

On a Lagrange mesh, the wave function is expanded using the Lagrange basis as in Eq. (6). In order
to classify the matrices according to the signs and mesh points, we use a notation with a tilde to
represent the matrices, which explicitly includes the suffixes of the mesh points.

According the original manner of the Lagrange-mesh method, we expand the Jost functions
F (±)(r) as

F (±)(r) =
N∑

i=1

fi (r) c(±)i

= f̃
T
(r) c̃(±), (24)

where we use the matrix representations

f̃
T
(r) ≡ (

f1(r) f2(r) · · · fN (r)
)
, (25)

and [
c̃(±)

]T ≡
(

c(±)1 c(±)2 · · · c(±)N

)
. (26)

By using the above matrices, f̃ (r) and c̃(±), we define matrices F̃(r) and C̃ as follows:

F̃
T
(r) ≡

(
f1 f2 · · · fN 0 0 · · · 0
0 0 · · · 0 f1 f2 · · · fN

)

=
(

f̃
T
(r) 0

0 f̃
T
(r)

)
, (27)
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and

C̃
T ≡

(
c(+)1 c(+)2 · · · c(+)N c(−)1 c(−)2 · · · c(−)N

)
=
([

c̃(+)
]T [

c̃(−)
]T
)
. (28)

Using the above matrices, the Lagrange-basis expansion becomes

F(r) = F̃
T
(r) C̃. (29)

However, since Eq. (23) is a homogeneous equation, C̃ is not directly obtained by a variational
way. Therefore, we add an inhomogeneous term F∞ to the expansion of the Jost function,

F(r) = F∞ + F̃
T
(r) C̃. (30)

Here, F∞ is a 2 × 1 matrix defined as

F∞ ≡
(
F (+)(∞)

F (−)(∞)

)
, (31)

where the values of the Jost functions F (±)(∞) are still unknown at this stage.
We put the expansion of the Jost function (30) into Eq. (23) and obtain

dF̃
T
(r)

dr
C̃ = AF∞ + AF̃

T
(r) C̃. (32)

This is the equation to be solved, which contains two sets of unknown values, F∞ and C̃.

2.5. Calculation of the Jost function with a Lagrange mesh

In order to solve Eq. (32) for F∞ and C̃, we need two equations. For the first one, we multiply Eq. (32)
from the left by F̃(r) and integrate from 0 to ∞ with r ,(∫ ∞

0
F̃(r)

dF̃
T
(r)

dr
dr

)
C̄ =

(∫ ∞

0
F̃(r)A(r)dr

)
F∞ +

(∫ ∞

0
F̃(r)A(r)F̃

T
(r)dr

)
C̃. (33)

Utilizing property (3) of the Lagrange functions, we obtain an equation in the matrix expression as

D̃C̃ = B̃ F∞ + Ã C̃. (34)

The definitions of the matrices in Eq. (34) are as follows. For the 2N × 2N matrix D̃,

D̃ ≡
(

Di j 0
0 Di j

)
, (35)

where

Di j ≡
∫ ∞

0
fi (r) f ′

j (r) dr

� h−1 λ
1/2
i f ′

j (hxi ). (36)

For Ã,

Ã ≡
∫ ∞

0
F̃(r)A(r)F̃

T
(r) dr

�
(

A++(hxi ) δi j A+−(hxi ) δi j

A−+(hxi ) δi j A−−(hxi ) δi j

)
, (37)
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and for B̃,

B̃
T ≡

∫ ∞

0
F̃(r)A(r) dr

=
(

B++
1 B++

2 · · · B++
N B−+

1 B−+
2 · · · B−+

N

B+−
1 B+−

2 · · · B+−
N B−−

1 B−−
2 · · · B−−

N

)
, (38)

where, e.g.,

B++
i ≡

∫ ∞

0
fi (r) A++(r) dr

� h1/2 λ
1/2
i A++(hxi ). (39)

We solve Eq. (33) for C̃ by writing

M̃ = D̃ − Ã, (40)

and obtain

C̃ = M̃
−1

B̃F∞. (41)

On the other hand, we integrate Eq. (23) from 0 to ∞ without multiplying by any function and
obtain

F∞ − F0 =
(∫ ∞

0
A(r) dr

)
F∞ +

(∫ ∞

0
A(r) F̃

T
(r) dr

)
C̃

� AG F∞ + B̃
T
ex C̃. (42)

Here, AG is a 2 × 2 matrix calculated by using the Gauss quadrature as

AG ≡
∫ ∞

0
A(r) dr

�
(

h
∑N

k=1 λk A++(hxk) h
∑N

k=1 λk A+−(hxk)

h
∑N

k=1 λk A−+(hxk) h
∑N

k=1 λk A−−(hxk)

)
, (43)

and B̃
T
ex is a 2 × 2N matrix with a similar form to B̃

T
, but the components with (+−) and (−+) are

exchanged as

B̃
T
ex ≡

∫ ∞

0
A(r) F̃

T
(r) dr

=
(

B++
1 B++

2 · · · B++
N B+−

1 B+−
2 · · · B+−

N

B−+
1 B−+

2 · · · B−+
N B−−

1 B−−
2 · · · B−−

N

)
. (44)

Here, the matrix elements, e.g. B++
i , are the same as those of B̃.

Inserting Eq. (41) into Eq. (42) leads to

F∞ − F0 � AG F∞ + B̃
T
exM̃

−1
B̃F∞. (45)

Solving the above equation for F∞, we obtain

F∞ =
(

1 − AG − B̃
T
exM̃

−1
B̃
)−1

F0. (46)

For the origin, we use the condition

F0 =
(
F (+)(0)
F (−)(0)

)
= 1. (47)

Note that the extension to multi-channel coupled equations is straightforward in this formalism.
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Fig. 1. Zeros xi (open circles) and weights λi (solid circles) of the Lagrange–Laguerre mesh for the case of
N = 50.

2.6. Lagrange–Laguerre mesh

In this study, we use the Lagrange mesh based on the Laguerre polynomials. The definition of the
Laguerre polynomials is

L N (x) =
∞∑

k=0

(−)k
k!

(
N
k

)
xk . (48)

Using the above Laguerre polynomials, we define the Lagrange functions as [7,10]

fi (x) = (−)i x1/2
i

L N (x)

x − xi
e−x/2. (49)

Here, we choose a non-regularized function, which does not vanish at the origin. A non-vanishing
function is necessary to cancel the constant value added to the expansion of the Jost function.

The mesh points are given by the zeros of the Laguerre polynomial (48). In order to apply the
Lagrange mesh to the JFM, it is necessary to calculate the first derivatives of the Lagrange functions.
The zeros xi and weights λi of the Lagrange mesh for N = 50 are shown in Fig. 1.

The first derivatives at the mesh point are given by

λ
1/2
j f ′

i (x j ) =

⎧⎪⎪⎨
⎪⎪⎩
(−1)i− j

√
xi

x j

1

x j − xi
(i �= j)

− 1

2xi
(i = j)

. (50)

We add an appendix for using the regularized Lagrange functions f̂i (x) = (x/xi ) fi (x) [7,10,11].
In that case, one needs to introduce a modification of the original expansion.

3. Numerical results

3.1. A potential model for bound states

First, in order to test the accuracy of the Lagrange mesh applied to the Jost function method
(JFM-LM), we solve a bound state problem in a single-channel system. For this purpose, we use
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Fig. 2. Real part of the functions F (±) at the complex momentum k = i0.233 fm−1. The number of mesh
points is N = 80, and the scaling factor is taken as h = 0.05 fm.

a simple Gaussian-type potential as

V (r) = −V0 exp(−ρr2), (51)

where the potential parameters are V0 = 71.0 MeV and ρ = 1/(1.5)2 fm−2, which simulates the
deuteron binding energy as EB = −2.24 MeV with L = 0. The reduced mass is taken as the mass
of the deuteron where m p = 938.28 MeV and mn = 939.57 MeV.

The energy is an input parameter for the calculation. We use the bound-state energy
E = −2.24 MeV and, in this case, the complex momentum becomes a pure imaginary value, k =
i 0.233 fm−1. In general, the functions F (±)(k, r) take complex values. However, for the case that
the momentum is purely imaginary, F (±)(k, r) take real values, since the exponential part of the
homogeneous solution H (±)

l (kr) in Eq. (14), which changes the phase of the wave function, becomes
exp(±ikr) = exp(∓|k|r). Hence, when we use the boundary condition asF (±)(k, 0) = 1, the overall
phase of the function F (±)(k, r) stays at a real value in the calculation.

We show the functions F (±)(k, r) at this energy in Fig. 2. The imaginary part becomes zero in
this case. At the pole energy, the function F (−)(k, r) becomes zero in the asymptotic region, and
F (+)(k, r) becomes constant. This result almost corresponds to that obtained by using the Runge–
Kutta method, and the deviation between these two methods cannot be seen within the scale of Fig. 2.

Next, we plot the relative errors between the JFM-LM calculation from the ordinary RK one in
Fig. 3. In the Runge–Kutta method, we use a mesh step δx = 0.01 fm. We change the scaling factor
h and the number of mesh points N (=40, 60, 80, 100).

As a general feature, the typical order of the relative error is ∼10−12, which is sufficiently accurate
for studying nuclear physics. Even in the N = 40 case, the error is almost minimum around the
scaling factor h = 0.1. The optimum value of the scaling factor is related to the range of the potential
and density of mesh points inside the potential region.

For example, for N = 40, the largest zero point is xN ∼ 140 in the dimensionless scale. Therefore,
the scaled zero with h = 0.1 fm becomes hxN ∼ 0.1 × 140 = 14 fm. This is sufficiently large to
cover the range of the potential in this problem, where the potential range is ∼1.5 fm. On the other
hand, if the scaling factor is larger than h = 0.1, the density of mesh points in the range of the
potential becomes too small, and the calculation cannot obtain sufficient accuracy.
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Fig. 3. Relative errors between the Lagrange-mesh (LM) and Runge–Kutta (RK) methods.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140

δ 
(d

eg
re

e)

E (MeV)

L = 1

L = 0

L = 2

JFM-LM

Fig. 4. Calculated phase shifts by using the Jost function method on a Lagrange mesh (JFM-LM). The potential
is the same as in the bound-state calculation.

From the result of the comparison between JFM-LM and RK, for JFM-LM, the set with the number
of mesh points and scaling factor of N = 50 and h = 0.1 is sufficient to obtain the same accuracy
as that of the RK one, but with 20 times fewer mesh points.

3.2. Scattering phase shifts

The wave function of the bound state is not an oscillating function, and its tail converges as an
exponential, exp(−kr). Hence, in order to investigate the ability of JFM-LM for scattering problems,
we calculate the phase shifts of the system with the same potential as for the bound-state problem
in the previous section. We take the angular momentum for this calculation as L = 0, 1, 2 and use
N = 50 and h = 0.1, which gives sufficient accuracy in the bound-state problem.

The calculated phase shifts of JFM-LM are shown in Fig. 4. Since this system has one bound state
with L = 0, the phase shift for L = 0 starts from 180 degrees. The other angular momentum states
do not have bound states.
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Fig. 5. Comparison of relative errors of the calculated phase shifts between JFM-LM and Runge–Kutta for
L = 0, 1, 2.

We also calculate the phase shifts with the RK method. The results correspond to those of JFM-LM,
and the difference cannot be seen in the figure of the phase shifts. Therefore, in Fig. 5, we compare
both results by using the relative errors.

The error becomes very small for the L = 0 case. For the L = 1 and 2 cases, even though the errors
become slightly larger than those of the L = 0 case, the relative error is still small ∼10−8. This is
caused by the singularity of the spherical Bessel function at the origin as ∼1/r L . Therefore, it is
necessary to introduce an accurate numerical computational code in the calculation of the inversion
of the matrix in Eq. (41) or the solution of the system of linear equations. It can be considered that
the accuracy for L > 0 is still good.

3.3. 4He+n system

Next, as an example of a more realistic application, we calculate the phase shifts of the 4He+n system
by using a 4He+n potential model, for which we use the so-called “KKNN” potential [14]. This
potential is based on a study of the 4He+n scattering within a microscopic treatment of the five-
body system using the resonating group method (RGM) technique. The 4He+n (5He) system has
p-wave resonances both for p3/2 and p1/2 of Er = 0.77 MeV, 
 = 0.64 MeV and Er = 1.97 MeV,

 = 5.22 MeV, respectively [15]. This potential reproduces these resonances on the complex energy
plane as E(p3/2) = 0.75 − i0.29 MeV and E(p1/2) = 2.15 − i2.93 MeV.

Even for the broad s-wave resonance, the JFM approach is able to find the resonant pole in the
complex momentum plane as E(s1/2) = 0.75 − i44.71 MeV in Ref. [4]. We calculate the s-wave
pole using JFM-LM and obtain the same result as that of Ref. [4].

We calculate the phase shifts using JFM-LM for the s1/2, p3/2, and p1/2 states; see Fig. 6. As
for the simple potential model in the previous subsection, the calculated phase shifts of JFM-LM
give a good correspondence to those obtained with RK. The relative errors are evaluated and shown
in Fig. 7. The errors are small enough for studying unstable nuclei, and we find that the JFM-LM
approach is useful even for studying realistic nuclear systems.

3.4. A coupled-channel model

It is straightforward to extend the JFM-LM formalism to solve multi-channel problems. For an
M-channel problem, the matrices for F(r) and A(r) in Eq. (32), which are 2 × 1 and 2 × 2 matrices,
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Fig. 6. Calculated phase shifts for the s1/2, p3/2, and p1/2 partial waves of the 4He+n elastic scattering using
JFM-LM with the “KKNN” potential. Open circles and solid and open squares are from an R-matrix analysis
of experimental data [16].

Fig. 7. Relative errors on the phase shifts between JFM-LM and Runge–Kutta for the s1/2, p3/2, and p1/2 states
of 5He.

respectively, are extended to 2M × M and 2M × 2M matrices. Other matrices are treated in the same
way. For example, D̃ in Eq. (35) is extended to a 2M N × 2M N matrix.

As an example of the multi-channel problem, we employ the so-called “Noro–Taylor” model [17].
The two-channel system of the Noro–Taylor model is expressed by using a potential form as

Vi j = λi j r2 exp(−r)+ Ei j δi j , (52)

with

λi j =
(

−1.0 −7.5
−7.5 7.5

)
, (53)

and E1 = 0 and E2 = 0.1. The reduced mass is taken as �
2/μ = 1. In Ref. [3], complex eigenvalues

of resonant states for this system are calculated by using the Jost function method with the Runge–
Kutta discretization combined with the complex scaling method (CSM) [18–21]. The typical number
of mesh points for the calculation is N = 2000, which comes from the mesh size δx = 0.01 and
maximum point xmax = 20.
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Table 1. Complex eigenvalues for the Noro–Taylor model [17]. All
units for the eigenvalues are in a.u.

State JFM-LM (this work) Ref. [3]

1 4.768 197 − i7.100 96 × 10−4 4.768 197 − i7.100 96 × 10−4

2 7.241 200 − i7.559 56 × 10−1 7.241 200 − i7.559 56 × 10−1

3 8.171 217 − i3.254 17 8.171 216 − i3.254 17
4 8.440 530 − i6.281 46 8.440 526 − i6.281 50
5 8.072 768 − i9.573 15 8.072 642 − i9.572 82

In this work, we calculate complex eigenvalues of the resonant states for the Noro–Taylor model
using the JFM-LM approach. We also apply CSM in order to treat the divergence of the wave function
of the resonant states. The number of mesh points is taken as N = 180, and the scaling factor is
chosen to be h = 0.05. The results are listed in Table 1.

As shown in Table 1, the JFM-LM approach has sufficient accuracy even for the calculation of very
broad resonant states. This result indicates that the JFM-LM approach is applicable to multi-channel
problems.

4. Summary and discussion

We have performed calculations combining the Jost function method (JFM) and the Lagrange-mesh
method (LM). In the JFM formalism, to solve the first-order equations about the function F(k, r), it
is necessary to add an inhomogeneous term to the expansion of the wave function. We solve the inho-
mogeneous equation about F(k, r) using JFM-LM and obtain reasonable accuracy in the numerical
calculations.

As an example, we use a simple Gaussian potential, which simulates the deuteron binding energy
in a single-channel model. The calculated bound-state energy and scattering phase-shits using JFM-
LM correspond to those obtained by using the ordinary Runge–Kutta method with an accuracy of
∼10−8 to 10−14. Therefore, the present JFM-LM approach is useful enough for studying various
systems in nuclear physics.

In the phase-shift calculation, the accuracy of higher angular momentum states L = 1, 2 becomes
slightly worse than that of the L = 0 case. However, as mentioned in Sect. 3, this is caused by the
singularity of the spherical Bessel functions at the origin, not by the resolution on the Lagrange
mesh. Therefore, the singularity is expected to be overcome by introducing a numerical improvement.
Although the accuracy changes with the angular momentum, the JFM-LM calculation is considered
to have sufficient ability for studying scattering problems.

Since the JFM-LM approach gives an accurate solution even for the case where the number of mesh
points is as small as 50, we can expect applications of JFM-LM for solving coupled-channel systems
with very large numbers of channels, such as in CDCC. For example, in the case that the problem
solved with CDCC has 200 channels, the total dimension of the matrix of the coupled-channel system
of JFM-LM becomes 50 × 200 = 10 000. That is still feasible in practical calculations.

Furthermore, for the study of many-body systems, the formalism of the JFM is applicable to
equations obtained with an expansion in hyperspherical harmonics. Even in such a case, the matrix
size remains not so large and non-local operators cause no numerical problems from the viewpoint
of computational time. These applications will be done in the near future, since the extension to
multi-channel problems is straightforward.
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Appendix: Modification of the equation for the regularized Lagrange basis

In place of the Lagrange basis (49), one can use a regularized basis [8,10]

f̂i (x) = x

xi
fi (x). (A1)

Since these functions vanish at the origin, we consider a modification of the equation of the Jost
function, Eq. (30), as

F(r) = g1(r)F∞ + g2(r)F0 + F̃
T

C̃. (A2)

Here, the functions g1(r) and g2(r) have the following properties at the origin and infinity:{
g1(0) = 0 and g1(∞) = 1

g2(0) = 1 and g2(∞) = 0
. (A3)

By adding the above modification to the original equation of the Jost function, we obtain new
equations. Eq. (41) is modified as

C̃ = M̃
−1
{
(B̃

g1 − G̃1)F∞ + (B̃
g2 − G̃2)F0

}
, (A4)

where G̃1 and G̃2 are 2N × 2 matrices,

G̃1 ≡
∫ ∞

0
g1(r) F̃(r) dr, (A5)

and

G̃2 ≡
∫ ∞

0
g2(r) F̃(r) dr. (A6)

Further, B̃
g1 and B̃

g2 are 2N × 2 matrices,

B̃
g1 ≡

∫ ∞

0
g1(r) F̃(r)A(r) dr, (A7)

and

B̃
g2 ≡

∫ ∞

0
g2(r) F̃(r)A(r) dr. (A8)

On the other hand, Eq. (42) is modified as

F∞ − F0 = Ag1
G F∞ + Ag2

G F0 + B̃
T
ex C̃. (A9)

Here, Ag1
G and Ag2

G are 2 × 2 matrices defined as

Ag1
G =

∫ ∞

0
g1(r)A(r) dr, (A10)

and

Ag2
G =

∫ ∞

0
g2(r)A(r) dr. (A11)
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We put Eq. (A4) into Eq. (A9) and obtain the solution for F∞ as

F∞ = K−1
1 K2 F0, (A12)

where K1 and K2 are 2 × 2 matrices defined as

K1 ≡ 1 − Ag1
G − B̃

T
ex M̃

−1
(B̃

g1 − G̃1), (A13)

and

K2 ≡ 1 + Ag2
G + B̃

T
ex M̃

−1
(B̃

g2 − G̃2). (A14)

The first derivatives (50) at the mesh points are slightly modified. While the case i �= j is
unchanged, for i = j one has

λ
1/2
i f̂ ′

i (xi ) = 1

2xi
. (A15)
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[21] S. Aoyama, T. Myo, K. Katō, and K. Ikeda, Prog. Theor. Phys. 116, 1 (2006).

15/15

 at K
itam

i Institute of T
echnology on M

arch 24, 2015
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1088/0305-4470/31/22/015
http://dx.doi.org/10.1143/PTP.102.1119
http://dx.doi.org/10.1016/S0375-9474(00)00148-2
http://dx.doi.org/10.1143/PTP.110.233
http://dx.doi.org/10.1143/PTPS.62.11
http://dx.doi.org/10.1088/0305-4470/19/11/013
http://dx.doi.org/10.1088/0953-4075/26/5/006
http://dx.doi.org/10.1103/PhysRevE.59.7195
http://dx.doi.org/10.1103/PhysRevE.65.026701
http://dx.doi.org/10.1002/pssb.200541305
http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1143/PTP.61.1327
http://dx.doi.org/10.1016/0375-9474(77)90499-7
http://dx.doi.org/10.1016/0375-9474(72)90166-2
http://dx.doi.org/10.1088/0022-3700/13/12/005
http://dx.doi.org/10.1007/BF01877510
http://dx.doi.org/10.1007/BF01877511
http://dx.doi.org/10.1143/PTP.116.1
http://ptep.oxfordjournals.org/

	Introduction
	Formalisms
	Lagrange mesh
	Jost function method
	Matrix representation of the equation of the Jost function method
	Expansion with the Lagrange basis
	Calculation of the Jost function with a Lagrange mesh
	Lagrange--Laguerre mesh

	Numerical results
	A potential model for bound states
	Scattering phase shifts
	4He+n system
	A coupled-channel model

	Summary and discussion
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.284 790.866]
>> setpagedevice


