天塩川における縦断的な河川結氷と河道特性

Characteristics of river and longitudinal frozen river at the Teshio River

北見工業大学土木開発工学科	学生員	首藤 清彦 (Kiyohiko Shudou)
寒地土木研究所	正会員	吉川 泰弘 (Yasuhiro Yoshikawa)
北見工業大学社会環境工学科	正会員	渡邊 康玄 (Yasuharu Watanabe)
北見工業大学社会環境工学科	正会員	早川 博 (Hiroshi Hayakawa)
	HMM	

1. はじめに

寒冷地における河川は冬期の気温低下,流速の減少 により結氷し,河氷が形成される.形成された河氷は 気温が上昇することにより融解し,下流へと流下する. この際,流下した河氷が蛇行部や狭窄部,橋脚箇所に 滞留することで,河積が狭められ水位が上昇する.

解氷時の水位上昇による過去の被害事例として 1961 年4月7日に中川村(現中川町)瀬尾橋における解氷に よる氷詰まりによる事例が挙げられる.橋の流失は免 れたが,氷詰まりによる水位上昇で,床上・床下浸水34 戸,457haが冠水し,170人が被害を受けた.農作物や 肥料を含む農業用施設にも被害は及び,堤防にも損害 が発生した.この事例を受け,瀬尾橋周辺では低水路 を40mから100mに拡張する河道の見直しと,浚渫工 事が行われている.¹⁾

冬期の河川では急激な水位変化が確認されたとして も,除雪作業,路面状況,交通機関の遅延などの諸問 題により,夏期に比べ現場への早急な乗り入れが難し く,迅速な対応を取ることが困難である.そのためど のような条件の下で結氷が発生するのかを明らかとし, 急激な水位変化に対する予測を立てることが必要であ る.このことから寒地河川において結氷状況と河道特 性の関係を河川縦断的に把握することは,河川管理を 行う上で重要である.

本研究は,寒地河川における河川結氷と河道特性の 関係を,河川縦断的に明らかにすることを目的として, 吉川ら²⁾の構築した1次元河氷変動計算モデルを用い て,天塩川(図-1)において長区間における河氷変動計 算を行い,計算値と観測値との比較から考察を行った.

1次元河氷変動計算モデル

(1) 流れの計算

河川水における連続の式は式(1),運動の方程式は式 (2)である.

$$\frac{\partial A_w}{\partial t} + \frac{\partial Q_w}{\partial x} + \frac{\rho_i}{\rho_w} \frac{\partial A_{is}}{\partial t} = 0 \tag{1}$$

$$\frac{\partial Q_w}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_w^2}{A_w}\right) + gA_w \frac{\partial}{\partial x} \left(z + h_w + \frac{\rho_i}{\rho_w} h_{is}\right) + \frac{g n_b^2 u_w^2 S_w}{R_w^{1/3}} + \frac{\rho_i}{\rho_w} \frac{g n_i^2 u_i^2 S_i}{R_i^{1/3}} = 0$$
(2)

図-1 対象河川の位置図

 $A_w[m^2]: 河 川 水 の 流 積 , A_{is}[m^2]: 氷 板 面 積 , Q_w[m^3/s]: 流量, z[m]: 河床高, h_w[m]: 水深, h_{is}[m]: 氷板厚, n[<math>\frac{s}{m^3}$]: Manning の粗度係数, u[m/s]: 河川縦断方向の速さ, $S[m]: 潤辺, R[m]: 径深, \rho_w[\frac{kg}{m^3}]: 水の密度で 999.8 を与え, <math>\rho_i[\frac{kg}{m^3}]:$ 氷の密度で 917.4 を与えた. $t[sec]: 時間, x[m]: 距離, g[m/s^2]: 重力加速度で 9.8 である.$

河床の Manning の粗度係数 n_b は,水深と河床材料 を従属変数とする式 (3) である Limerinos 型 Bray の式 ³⁾を用いた. d_{84} [mm]:84%粒径は,既往の資料では得 られていないため,資料の存在する代表粒径を用い,こ の値に補正値をかけることで決定した.

$$n_b = \frac{h_w^{\frac{1}{6}}}{9.66 + 19.5 \, \log(\frac{h_w}{d_{s_s}})} \tag{3}$$

河氷の Manning の粗度係数 n_i は,河床と河氷の合成 粗度係数 n_o と河床の粗度係数 n_b を用いて, Sabaneev の式 (4)を用いて算出した.

$$n_i = \left(2n_o^{\frac{3}{2}} - n_b^{\frac{3}{2}}\right)^{\frac{2}{3}} \tag{4}$$

河床と河氷の合成粗度係数 n_o は,流速係数 ϕ [無次元] を用いて式(5)とし, ϕ は吉川ら⁴⁾の式(6)を用いた.

$$n_o = \frac{R^{\frac{1}{6}}}{\phi\sqrt{g}} \tag{5}$$

$$\phi = \frac{C_o}{R^{0.25} I_e^{0.5}} \tag{6}$$

 $R[m]: 結氷時の流積全体の径深, I_e[無次元]: エネル$ ギー勾配,なお,本研究における式(6)の適用条件は $<math>40 \text{cm} \le h_{is} \ge 0$,適用範囲を $3 < \phi < 30 \ge 0$ た. $C_o[m^{\frac{1}{4}}]$: は河氷底面が流水により融解され滑らかになることに よる粗度の減少の程度を表し,式(7)を用いた.

$$C_o = 0.154 + 0.005 \ days \tag{7}$$

なお, days: 結氷後からの日数である.

河床の影響を受ける径深 R_w と河氷の影響を受ける 径深 R_i の計算は,河床と河氷の粗度係数比および流速 差を考慮した式 (8), (9), (10) に示す Shen の式⁵⁾を用 いた.

$$R_w = \frac{1}{1+\alpha_i} \frac{A_w}{B+2 h_w} \tag{8}$$

$$R_i = \frac{\alpha_i}{1 + \alpha_i} \frac{A_w}{N B} \tag{9}$$

$$\alpha_i = \left(\frac{n_i^2}{n_b^2} \frac{N(u_w - u_i)^2}{u_w^2}\right)^{\frac{3}{4}} \frac{B}{B + 2h_w}$$
(10)

B[m]:川幅,N[無次元]:横断結氷比で川幅に対する河 氷幅の割合である.本モデルは河川縦断方向の1次元 計算モデルであるため,鉛直方向の河氷厚から横断方 向の河氷幅を推定する必要がある.既往研究⁶⁾におい て,鉛直方向に河氷面積が増加すると,横断方向に河 氷面積が増加することが観測されていることから,本 研究では,h_{io}[m]:水面が全て河氷で覆われる場合の平 均河氷厚として,式(11)より横断結氷比を算出した. なお,本研究ではh_{io}は40cmとした.

$$N = \frac{h_{is}}{h_{io}} \tag{11}$$

(2) 氷板形成融解式

氷板の形成融解の計算式は,入力値が気温,水温,有 効水深およびその地点固有の係数 α , β のみであり,氷 板の形成から融解までを計算することが可能である熱フ ラックス式から導出された吉川ら⁷⁾の式(12)を用いた.

$$h_{is} = h'_{is} - \left(\frac{65.2}{10^5}\right) \alpha \ \frac{T_a}{h'_{is}} - \left(\frac{45.8}{10^2}\right) \beta^{4/5} \ T_w \ h_w^{1/3} \ (12)$$

$$\alpha = 0.906 - 2.770 \ \frac{I_b B}{h_w} \tag{13}$$

$$\beta = \frac{u_w}{h_w^{2/3}} \tag{14}$$

 $h_{is}[\mathbf{m}]: 氷板厚, h'_{is}[\mathbf{m}]: \Delta t$ 前の氷板厚, $T_a[$]: 気温, $I_b[$ 無次元]:河床勾配である.なお, T_a , T_w は1日の 平均値であるため, 例えば1時間毎に氷板厚を計算す る場合には24で割り単位変換した値 $T_a/24$, $T_w/24$ が 入力値となる.また, $h'_{is}[\mathbf{m}]$ の初期条件は, h'_{is} が式の 分母に入っており, $h'_{is}=0$ とすると計算できないため, 1mmとした. α は気温に対する氷板形成の程度を表し, 大きくなると氷板を増加させ, β は水温と有効水深に 対する氷板融解の程度を表し,大きくなると氷板を融 解させる係数である.

係数 α は,北海道における河川結氷時の計 249 回の 観測データ解析⁸⁾から得られた式 (13) を用いて算出し, その値を $\alpha_{i+0} = (\alpha_{i-2}+2\alpha_{i-1}+3\alpha_i+2\alpha_{i+1}+\alpha_{i+2})/9$ として加重平均して値を得た.係数 β は,式 (14) から 計算される u_w および h_w を用いて値を得た.

3. 計算条件の計算値と観測値

(1) 不等流計算

結氷期と同程度の流量が流れる夏期の観測水位を用 いた不等流計算により河床の Manning の粗度係数を決 定することとした.計算は天塩川の支川である問寒別 川の流入量を考慮し,流入地点である KP44.0を基準と し,計算区間を KP1.4-KP44.0 区間, KP44.0-KP128.0 区間の2つに分けて行った.境界条件として各区間の上 流端流量を KP44.0 では 37.84m³/s, KP128.0 地点で は 29.87m³/s で 2008 年 8 月 10 日の観測流量を与えた. また境界条件として各区間の下流端水位を KP1.4 では 2008 年 8 月 10 日の観測水位である 0.32m を, KP44.0 では KP1.4-KP44.0 区間を不等流計算して算出した水 位を与えた.

河床高は 1995年, 1996年, 2000年, 2003年, 2004 年, 2007年の 200m毎の横断測量データと, 計算され た流積と水面幅から平均水深を算出し, 水位から平均 水深を引くことにより求めた.また, 川幅は計算によ り得られた水面幅, 水深は計算より得られた平均水深 とした.

河床の Manning の粗度係数 n_b は, 2008 年 8 月 10 日 の観測水位と一致するように,水深と粒径を従属変数 に持つ Limerions 型 Bray の式³⁾を用いて試行錯誤で算 出した.不等流計算に用いた河床の Manning の粗度係 数 n_b と,水位の計算値と観測値を比較したものを図-2 に示す.

(2) 計算条件

河氷変動計算における総区間は KP1.4 から KP128.0 の 126.6km,期間は 2008 年 12 月 1 日から 2009 年 3 月 20 日までの 110 日間とし,断面間隔は 200m,時間間 隔 Δ*t* は 4 秒とした.

計算は不等流計算と同様に天塩川の支川である問寒別 川の流入量を考慮し,問寒別川流入地点である KP44.0 を基準に,計算区間を KP1.4-KP44.0 区間,KP44.0-KP128.0 区間の2つに分けて行った.初期条件とし て不等流計算によって算出した河床高と川幅,河床の Mannningの粗度係数 n_bを与えた.また,上流端流量, 下流端水位,気温,水温を境界条件として与えた.

KP1.4-KP44.0 区間における上流端 KP44.0 の流量 は結氷により正確な流量が観測できていないことから, 非結氷期における KP44.0 と KP128.0 の洪水時のピー ク流量を一致させそこから流量比を求め, KP128.0 の 冬期観測流量を流量比で補正した値を与えた. KP44.0-

KP128.0 区間における上流端 KP128.0 の流量は観測値 から与えた.欠測期間については前後の水位を時間的に 線形補完して与えた.KP44.0 と KP128.0 の流量を図-3 に示す.KP1.4-KP44.0 区間における下流端 KP1.4 の水位は観測水位を与えた.P44.0-KP128.0 における 下流端 KP128.0 の水位は KP1.4-KP44.0 区間の河氷変 動計算によって算出された水位を与えた.

気温は現地観測で得られた3地点と,アメダスから 得られた4地点の計7地点で10分毎に観測された値を 与えた.現地観測は2008年12月24日からであるた め,それ以前の値に関しては,上流と下流のアメダス から得られた値を空間的に線形補完して与えた.水温 は現地観測で得られた値を用い,0.06 以下の場合は 0 として計算を行った.また,水温は2008年12月 24日からの観測であるため,それ以前の値に関しては 観測開始時の値を計算開始時まで引き伸ばし,同一な ものとして与えた.

(3) 氷板厚の計算値と観測値

河氷変動計算を行い氷板厚を算出した.氷板厚の計 算値と観測値を一致させるために α の補正を行った. 式(13)の α で計算した値を,観測値と一致させるため α に補正値を加えた.補正値は式(13)から一律に0.45 を引いたものとした.補正を加えた α の値を図-4,補 正した α を用いて算出した氷板厚の計算値と観測値を 図-5,氷板厚の計算値と観測値に河床勾配と川幅を比 較したものを図-6に示す. 図-5より KP58.6, KP94.2, KP128の地点で観測値 と計算値がよく再現できていることがわかる.それ以 外の地点では計算値と観測値が一致していない.αは 小さくなることで氷板形成が抑制され,大きくなるこ とで増加する.計算区間で一律に補正値を与えると計 算値が観測値と一致しないため,それぞれの断面,区 間ごとに河道特性を考慮し補正を行う必要性がある.

4. まとめ

本研究により以下の知見が得られた.本研究で用い た河氷変動計算モデルから,長区間における河氷変動 計算では区間ごとに河道特性が異なり,計算に影響を 及ぼす可能性があることを示した.今後,河道特性に よる補正ををどのように考慮し補正値を与えていくか 検討する必要がある.また,本研究は,晶氷の挙動,流 下する河氷の影響,積雪による断熱の影響をモデル化 していないため,その影響も考慮する必要がある.

参考文献

- 大塩川治水史,北海道開発局 旭川開発建設部,留萌開発 建設部[監修],pp.385,pp.406,1989.
- 吉川泰弘,渡邊康玄,早川博,平井康幸:河川解氷時の 河氷の破壊と流下に関する研究土木学会,水工学論文集, 第 55 巻,2011.(投稿中)
- Bray, D. : Estimating Average Velocity In Gravel-Bed Rivers, Journal of the Hydraulics Division, Vol.105, No.HY9, pp.1103-1122, 1979.
- 4) 吉川泰弘,渡邊康玄,早川博,平井康幸:河川結氷時の 観測流量影響要因と新たな流量推定手法,土木学会,水 工学論文集,第54巻,pp.1075-1080,2010.
 5) Shen,H.T., Shen,H., Tsai,S.M.: Dynamic transport
- Shen,H.T., Shen,H., Tsai,S.M. : Dynamic transport of river ice, Journal of Hydraulic Research 28, pp.659-671, 1990.
- 6) 吉川 泰弘,渡邊康玄:渚滑川と湧別川における晶氷の 氷化を考慮した氷厚変動計算の一考察,寒地土木研究所 月報,No.668,2009.
- 7) 吉川泰弘,渡邊康玄,早川博,平井康幸:結氷河川における実用的な氷板厚計算式の開発,土木学会,年次学術 講演会講演概要集,第64回,2009.
 8) 吉川泰弘,渡邊康玄,早川博:結氷河川における河氷形
- 8) 吉川泰弘,渡邊康玄,早川博:結氷河川における河氷形 成と河道特性の関係に関する考察,寒地技術シンポジウム,第25回,pp.190-195,2009.

200

100

0

