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Chapter 1

Introduction

The localization of multiple signal sources by a passive sensor array is of great impor-

tance in a wide variety of fields, such as radar, geophysics, radio-astronomy, biomedical

engineering, communications, underwater acoustics, and so on. The basic problem in

this context is to estimate directions-of-arrival (DOA) of narrow-band signal sources. In

mobile, radio and space communications, the DOA estimation plays an important role

for MIMO (Multiple-Input Multiple-Output) system, radio surveillance, and so on.

A number of super-resolution techniques have been introduced, such as Maximum

likelihood (ML) method [1, 2, 3, 7, 9, 8, 10, 4, 5, 6, 11, 12, 13, 14] MUSIC [18, 20],

ESPRIT [17], Weighted Subspace Fitting (WSF) [15, 14] and the Bayesian method [21].

The ML, WSF and Bayesian techniques have properties superior to other methods

since they can handle coherent signals without any preprocessing, such as the spatial

smoothing [20]. They can also handle small number of snapshots, although the Bayesian

method [21] is formulated only for a single snapshot.

ML estimators are useful not only for DOA finding but also the enumeration of

the number of signals based on the Minimum Description Length (MDL) model selec-

tion. There have been proposed two kinds of ML estimators for DOA finding. That is,

Conditional or Deterministic ML (DML) [1, 2, 3, 7, 8, 4, 5, 6]. and Unconditional or

Stochastic ML (SML) [7, 9, 8, 10, 6, 11, 12, 13, 14]. Difference between them lies in

their models of signals. The SML shows better estimation for coherent signals than the

DML if adequate local solutions of DOA are searched [12, 13].

The conventional SML estimation [7, 9, 8] are formulated without an important con-
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dition that the covariance matrix of signal components must be non-negative definite. A

likelihood function can not be evaluated exactly for all sets of directions in the context of

the conventional SML. This involves theoretical difficulty in applying the conventional

SML to others, such as the MDL model selection.

Bresler [11] has proposed an ML estimator of the signal covariance matrix for fixed

directions using the model of the SML estimation. It guarantees the non-negative defi-

niteness of the the estimated signal covariance matrix.

Stoica et al. [14] and Harry [8] pointed out the fact that the conventional SML does

not guarantee the non-negative definiteness of the estimated signal covariance matrix.

To overcome this defect, Stoica et al. have derived an ML estimator based on the model

of the SML under the condition that a large number of samples are available [14]. The

asymptotic approximation of the SML leads to the same criterion as that of the WSF.

Wang et al. [6] have proposed a technique to solve a global maximization of ”com-

pressed likelihood function” based on Monte Carlo importance sampling. It deals with

stochastic signals. Although the non-negative definiteness of the estimated covariance

matrix of signals is guaranteed, the model is different from that used in the SML and

the variance of noises is estimated separately from DOA parameters in [6], while jointly

with DOA parameters in the SML.

In this paper, first it is revealed that the conventional SML has three problems due to

the lack of the condition. 1) Solutions in the noise-free case are not unique. 2) Global

solution in the noisy case becomes ambiguous occasionally. 3) There exist situations

that any local solution does not satisfy the condition of the non-negative definiteness.

Next we propose an exact formulation of the SML estimation of DOA to evaluate a

likelihood function exactly for any possible set of directions. The proposed formulation
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can be utilized without any theoretical difficulty. The three problems of the conventional

SML are solved by the proposed exact SML estimation. Although the exact SML is

formulated separately from [11], the estimation of the signal covariance matrix for fixed

directions is equivalent to that in [11].

A performance study of exact SML is also done with comparison to some other

super-resolution techniques such as: MUSIC (Spectral-MUSIC, Root-MUSIC), WSF

and DML. We reveal the following properties of exact SML. 1) The exact SML can

always success in DOA finding when a unique solution exists. 2) The WSF or the

asymptotic approximation of the SML [14] is sensitive to the rank of the signal covari-

ance matrix, which is required to be known, while the exact SML does not. 3) The exact

SML shows the best Root-Mean-Square-Error (RMSE) performance in the threshold re-

gion (when SNR is low or snapshots is small). When the observation condition is good

(high SNR or large samples), WSF shows the best RMSE performance, and exact SML’s

is a litter worse than that of WSF. 4) The computation cost of exact SML is the highest

when the most conventional technique, Alternating Minimization (AM) method is used.

Since the computational cost of exact SML is very high, it is difficult to apply this

technique in real applications. To reduce the computational cost possibly with less loss

of resolution, we propose the following three efficient algorithms.

First, we use the solution of DML as the initial value and apply a local search method

to find the optimal or suboptimal solution of SML. The reason is that the solution of

DML is unique. More-over, the DML estimation asymptotically achieves the exact

SML solution in large-samples for incoherent signals. But we should note that this

method sometimes can not find the optimal solution of SML especially in the threshold

region. In simulations, we have confirmed that the solution of this local search method

is identical to that of the exact SML when DOA is resolvable. Since local search method
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is used, computational cost can be greatly reduced.

Then, Based on the local search method, an efficient version of the Alternating Min-

imization (AM) algorithm called EAM is proposed. This algorithm can reduce the com-

putational cost greatly without any impact of resolution. The main idea consists in

dividing the SML criterion into two components. One is independent of a single vari-

able parameter, and is held fixed, when the parameter varies. Another part is depending

on the single variable parameter and changes with the varying of the parameter. So that

we only need to calculate the variable part in each alternating process.

Furthermore, when the sensor array is assumed to be uniform linear, an irreducible

form of EAM is derived using polynomial forms. We call it IAM. This form can avoid

the numerical instability in calculation of SML criterion and the computational cost is

further greatly reduced.

Simulations are also shown in each stage of our research to demonstrate the effec-

tiveness and efficiency of our proposed criterions and algorithms.
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Chapter 2

Problem Formulation

2.1 Introduction

In this chapter, we give the problem formulation of DOA finding at first, and then we

introduce the Deterministic Maximum-Likelihood (DML) and Stochastic ML (SML)

estimations of DOA finding. We also introduce the constraints for the SML estimation,

and the conventional SML estimation which can not meet one of the constraints. Fi-

nally, the most conventional technique, Alternating Minimization (AM) algorithm, for

the SML estimation is also described.

2.2 DOA Finding

Consider an array composed of p sensors with arbitrary locations and arbitrary direc-

tional characteristics, and assume that q narrow-band sources, centered around a known

frequency, say !0, impinge on the array from distinct directions �1, �2, ..., �q, respec-

tively.

Using complex envelope representation, the p-dimensional vector received by the

array can be expressed as

x.t/ D

qX
iD1

a.�k/sk.t/ C n.t/; (2.1)

where sk.t/ is the k-th signal received at a certain reference point. n.t/ is a p-

dimensional noise vector. a.�/ is the ”steering vector” of the array towards direction
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� , which is represented as

a.�/ D Œa1.�/e�j!0�1.�/; :::; ap.�/e�j!0�p.�/�T (2.2)

where ai.�/ is the amplitude response of the i-th sensor to a wave-front impinging from

the direction � . �i.�/ is the propagation delay between the i-th sensor and the reference

point. The superscript T denotes the transpose of a matrix.

In the matrix notation, (2.1) can be rewritten as

x.t/ D A.‚/s.t/ C n.t/; (2.3)

A.‚/ D Œ a.�1/ a.�2/ � � � a.�q/ �; (2.4)

s.t/ D Œ s1.t/ s2.t/ � � � sq.t/ �T ; (2.5)

‚ D f �1 �2 � � � �q g: (2.6)

Suppose that the received vector x.t/ is sampled at M time instants, t1, t2, ..., tM

and define the matrix of the sampled data as

X D Œ x.t1/ x.t2/ � � � x.tM / �: (2.7)

The problem of DOA finding is to be stated as follows. Given the sampled data X ,

obtain a set of estimated directions

O‚ D f O�1
O�2 � � � O�q g: (2.8)

of �1, �2, ..., �q.

The model (2.1) or (2.3) can be rewritten as follows

x.t/ D V S.‚/xS.t/ C V N .‚/xN .t/ (2.9)

where V S.‚/ is a p � q matrix of which columns form an orthonormal system of the

signal subspace, that is spanned by fa.�1/, a.�2/, ..., a.�q/g, V N .‚/ is a p � .p � q/
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matrix of which columns form an orthonormal system of the noise subspace, which is

the orthogonal complement of the signal subspace. xS.t/ is the signal component of

x.t/ in the signal subspace, and xN .t/ is the noise component of x.t/ in the noise

subspace.

2.3 ML Estimation

In this section, brief descriptions of the DML estimation[2], the SML estimation, the

conventional SML estimation[9] and the conventional solving technique, Alternating

Minimization (AM) method are shown.

To solve the problem of ML estimation of DOA, we make the following assump-

tions.

A1) The array configuration is arbitrary and known and any p steering vectors for dif-

ferent p directions are linearly independent.

A2) n.ti/ are statistically independent samples from a complex Gaussian random vec-

tor with zero mean and the covariance matrix �2Ip, where �2 is an unknown

parameter, Ip is a p � p identity matrix.

A3) s.ti/ satisfy the condition

rankŒ s.t1/ s.t2/ � � � s.tN / � D r.� q/: (2.10)

In the case of r < q, the signals are coherent or fully correlated which happens,

e.g., in specular multi-path propagation.

A4) p; q is known. r is unknown.
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A5) p, q and r satisfy the condition that a unique solution of DOA exists in the noise-

free case. When the direction � is expressed by a single real parameter, the suffi-

cient condition of the uniqueness is given by q < 2rp=.2r C 1/ and the necessary

condition is given by q � 2rp=.2r C 1/ [22].

2.3.1 Deterministic ML (DML)

The DML estimator is derived by imposing the following assumption on the signals in

addition to A1)-A5),

A6D) s.ti/ are unknown deterministic parameters.

The DML criterion according to [2] is given by

O‚DML D arg min
‚

LDML.‚/; (2.11)

LDML.‚/ D trf QRNN .‚/g; (2.12)

where

QRNN .‚/ D V H
N .‚/ QRV N .‚/; (2.13)

QR D
1

M
XXH ; (2.14)

where H denotes the Hermitian conjugate.

V N .‚/ is defined as above. QR is the sample covariance matrix of sampled data. The

.p � q/ � .p � q/ matrix, QRNN .‚/, corresponds to the sample covariance matrix for

the components of x.t/ in the noise subspace.
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2.3.2 Stochastic ML (SML)

The SML [7, 9, 8] estimation of DOA is formulated under the following assumption.

A6) s.ti/ are statistically independent samples from a complex Gaussian random vector

with zero mean and a certain covariance matrix S with rankfS g D r .

According to the assumptions A1) to A6), x.t/ is modeled as a p-dimensional com-

plex Gaussian random vector with zero mean and the covariance matrix R,

R D Efx.t/xH .t/g D A.‚/SAH .‚/ C �2Ip (2.15)

where S is the signal covariance matrix and it must be non-negative definite.

The joint density function of the sampled data X is given by [8]

f .X/ D

MY
iD1

1

det Œ�R�
� expfx.ti/

H R�1x.ti/g (2.16)

where detŒ�� represents the determinant. Taking the log function of (2.16) and ignoring

the constant term, the log-likelihood function of the model R in (2.15) with respect to

the unknown parameters ‚; S and �2 is

L.‚; S ; �2/ D �M

 
ln detfRg C

1

N

NX
iD1

x.ti/
H R�1x.ti/

!
(2.17)

The second term of (2.17) can be written into a trace form of matrix, then (2.17) be-

comes,

L.‚; S ; �2/ D �M
�
ln detfRg C trfR�1 QRg

�
(2.18)

where the sample covariance matrix QR is given as above.

The SML estimation of DOA is to be stated as the problem to find ‚ which maxi-

mizes (2.18) under the conditions
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C1) ‚ D f �1 �2 � � � �q g 2 U . U is a set of all possible ‚ determined by the array

configuration.

C2) S is non-negative definite.

C3) �2 is a non-negative real number.

The Model of R in (2.15) can be rewritten as

R D V S.‚/PV H
S .‚/ C �2I (2.19)

D G .‚/

264 RSS 0

0 �2I

375G H .‚/; (2.20)

G .‚/ D ŒV S.‚/ V N .‚/� ; (2.21)

where V S.‚/ and V N .‚/ are defined as above; P D T .‚/ST H .‚/ and RSS D P C

�2Iq where T .‚/ is a q �q non-singular matrix which satisfies A.‚/ D V S.‚/T .‚/.

The matrix P seems to be a function of ‚. However, since it is unknown, it can be dealt

with a matrix independent of ‚.

Then the unknown parameters of the likelihood function of model (2.19) and (2.20)

becomes ‚; P or RSS and �2. Correspondingly P or
�
RSS � �2I

�
should also be

non-negative definite.

2.3.3 Conventional SML

The estimation of conventional SML according to [8] is like follows.

(1) Given ‚.

(2) Evaluate A.‚/.
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(3) Obtain an orthogonal system V N .‚/ D A.‚/T .‚/.

(4) Calculate QRSS.‚/ D V H
N .‚/ ORV N .‚/.

(5) Obtain Q�2.‚/ D
1

p�q

n
trf QRg � trf QRSS.‚/g

o
.

(6) Evaluate the likelihood function

Lc.‚/ D �M ln
�
detf QRSS.‚/g � . Q�2.‚//p�q

�
.

The conventional SML estimation is the problem to obtain

O‚c D arg max
‚

Lc.‚/: (2.22)

The other parameters of �2, RSS , P and S are obtained as

O�2
c D Q�2. O‚c/; ORSSc

D QRSS. O‚c/; (2.23)

OP c D ORSSc
� I O�2

c ; OS c D T �1. O‚c/ OP cT �H . O‚c/: (2.24)

In the estimation above, the condition C2) is ignored. As a result, OP c equivalent to

OS c equivalent to
�

ORSSc
� O�2

c I
�

are all not guaranteed to be non-negative definite.

2.3.4 AM Algorithm for the SML Estimation

Many techniques for solving the DML estimation have been proposed, such as Alter-

nating Projection (AP) algorithm [2] and its irreducible version [23], MODE [3], and

gradient methods [15, 24]. According to numerous simulations for uniform linear ar-

rays, all of these techniques show good properties of convergence and provide global

solutions.

While for solving the SML estimation, only the Alternating Minimization (AM)

algorithm has been used [9]. The AM method is a popular iterative technique for solving
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a nonlinear multivariate minimization problem with a multi-modal criterion. The AM

algorithm can be applied to the SML estimation of DOA in the following manner.

Let Lk. O‚.k// be a cost function of Lc.‚/ for which the signal number is assumed

to be k instead of q, where O‚.k/ D f O�1, O�2, � � � , O�kg.

[Initialization Phase]

First assuming a single signal, k=1, find O�1 minimizing L1. O‚.1// by one-

dimensional global search with respect to O�1. Next, assuming two signals, k=2, and

fixing O�1 at the value obtained for a single signal, find O�2 minimizing L2. O‚.2// by one-

dimensional global search with respect to O�2. Continue in this fashion until all the initial

values for O�k , k D 1, 2, ..., q are computed.

[Convergence Phase]

Repeat the following updating process until all parameters are converged. At each

updating process, let one parameter, say O�k , be variable and let all other parameters

be held fixed. Find O�k minimizing the criterion Lq. O‚.q// by one-dimensional global

search with respect to O�k . Change the index k of the parameter to be updated into .k

mod q/ C 1.

Although a global minimum is not guaranteed in the AM algorithm, global solutions

can be obtained in most cases because of one-dimensional global searches performed in

each update process.
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2.4 Conclusions

In this chapter, we have introduced what are DML and SML estimations. We also intro-

duced the conventional SML estimation which is formulated by ignoring an important

condition of SML estimation. The conventional solving technique for SML estimation,

AM algorithm, is also described. So in next chapter we will discuss what is the problem

of the conventional SML estimation.
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Chapter 3

Problems in Conventional SML Estimation

3.1 Introduction

In this chapter, we discuss the problems in conventional SML estimation. We show

that because the condition C2) is ignored in the conventional SML, the following three

problems occur.

1. Solutions in the noise-free case are not unique.

2. Global solution in the noisy case becomes ambiguous occasionally.

3. There exist situations that any local solution does not satisfy the condition C2).

3.2 Problems in Conventional SML Estimation

In this section, first we have an important definition of solution space. Define

S QR D f‚ j ‚ 2 U and . QRSS.‚/ � Q�2.‚/I/ � 0g (3.1)

in which the local solution becomes the exact SML solution. We call this area the

ML solution space for the conventional SML. The constraint condition C2) is violated

outside S QR. Therefore a solution outside S QR can be considered to be inadequate in the

sense of ML.
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3.2.1 The Loss of the Uniqueness in the Noise Free Case

First, we deal with the noise-free case, i.e., �2 D 0. Because of the assumption A5),

a unique solution of DOA exists. As proved in appendix D, the DML estimator have a

unique solution in the noise-free case. Therefore, the DML estimator provides the true

directions of arrival ‚.

The SML estimation is the problem to find O‚ which maximize:

Lc.‚/ D �M ln
�
detf QRSS.‚/g � . Q�2.‚//p�q

�
: (3.2)

Define

Lc.‚/ D LS.‚/LN .‚/; (3.3)

where,

LS.‚/ D detf QRSS.‚/g; (3.4)

LN .‚/ D . Q�2.‚//p�q: (3.5)

In the noise-free case, Lc.‚/ D 0 holds when LS.‚/ D 0 or LN .‚/ D 0. Since

LN .‚/ D 0 is equivalent to LDML.‚/ D 0, a set of the true directions ‚ is one of

solutions.

Next, we consider the question if there exists O‚ such that LS. O‚/ D 0. Let

P 1=2 be a square-root matrix of a non-negative definite Hermitian matrix P , such that

P 1=2P H =2
D P where P H =2

D .P 1=2/H and define the notations, P �1=2
D .P 1=2/�1

and P �H =2
D .P H =2/�1. Then we have

V S. O‚/ D A. O‚/fAH . O‚/A. O‚/g�H =2; (3.6)
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and

det RSS. O‚/ D
j detfAH . O‚/A.‚/gj2 det †

detfAH . O‚/A. O‚/g
; (3.7)

where

† D
1

M
SS H : (3.8)

LS. O‚/ D 0 holds when

det † D 0 or detfAH . O‚/A.‚/g D 0 (3.9)

holds. In the former case, i.e., the case of � < q, Lc. O‚/ � 0 holds for any O‚. This

indicates that the SML estimation fails completely. If �2 is not zero but very small, then

the same failure does not happen. Instead, the later case, i.e., detfAH . O‚/A.‚/g D 0

becomes a dominant factor which makes LS. O‚/ or Lc. O‚/ small.

The remaining question is that there exists O‚ such that detfAH . O‚/A.‚/g D 0.

From here, we consider the case of uniform linear arrays. The steering vector for a

uniform linear array composed of omnidirectional sensors is represented as

a.�/ D Œ 1 e�j�.�/
� � � e�j.p�1/�.�/�T ; (3.10)

�.�/ D
2��

�
sin �: (3.11)

where � is the wavelength of signals impinging on the array, and � is the sensor spacing

between adjacent two sensors. As a necessary condition that a unique direction � is

determined by the phase parameter �, � � �=2 is imposed on the array configuration.

Numerical solutions of (3.9) are shown in Fig. 4.1, where the sensor spacing � D

�=2. In Fig. 4.1.(c) and (d), O�3 is held fixed to -60ı. Other parameters of simulations

are shown in figure caption. For any other fixed O�3, the similar results to Fig. 4.1.(c) and

(d) are obtained.
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(a) p D 3, q D 2, �1 D 0ı and �2 D 8ı. (b) p D 4, q D 2, �1 D 0ı and �2 D 8ı.

-80

-60

-40

-20

 0

 20

 40

 60

 80

-80 -60 -40 -20  0  20  40  60  80

th
e

ta
2

_
h

a
t 

[d
e

g
re

e
]

theta1_hat [degree]

-80

-60

-40

-20

 0

 20

 40

 60

 80

-80 -60 -40 -20  0  20  40  60  80

th
e

ta
2

_
h

a
t 

[d
e

g
re

e
]

theta1_hat [degree]

(c) p D 4, q D 3, �1 D 0ı, �2 D 8ı, �3 D

16ı, and O�3 D �60ı.
(d) p D 6, q D 3, �1 D 0ı, �2 D 8ı, �3 D

16ı, and O�3 D �60ı.

Figure 4.1: Orbits of . O�1; O�2/ for which LS. O‚/ D 0.

From Fig. 4.1, it can be confirmed that there exist infinite number of O‚ such that

detfAH . O‚/A.‚/g D 0 for uniform linear arrays. We have to note that these are solu-

tions of the SML estimation but extremely far from the true vales ‚. From the discussion

above, it can be stated that the SML estimation is not unique in the noise-free case.

3.2.2 Ambiguity of Global Solutions in Noisy Case

In this and the next subsection, we discuss these problems using examples shown in

Fig. 4.2. The scenarios of simulations are described in captions. In Fig. 4.2, a cross

represents a local solution. A shaded area represents the solution space of SML as we

17



-90

-60

-30

 0

 30

 60

 90

-90 -60 -30  0  30  60  90

th
e
ta

2
 [
d
e
g
re

e
]

theta1 [degree]

-90

-60

-30

 0

 30

 60

 90

-90 -60 -30  0  30  60  90

th
e
ta

2
 [
d
e
g
re

e
]

theta1 [degree]

(a) The point A is the local solu-
tion closest to the true DOA
while B is the global solution
where SNR = 30 dB.

(b) There is no local solution in
the ML solution space where
SNR = 0 dB.

(c) There is no local solution in
the ML solution space where
SNR = 0 dB.

Figure 4.2: Samples in the conventional SML estimation with uniform linear arrays of
omni-directional sensors. p D 3, q D 2, r D 2, N D 10 in (a) and (b),

p D 4, q D 2, r D 1, N D 100 in (c). The true DOA are 0ı and 8ı.

defined above.

In the case that noises exist, global search for the conventional SML usually results

in finding a global solution of conventional SML. Fig. 4.2 (a) is a failure sample in

which the adequate solution of SML is not found.

In Fig. 4.2 (a), the point A is the adequate solution of SML because it is close to the

true DOA (0 and 8 degree) and it locates in the solution space. While, the point B is the

inadequate solution of SML because it is far from the true DOA and it locates out of the

solution space. However, the global solution is point B. According to 30 independent

trials with different noise samples in the same scenario as in Fig. 4.2 (a), global solutions

appear around B at 15 times and around A at other 15 times.

Although a unique global solution is found with probability one due to the existence

of noises, it is not always the closest local solution to the true DOA or is occasionally

inadequate. Therefore, the global solution of the conventional SML is ambiguity in this
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case. As a result, it fails in DOA finding in this case.

The inadequate global solutions appear along the solid curves as shown in Fig. 4.1

(a). The ambiguity of global solutions comes from the loss of the uniqueness of the con-

ventional SML solutions in the noise-free case. Furthermore, we have found empirically

that this kind of problems occur when signals are incoherent and r is close to q.

3.2.3 No Local Solutions in the ML Solution Space

Fig. 4.2 (b) and (c) show the cases that all local solutions do not satisfy the condition of

C2). In other words, no local solution is found in the ML solution space of the shaded

area. Fig. 4.2 (b) is the case of incoherent signals with low SNR and Fig. 4.2 (c) is the

case of coherent signals with comparatively high snapshots.

The conventional SML provides a formulation of the exact SML as long as ‚ be-

longs to S QR. A question arises that whether it is sufficient to find ‚ in S QR using the

conventional SML criterion in Lc.‚/. Unfortunately the answer is negative if no local

solution exists in S QR. This remedy for the conventional SML provides only a kind of

suboptimal solution since there exists an optimal or exact solution outside S QR as shown

in the next section.

Outside S QR, there does not exist any SML solution of which the model has

rankfS g D q. In order to derive an exact formulation of the SML estimation, we need

to introduce a stochastic model with rankfS g D r < q.
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3.3 Conclusions

In this chapter we have shown the three problems of conventional SML estimation. The

reason is that the conventional SML is formulated without considering the condition

C2).

Due to the problems we discussed above, the conventional SML fails in DOA finding

occasionally. More importantly, because the adequate solution of SML is not found,

the ML likelihood function can not be evaluated correctly. This involves theoretical

difficulty in applying the conventional SML to others, such as the MDL model selection.

Therefore, the exact formulation of SML is needed.
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Chapter 4

Formulation of Exact SML

4.1 Introduction

In this chapter, we give an exact formulation of SML estimation. In the exact formula-

tion the condition C2) which is ignored in conventional SML estimation is considered.

Then a performance study of the exact SML is also done with comparison to some other

techniques.

4.2 Formulation of Exact SML

The main idea of our proposed exact formulation is how to guarantee the condition C2)

while maximizing the log-likelihood function (2.18). This is also the main difference

between our proposed SML estimation and the conventional SML estimation.

Our maximization of (2.18) is like follows.

(1) Define a new representation of SML model for covariance matrix R which has a

consideration of rankfS g D r , and r is unkown.

(2) Maximize the likelihood function under the application of new representation of

R and consider that the condition C2) is already satisfied.

(3) Show what we should do when the condition C2) is violated.
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4.2.1 New Representation of SML model for R

First we assume that rankfS g D rankfP g D r � q for the stochastic model in (2.15),

(2.19) or (2.20). Let �1 � �2 � ... � �q be eigenvalues of RSS and their corresponding

eigenvectors be v1, v2, ..., vq. Using the spectral representation, the new reprsentation

of covariance matrix R is shown by the following Rr .

Rr D G .‚/

 
rX

kD1

.�k � �2/ukuH
k C�2Ip

!
G H .‚/ (4.1)

uk D ŒvT
k 0 0 ::: 0�T for k D 1; 2; :::; r (4.2)

where unknown parameters are f ‚, �1, �2, ..., �r , v1, v2, ... vr , �2 g and the constraint

condition C2) is replaced as follows.

C2’) �1 � ... � �r > �2

The following additional constraint is imposed on the model in (4.1).

C4) f v1, v2, ... vr g is an orthonormal system of an r -dimensional complex Euclid

space Cr .

Implicitly we have �rC1 D ... D �q D �2 and f vrC1, ... vq g compose an orthonormal

system of the orthogonal complement of spanf v1, v2, ... vr g.
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4.2.2 Likelihood Function

The inverse of the matrix Rr is represented as

R�1
r DG .‚/

 
rX

kD1

.
1

�k

�
1

�2
/ukuH

k C
1

�2
Ip

!
G H .‚/: (4.3)

Substituting Rr in (4.1) and R�1
r in (4.3) into (2.18), we have the log-likelihood

function as follows.

Lr .‚; �1; :::; �r ; v1; :::; vr ; �2/

D �M

 
ln
n
�1�2:::�r

�
�2
�p�r

o
C

rX
kD1

lk.‚; vk/

�k

C
1

�2

(
trf QRg �

rX
kD1

lk.‚; vk/

)!
(4.4)

where

lk.‚; vk/ D uH
k G H .‚/ QRG .‚/uk

D vH
k

QRSS.‚/vk for k D 1, 2, ..., r (4.5)

and QRSS.‚/ is given as in step (4) in conventional SML.

The SML estimation is the maximization problem to find ‚, �1,..., �r , v1, ..., vr , �2

which maximize the likelihood function in (4.4) under the constraints of C1), C2’), C3)

and C4).

In subsection 5.3, 5.4 and 5.5, we assume that the condition C2’) is already satisfied

in order to make the derivation process simple; in subsection 5.6 we discuss what we

should do when the condition C2’) is violated; at last we show the exact SML criterion

for DOA finding with two different cases.
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4.2.3 Maximization by �1, �2, ... �r and �2

Given ‚ and an orthonormal system f v1, v2, ..., vr g we consider the maximization of

Lr in (4.4) with respect to �1, �2, ..., �r and �2.

Since the function

h.�/ D �

�
ln � C

l

�

�
(4.6)

has a single peak at � D l , it is easy to get that

�k D lk.‚; vk/ for k D 1; 2; :::; r (4.7)

�2
D �2

r D
1

p � r

 
trf QRg �

rX
iD1

li.‚; vi/

!
: (4.8)

and lk.‚; vk/ are given by (4.5).

Then the likelihood function is rewritten as

Lr .‚; v1; :::; vr / D �M ln
n
�1�2:::�r

�
�2
�p�r

o
(4.9)

where �k and �2 are given above.

4.2.4 Maximization by v1, v2, ... vr

Fixing ‚, then maximize Lr .‚; v1; :::; vr / in (4.15) with respect to v1, v2, ..., vr . We

prove that these vectors become eigenvectors of QRSS.‚/.

Introducing Lagrange’s multipliers under the condition C4) in a new criterion, taking

derivatives of the new criterion with respect to unknown real parameters in v1, v2, ...,

vr and making the derivatives equal to zero, then we can obtain a set of r equations in

24



the complex form as follows.�
1

�2
�

1

lk.‚/

�
QRSS.‚/vk

D ˛k1v1 C ˛k2v2 C ::: C ˛krvr (4.10)

˛ki D N̨ ik for k, i D 1, 2, ..., r : (4.11)

where ˛ki is a complex number determined by Lagrange’s multipliers and the bar indi-

cates the complex conjugate.

Multiplying (4.10) by vH
i from the left, we have

˛ki D

�
1

�2
�

1

lk.‚/

�
vH

i
QRSS.‚/vk : (4.12)

And we also have

˛ki D N̨ki D

�
1

�2
�

1

li.‚/

��
vH

k
QRSS.‚/vi

�H

D

�
1

�2
�

1

li.‚/

�
vH

i
QRSS.‚/vk : (4.13)

Next we prove that v1; v2; :::vr are eigenvectors of QRSS.‚/. For simplicity we use

lk to replace lk.‚/ in the proving process.

In the Case of lk ¤ li

From (4.12) and (4.13), we have ˛ki D 0 if lk ¤ li for k ¤ i . Therefore if lk ¤ li for

all combinations of k and i that k ¤ i , then we have the eigenequation�
1

�2
r

�
1

lk

�
QRSS.‚/vk D ˛kkvk for k D 1, 2, ..., r : (4.14)

Therefore v1, v2, ..., vr must be eigenvectors of the matrix QRSS.‚/ and orthogonal

each other. The Hermitian form lk D vH
k

QRSS.‚/vk in (4.5) is an eigenvalue of the

eigenvector vk for k D 1, 2, ..., r .

25



In the Case of l1 D l2 D ... D l�

In the case that l1 D l2 D ... D l�, we can also derive that ˛ki D 0 for k ¤ i as shown

in appendix (B) using appendix (A). Therefore l1.‚/, l2.‚/, ..., lr .‚/ are eigenvalues

of QRSS.‚/.

After that we have the likelihood function as

Lr .‚/ D �M ln
n
�1�2:::�r

�
�2
�p�r

o
(4.15)

where

�k D lk.‚/ for k D 1; 2; :::; r (4.16)

�2
D �2

r D
1

p � r

 
trf QRg �

rX
iD1

li.‚/

!
: (4.17)

and l1.‚/; l2.‚/; :::; lr .‚/ are eigenvalues of QRSS.‚/.

4.2.5 Optimal Selection of Eigenvalues

Assuming that there exist a selection of eigenvalues in (4.17) that satisfies the condition

C2’), It is mathematically easy to know that the optimal selection is obtained as the

selection of largest r eigenvalues.

Let Q�1.‚/ � Q�2.‚/ � ... � Q�q.‚/ be eigenvalues of the matrix QRSS.‚/ and

Qv1.‚/, Qv2.‚/, ..., Qvq.‚/ be their corresponding eigenvectors. Unknown parameters are
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represented by functions of ‚ as

�k D Q�k.‚/ for k D 1, 2, ..., r (4.18)

vk D Qvk.‚/ for k D 1, 2, ..., r (4.19)

�2
D Q�2

r .‚/ D
1

p � r

 
trf QRg �

rX
iD1

Q�i.‚/

!
: (4.20)

The final form of the likelihood function is written as follows.

Lr .‚/ D �M ln
n

Q�1.‚/Q�2.‚/:::Q�r .‚/
�
Q�2

r .‚/
�p�r

o
(4.21)

4.2.6 Applying the Condition C2’)

Define the ML solution space for the model of Rr as

�r D f‚ j ‚ 2 U and Q�r .‚/ > Q�2
r .‚/g: (4.22)

As well as the conventional SML, the log-likelihood function in (4.21) has meaning if

and only if the constraint condition C2’) or Q�r .‚/ > Q�2
r .‚/ is satisfied. The model with

rankfSg D r has a likelihood function only for ‚ 2 �r .

Because of the use of normal distributions, the likelihood function in (4.21) is con-

tinuous. When ‚ approaches to the border of �r from its inside, both Q�k.‚/ and Q�2
r .‚/

approach to a certain value keeping the relation Q�k.‚/ > Q�2
r .‚/. Finally they have an

identical value on the border. Then the matrix S can not keep the rank r . Outside

the border, if the condition C2’) is relaxed to Q�r .‚/ � Q�2
r .‚/, the solution becomes

Q�k.‚/ D Q�2
� .‚/ for k D �, � C 1 ... r with certain � less than r . Therefore, the model

with rankfSg D r does not have a likelihood function outside �r . Instead a certain

model with rankfSg < r has.
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Furthermore if the model with rankfSg D r has a likelihood function for a certain

‚, also the mode with rankfSg < r has a likelihood function for the same ‚ because

Q�r�1.‚/ > Q�2
r�1.‚/ is readily derived from Q�r .‚/ > Q�2

r .‚/.

From the discussion above, we can state that, for each ‚ 2 U , there exists the maxi-

mum rank of S that the stochastic model has a likelihood function. Let it be represented

by �.‚/. �.‚/ is determined in the following way.

� If Q�1.‚/ � Q�2
1 .‚/, then �.‚/ D 0.

� If Q�q.‚/ > Q�2
q .‚/, then �.‚/ D q.

� If Q�k.‚/ > Q�2
k
.‚/ and Q�kC1.‚/ � Q�2

kC1
.‚/ for a certain k D 1; 2; :::; q � 1, then

�.‚/ D k.

Next, we compare the values of Lr�1.‚/ and Lr .‚/ under the condition of Q�r .‚/ >

Q�2
r .‚/. Let Q�r .‚/ D .1 C ˛/ Q�2

r .‚/ and n D p � r C 1, where ˛ > 0. Then we have

Lr .‚/ � Lr�1.‚/ D N ln

0B@
�
1 C

˛

n

�n

1 C ˛

1CA > 0: (4.23)

It follows from (4.23) that

L0.‚/ < L1.‚/ < ::: < L�.‚/.‚/: (4.24)

4.2.7 Exact SML Criterion

The exact SML estimation of DOA has different criterion when the rank condition of S

is imposed or not.

The first case: If no condition is imposed on the rank of S , L�.‚/.‚/ gives the

maximum value for fixed ‚ among all possible log-likelihood functions with different
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rank of S . Therefore, the exact ML estimations are obtained as follows.

O‚e D arg max
‚

L�.‚/.‚/; (4.25)

O�ke D Q�k. O‚e/ for k D 1, 2, ..., �. O‚e/ (4.26)

Ovke D Qvk. O‚e/ for k D 1, 2, ..., �. O‚e/ (4.27)

O�2
e D Q�2

�. O‚e/
. O‚e/: (4.28)

Furthermore the SML estimation of the signal covariance matrix is given as follows.

ORSSe
D

�. O‚e/X
kD1

O�ke Ovke Ov
H
ke; OP e D ORSSe

� O�2
e I ; (4.29)

OS e D T �1. O‚e/ OP eT �H . O‚e/; (4.30)

where the non-negative definiteness of OS e is guaranteed because of the definition of

�.‚/.

The second case: If we try to find an exact SML estimation of the model with

rankfS g D r for certain fixed r , the solution can be obtained as long as the SML

solution space �r includes a local maximum of Lr .‚/. The exact SML estimations

have the same forms as in (4.25) to (4.30) except for replacing �.‚/ with r . If the SML

solution space �r does not include any local maximum of Lr .‚/, there does not exist

the likelihood SML estimation for the fixed r of rankfS g.

Furthermore, we should note that if we impose that �.‚/ D q, our proposed exact

SML criterion is equivalent to the conventional SML criterion.

4.3 Performance Study of Exact SML

In this section, some simulation results are shown to demonstrate properties of the pro-

posed exact SML estimation of DOA by comparing other techniques.
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In the simulations, the array configuration is a uniform linear array composed of

omni-directional sensors, of which steering vector is represented as

a.�/ D Œ 1 e�j�.�/
� � � e�j.p�1/�.�/�T ; (4.31)

�.�/ D
2��

�
sin �: (4.32)

where � is the wavelength of signals impinging on the array, � is the sensor spacing

between adjacent two sensors. As a necessary condition that a unique direction � is

determined by the phase parameter �, � � �=2 is imposed on the array configuration.

In our simulations, � D �=2.

The SNR is defined as

SNRk D 10 log10

EŒjsk.t/j2�

�2
: (4.33)

All signals are assumed to have the identical SNR. The Root-Mean-Square-Error

(RMSE) is defined as

RMSE D

vuut 1

qN

qX
kD1

NX
nD1

j O�k;n � �k j2; (4.34)

where O�k;n is the estimation of �k at the n-th trial.

The stochastic Carmer-Rao lower bound (CRLB) [8, 16] is also done in the simula-

tion.

4.3.1 Property of Global Solutions

Fig. 5.1 shows the solution property of exact SML. The conditions are written in the

captions. In Fig. 5.1, the solid lines that detf QRSS.‚/g D 0 in noise-free case are

canceled.

30



(a) The exact solution locates in
the shadow space O� D 2.

(b) The exact solution locates in
the space O� D 1.

(c) The exact solution locates in
the space O� D 1

Fig. 5.1: Samples in the exact SML estimation. The scenarios are the same as in Fig. 4.1
respectively. Crosses represent the local solutions of exact SML. The shadow represents
the space O� D 2; In (b) and (c) the space which locates out of the shadow and inside of
the dotted lines represents O� D 1; the other space represents O� D 0.
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Fig. 5.2: Property of global solutions of the exact and conventional SML and
local search for the conventional SML.

Comparing Fig. 4.1 and Fig. 5.1, we can find the following facts. (1) All the inade-

quate solutions around the solid lines in Fig. 4.1 vanish in the exact SML estimation. (2)

The local solution located in the shadow area in Fig. 4.1 (a) is the exact SML solution

which is the same as in Fig. 5.1 (a). (3) In conventional SML estimation, there are no

SML solution in Fig. 4.1 (b) and (c). While in exact SML estimation, the exact SML

solution can be found in the space O� D 1 as shown in Fig. 5.1 (b) and (c). This indicates

that there is no SML solution with the model rankfSg D 2 and the solution exists in the

model rankfSg D 1 in these two cases.
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Fig. 5.2 shows the comparison of RMSE between the conventional SML and the

proposed exact SML. The scenario of the simulation is the same as Fig. 4.1 (a) and (b)

and 30 independent trials are fulfilled.

In Fig. 5.2, “Conv SML” and “exact SML” show the results from the conventional

SML and the proposed exact SML, respectively. It is found from Fig. 5.2 that RMSE of

the conventional SML is very large even when the SNR is very high. This indicates that

there exist inadequate global solutions in the conventional SML. It is also found from

Fig. 5.2 that the proposed exact SML provides good solutions.

4.3.2 Sensitivity to the Rank of S in the Estimation Model

The WSF estimation needs to know the rank of S which is used for its formulation. Let

rw represent the rank of S in the model of the WSF estimation. In this subsection, we

investigate the sensitivity of DOA estimation to rw.

Fig. 5.3 shows RMSE of the WSF with different rw. The scenario is p D 6, q D 4,

�1 D 0ı, �2 D 10ı, �3 D 20ı, �4 D 30ı, rankfS g D r D 3 and N D 300. Three cases

that rw D 2, rw D 3 and rw D 4 are assumed and 30 independent trials are fulfilled.

It is found from Fig. 5.3 that the WSF shows excellent estimation if the true rank of

S is given, i.e., rw D 3. However in both cases that rw is larger and less than the true

rank, the estimation performance becomes worse. The WSF is sensitive to rw. If the true

rank is not known, rw should be estimated by using some proper technique. Otherwise

rw D q is used.

In the proposed exact SML, the rank of S in the model is determined as �.‚/ au-

tomatically. In order to compare the exact SML with the WSF, we introduce the upper
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Fig. 5.3: Sensitivity of WSF to
the rank of S in the estimation
model.
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Fig. 5.4: Sensitivity of the ex-
act SML to the rank of S in the
estimation model.

limit of the rank of S in the model of the SML estimation. Let ru represents the upper

limit and ru is used as follows. The SML criterion Lru
.‚/ is used instead of L�.‚/.‚/

if �.‚/ � ru. Otherwise L�.‚/.‚/ is used. In the case that ru D q, the exact SML

estimation with L�.‚/.‚/ is fulfilled.

Fig. 5.4 shows the simulation results for ru D 2, ru D 3 and ru D 4. The scenario is

the same as in Fig. 5.3. Difference in estimation performance can not be seen, between

the cases that ru D 3 and ru D 4, while the case ru D 2 shows worse performance.

From this result, we can say that, as long as the upper limit of the rank of S in the

model is not less than the true rank, the exact SML is not sensitive to the rank. The use

of L�.‚/.‚/ is the best selection.

4.3.3 Comparison of RMSE

In Fig. 5.5, we show comparisons of RMSE for several DOA estimation methods. Fig.

5.6 is a enlarge figure of Fig. 5.5 when SNR is less than 20 dB.

The scenario of the simulation is the same as in Fig. 5.3 and Fig. 5.4 and the rank S

is assumed to be unknown.
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dB.

We pick up the methods of the exact SML, the DML, the WSF with rw D q D 4,

the Spectral-MUSIC [18] and the Root-MUSIC [19] estimation. In order to apply the

Spectral-MUSIC and the Root-MUSIC estimation to coherent signal models, a spatial

smoothing technique [20] is used. In Fig. 5.5, these are labeled by their name.

we can find that the RMSE of all methods including the Spectral MUSIC get closer

to CRLB as SNR becomes larger. In the scenario of this simulation, signals are coherent.

Therefore SNR needs to be very high so that the RMSE of the MUSIC approaches to

CRLB.

From Fig. 5.6, we can find that the estimation performance of the exact SML is

the best in the threshold region (when SNR is less than about 10 dB), and when the

condition is good its performance is a litter worse than that of WSF as shown in Fig.

5.6. The same results are observed in other simulations.
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4.3.4 Comparison of Operations

In fig. 5.7, we show comparison of the average number of floating operations of all

of addition, subtraction, multiplication and division of the methods picked up in Fig.

5.5. The scenario is also the same as in Fig. 5.5. In Fig. 5.7, they are labeled by their

name. From Fig. 5.7, we can find that there is no advantage of the proposed method in

operations since eigen-decomposition is involved in each step of iterations.

4.4 Conclusions

In this chapter, we gave the exact formulation of SML estimation and then a perfor-

mance study of exact SML is also done. Based on the above simulations, we can find

that the ML-based methods require large computational cost compared with Spectral-

MUSIC and Root-MUSIC. If signals are incoherent and observation condition is good,

Root-MUSIC give almost equivalent RMSEs to ML-based methods. However, ML-

based methods especially our proposed exact SML show much better performance in

estimation accuracy than Root-MUSIC in the case of coherent signals and in the thresh-

old region, such as low SNR or small number of samples. Furthermore, the proposed
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exact SML has following advantages. First it provides the exact global solution of SML,

which can become a standard for evaluating estimation accuracy of other methods, es-

pecially approximated SML methods. Second, the proposed exact SML method does

not have any theoretic problem in applying the ML solution to other techniques such as

the model selection technique based on MDL principle.
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Chapter 5

Efficient Algorithms for the SML Estimation

5.1 Introduction

As we have discussed above, the exact SML estimation requires high computational

cost. It is difficult to exploit efficient algorithm for the exact SML criterion. To reduce

computational cost possibly with less loss of resolution. We propose three efficient

algorithms to find the optimal or suboptimal solution of SML.

At first, we propose a local search method together with the DML estimation as

initialization. Then based on the local search method, we propose an effective version

of AM (EAM) algorithm to find the solution of SML. At last the irreducible form of

EAM, called IAM is also proposed. The validity of the algorithms are also shown by

simulations.

5.2 Use of Local Search Method

Through the discussion in chapter 4 and 5 (especially, form Fig. 4.2 and Fig. 5.1), we

have known that, the conventional SML fails in DOA finding occasionally because the

global solution is ambiguity. The global solution of conventional SML is sometimes

not adequate. However, the adequate solution of SML do exist in the local solutions of

the conventional SML estimation. Therefore, we wonder whether we can find a method

which can find the adequate solution of SML from the conventional SML estimation.

The motivation we do this is that it is much easier to exploit efficient algorithms based
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on the conventional SML criterion.

Since global searches have no chance to get the adequate solution of the SML, local

search method may have a good chance to get the adequate solution. The remaining

problem is how to determine the initial value.

In the noise-free case, it can be proved that the DML estimation gives unique solution

which is identical to the true DOA. The proof is shown in Appendix D. This solution is

also one of the solutions of the SML estimation. Therefore the solution of the DML is

the adequate solution of the SML in the noise-free case.

In the noisy case, if �2 is enough small, or SNR is enough high, the solution of DML

can be enough close to the true DOA. So the solution of the DML estimation provides

an excellent initial value. Therefore, we propose the algorithm that a local search is

applied to the conventional SML criterion using the solution of DML estimation as an

initial value.

The local search is fulfilled by replacing the one-dimensional global search with any

one-dimensional local search in the update process of the convergence phase of the AM

algorithm.

If the SNR is enough high, the proposed algorithm is successful. The level of SNR

considered to be enough high is not clear. Since the inadequate solutions of SML are

located far from the true DOA, it is expected that the initial value obtained by the DML

estimation are still valid when SNR is large some extent.
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5.2.1 Validity of the Local Search Method

Simulation results are shown in Fig. 6.1. The scenarios and the labels are explained in

the caption.

In Fig. 6.1 (a), we can find the following facts: 1) The global search for conventional

SML estimation fails completely in DOA finding in this case. 2) When the observation

condition is good (when SNR is greater than about 10dB ), the RMSE of the proposed

local search algorithm is the same as that of the exact SML estimation. 3) In the thresh-

old region (SNR is less than 10dB), the RMSE is a litter worse than that of the exact

SML estimation.

The second fact holds because the adequate solution of SML is correctly searched,

and this solution is the optimal solution and is the same as that of exact SML. The third

fact happens because the cases like Fig. 4.2 (b) or (c) appears. The adequate solution

of SML is not found in this case. The solution of the proposed method searches the

suboptimal solution of SML in this case. This case only occurs in the threshold region.
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However, in simulations we have confirmed that when the DOA finding is resolvable

(for example, in Fig. 6.1 the two signals are located in 0 and 10 degree, so if RMSE is

less than about 5, we consider that the DOA is resolvable. ), the proposed local search

method can show the same RMSE performance of exact SML.

In Fig. 6. 1(b), the computational cost of the local search method is much lower that

of the exact SML estimation.

5.3 An Efficient Version of AM Algorithm (EAM) for the SML Es-

timation

In the previous section, we have shown that the proposed local search algorithm is ef-

fective and efficient. However, when p and or q becomes larger, the computational load

still seems to be high. Therefore, we try to establish a more efficient algorithm.

In this section, we propose an efficient version of the AM algorithm. We call it the

EAM algorithm. The main idea of this algorithm consists in dividing the conventional

SML criterion into two components. One depends on a variable parameter and the other

component is independent of the variable parameter. To simplify the derivation, From

now on, theQof a matrix is omitted.

In each updating process, let �l be a variable parameter and define

‚l D f�1; �2; :::; �l�1; �lC1; :::; �qg (5.1)

Al D Œa.�1/; :::; a.�l�1/; a.�lC1/; :::; a.�q/ (5.2)

V Sl
: an orthonormal system of the subspace spanned by fAlg.
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V Nl
: an orthonormal system of the orthogonal complement of the

subspace spanned by fAlg

PAl
D AlfA

H
l Alg

�1AH
l D V Sl

V H
Sl

(5.3)

P ?
Al

D I � PAl
D V Nl

V H
Nl

(5.4)

RSl
D V H

Sl
RV Sl

(5.5)

RNl
D V H

Nl
RV Nl

(5.6)

vl.�l/ D P ?
Al

a.�l/= k P ?
Al

a.�l/ k (5.7)

Note that, when the value of �l changes, only vl.�l/ varies and all others above are fixed.

From these definitions, we have

spanfV Nl
g D spanfvl.�l/g ˚ spanfV N .‚/g (5.8)

spanfV S.‚/g D spanfvl.�l/g ˚ spanfV Sl
g (5.9)

where ˚ represents the direct sum of subspaces. It follows from (5.8) and (5.9) that

there exist a .p � k C 1/ � .p � k C 1/ unitary matrix T 1 and a k � k unitary matrix

T 2 which satisfy

V Nl
D Œvl.�l/ V N .‚/� T 1 (5.10)

V S.‚/ D
�
vl.�l/ V Sl

�
T 2 (5.11)

Substituting (5.10) into (5.6), we have

RNl

D T H
1

264 vH
l

.�l/Rvl.�l/ vH
l

.�l/RV N .‚/

V H
N .‚/Rvl.�l/ V H

N .‚/RV N .‚/

375T 1

D T H
1

264 vH
l

.�l/Rvl.�l/ vH
l

.�l/RV N .‚/

V H
N .‚/Rvl.�l/ RNN .‚/

375T 1 (5.12)
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Taking the trace of both sides in (5.12), we have

trfRNl
g D trfRNN .‚/g C vH

l .�l/Rvl.�l/

D trfRNN .‚/g C
aH .�l/V Nl

RNl
V H

Nl
a.�l/

aH .�l/V Nl
V H

Nl
a.�l/

(5.13)

Substituting (5.11) into (5.5), we have

RSS.‚/

D T2
H

264 vH
l

.�l/Rvl.�l/ vH
l

.�l/RV Sl

V H
Sl

Rvl.�l/ V H
Sl

RV Sl

375T2

D T2
H

264 vH
l

.�l/Rvl.�l/ vH
l

.�l/RV Sl

V H
Sl

Rvl.�l/ RSl

375T2 (5.14)

Taking the determinant of both sides in (5.14), we have

detfRSS.‚/g

D detfRSl
g

�
vH

l .�l/Rvl.�l/ � vH
l .�l/RV Sl

R�1
Sl

V H
Sl

RvH
l .�l/

�
D detfRSl

g
aH .�l/V Nl

W V H
Nl

a.�l/

aH .�l/V Nl
V H

Nl
a.�l/

(5.15)

where

W D RNl
� V H

Nl
RV Sl

R�1
Sl

V H
Sl

RV Nl
(5.16)

Define

u.�l/ D V H
Nl

a.�l/ (5.17)

then the final form of the proposed algorithm, EAM algorithm, can be derived from

(5.13) and (5.15) as follows,

trfRNN .‚/g D trfRNl
g �

uH .�l/RNl
u.�l/

k u.�l/ k2
(5.18)
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detfRSS.‚/g

D detfRSl
g
uH .�l/W u.�l/

k u.�l/ k2
(5.19)

In (5.17), (5.18), and (5.19), all quantities except for u.�l/ are fixed and can be com-

puted before starting the one-dimensional search with respect to �l . Therefore main

computations of each step in the one-dimensional search are a product of the matrix

V H
Nl

and the vector a.�l/ in (5.17) and evaluation of two Hermitian forms in (5.18) and

(5.19).

5.3.1 Efficiency of the EAM Algorithm

In this subsection, we compare the computational complexity of the EAM algorithm,

the local search algorithm proposed in section 6.2 and the exact SML estimation.

In simulation, The label “Exact SML” represents the original AM algorithm for exact

SML estimation. “DML+Local” represents the local search method proposed in section

6.2. ”EAM” represents the EAM algorithm proposed in section 6.3.

Simulation results are shown in Fig. 6.2. The scenario is shown in the caption of

each figure.

From these figures, we can find that “DML+Local” is more efficient than “Ex-

act SML” as well as we shown in subsection 6.2.1. ”EAM” is more efficient than

“DML+Local” as we expected. According to many simulations, we have found that

the greater p; q are, more efficient of the EAM algorithm.
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Figure 6.2: Efficiency of the EAM algorithm.

5.4 Irreducible Form of EAM Algorithm (IAM)

Using the above AM and EAM algorithms in real calculation of the conventional SML

estimation , we found that it becomes numerical unstable, when more than one direction

parameters are going to have an identical value. It is caused by the fact that the conven-

tional SML criterion with duplicated directions is indefinite. To solve this problem and

reduce the computational cost more, in this section we propose the irreducible form of

the EAM algorithm by applying a uniform linear array.

5.4.1 Numerical Instability in AM and EAM Criterion

In this subsection, we show the reason of the numerical Instability in AM and EAM

algorithm for the conventional SML estimation.

Define the subspace

U .‚/ D spanfa.�1/a.�2/:::a.�q/g: (5.20)
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The linear combination

a.�j / � a.�i/

�j � �i

(5.21)

always belong to U .‚/. Even when �j ! �i , we have dimfU .‚/ j�i !�j
g D q, where

dimf:g represents the dimension of the subspace.

On the other hand, when �j D �i , we have dimfU .‚/ j�i D�j
g < q. This implies that

the criterion Lc.‚/ has discontinuous points in the parameter space.

Next, we consider computation of the EAM criterion vl.�l/ in eq. (6.5). When the

variable parameter �l approaches the value of a fixed parameter �i , vl.�l/ vanishes and

both the numerator and denominator in eq. (6.5) becomes zero. Then vl.�l/ becomes

indefinite. Therefore the computation of vl.�l/ becomes numerical unstable. This can

be verified in the simulation section

In the case that the DOA can be solved, the numerical instability does not occur,

since each parameter in the convergence phase of the EAM criterion comes apart from

others. However, at the threshold region, when more than one signal approach an iden-

tical value, the numerical instability becomes significant. In practice, when this case

happens, the sequence of DOA obtained in the convergence phase of the EAM criterion

shows oscillation. That is because the estimated bearings can not converge well due to

the numerical instability and would oscillate around that identical value. Therefore, the

oscillation makes the condition for terminating iterations complex and it requires extra

computation. This will be shown in simulation section.
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5.4.2 Irreducible Form of Efficient AM Criterion (IAM)

In this section, we present an improvement of EAM criterion using a uniform linear

array. We derive an irreducible form of the efficient AM criterion (IAM) for UML

estimation which is numerical stable and more efficient.

The array configuration is uniform linear array composed of omnidirectional sen-

sors, of which steering vector is represented as

a.�/ D Œ 1 e�j�.�/
� � � e�j.p�1/�.�/�T ; (5.22)

�.�/ D
2��

�
sin �: (5.23)

where � is the wavelength of signals impinging on the array, � is the sensor spacing

between adjacent two sensors. As a necessary condition that a unique direction � is

determined by the phase parameter �, � � �=2 is imposed on the array configuration.

In this paper, � D �=2.

Using the uniform linear array, we derive the irreducible form of eq. (6.18) and

(6.19). Define

fl.�/ D
uH .�l/RNl

u.�l/

k u.�l/ k2
; Qfl.�/ D

uH .�l/ QRNl
u.�l/

k u.�l/ k2
(5.24)

which are the varying parts in eq. (6.18) and (6.19).

First we derive the irreducible form of the the eq. (6.18). Substituting eq. (6.4) and

(6.17) into fl.�/, we get

fl.�/ D
aH .�l/P

?
Al

RP ?
Al

a.�l/

aH .�l/P
?
Al

a.�l/
: (5.25)

Using the uniform linear array defined above, the steering vector can be represented

like follows,

�p.z/ D Œ1 z : : : zp�1�; (5.26)
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Then fl.�/ can be rewritten into the form of a rational function

fl.�/ D
�p.z/P ?

Al
RP ?

Al
�p�.z/

�p.z/P ?
Al

�p�.z/
(5.27)

D
N.z/

D.z/
jzDej �

where �p�.z/ is the para-conjugate of �p.z/ defined as

�p�.z/ D �H
p .1=z�/ (5.28)

D Œ1 z�1 : : : z�.p�1/�T ;

and the superscript � is the complex conjugate of a complex number.

Let �l be variable and all other parameters are held fixed as well as in section 6.3.

Both the polynomials N(z) and D(z) have double zeros at z D �i in the complex z-

plane, since it holds �p.ej�i /P ?
Al

D 0. Without canceling these common zeros, fl.�/ is

indefinite at � D �i .

The irreducible form of the EAM criterion of fl.�/ can be derived by canceling

these common zeros. First, we define the polynomial Wl.z/ having zeros at z D ej�i ,

i D 1; 2 : : : ; l � 1; l C 1; : : : ; q,

Wl.z/ D

qY
iD1;i¤l

.z � ej�i / (5.29)

D w0 C w1z C � � � C wq�1zq�1:
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Using the coefficients of Wk.z/, define the following p � .p � q C 1/matrix as

W l.z/ D

2666666666666666664

w0 0 : : : 0

w1 w0 : : : 0

:::
:::

: : : 0

wq�1 wq�2
: : : w0

0 wq�1
: : : w1

:::
:::

: : :
:::

0 0 : : : wq�1

3777777777777777775

(5.30)

Then we have aH .�i/W k D 0 for i D 1; : : : ; k � 1; k C 1; : : : ; q. Since the column

vectors in W l are all orthogonal to a.�i/, the projection matrix P ?
Al

can be written as

P ?
Al

D W lG
�1
l W H

l (5.31)

G l D W H
l W l (5.32)

Using the expressions

�p.z/W l D ŒWl.z/ zWl.z/ : : : zp�qWlz� D Wl.z/�p�q.z/ (5.33)

�p�q.z/ D Œ1 z : : : zp�q �; (5.34)

the irreducible form of fl.�/ is derived as

fl.�/ D
�p�q.z/N l�.p�q/�.z/

�p�q.z/Dl�.p�q/�.z/
jzDej � (5.35)

where

N l D G �1
l W H

l RW lG
�1
l D fni;jg

p�q

i;jD0

Dl D G �1
l D fdi;jg

p�q

i;jD0 (5.36)

As for the irreducible form of Qfl.�/, it can be derived like this form similarly,

Qfl.�/ D
�p�q.z/ QN l�.p�q/�.z/

�p�q.z/Dl�.p�q/�.z/
jzDej � (5.37)
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where

QN l D N l � G �1
l W H

l RV Sl
R�1

Sl
V H

Sl
RW lG

�1
l (5.38)

D fQni;jg
p�q

i;jD0

Define the following polynomials

nl.z/ D n0 C n1z C � � � C np�qzp�q (5.39)

dl.z/ D d0 C d1z C � � � C dp�qzp�q (5.40)

where

n0 D

p�qX
iD0

ni;i nm D 2

p�qX
iDm

ni;i�m (5.41)

d0 D

p�qX
iD0

di;i dm D 2

p�qX
iDm

di;i�m m D 1; 2 : : : ; p � q (5.42)

and similarly define Qnl.z/ and to calculate the matrix QN l which realize the same function

as nl.z/.

Then we have the final form of fl.�/ and Qfl.�/ are shown like follows,

fl.�/ D
Refnl.e

j�/g

Refdl.ej�/g
; Qfl.�/ D

Ref Qnl.e
j�/g

Refdl.ej�/g
(5.43)

where Refg represents the real part of the complex value.

Therefore the irreducible form of efficient AM criterion (IAM) is shown like this.

trfRNN g D trfRNl
g �

Refnl.e
j�/g

Refdl.ej�/g
; (5.44)

detfRSSg D detfRSl
g
Ref Qnl.e

j�/g

Refdl.ej�/g
: (5.45)
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5.4.3 Validity of IAM Algorithm

In this section, we show some simulations to demonstrate that the IAM criterion is

instability and more efficient than the AM and EAM criterions for the conventional

SML estimation.

In Fig. 6.3, the scenario is p D 3; q D 2; � D 2, SNR=10, M D 100. The two true

sources are located at 0 and 8 degree. The estimated bearing �2 is fixed at 10 degree,

while �1 varies from 9.99999 to 10.00001. The dashed line represents the value of SML

with AM criterion, while the solid line represents the IAM criterion. It shows clearly
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that numerical instability occurs when the AM criterion is used. Especially, the value

changes violently around the point �2 D �1 D 10 because it is indefinite. As for the

IAM criterion, we can find that the value becomes monotonic and it is numerical stable.

Due to the numerical Instability, oscillation may happen as Fig.6.5 shows. The sce-

nario is the same to Fig. 6.3. In Fig. 6.5 (a) and (b), the estimated two bearings �1

and �2 converge to an identical value represented by the solid line and the dashed line.

The iteration is stopped when the variation of each bearing is less than 1e-05 or when

the iteration reaches the maximum number, 800. When the AM criterion is used, the

iteration does not stop until it reaches the maximum number. As for the IAM criterion,

it converges well for less than 100 iterations. Fig. 6.5 (c) shows the oscillation rate of

the two criterions in 100 independent trials. We can find that there is no oscillation when

the IAM criterion is used.

At last, let us see the average amount of operations of exact SML, local search

method, EAM and IMA criterions represented by ”ExactSML”, ”DML+Local”, ”EAM”

and ”IAM” respectively in Fig. 6. 4. The scenario is the same to Fig. 6.3. It shows

clearly that the IAM is the most efficient, while the exact SML is the worst.

5.5 Conclusions

In this chapter, we have proposed three algorithms to find the adequate solution of SML

with less loss of resolution and low computational cost. First we proposed a local search

method together with DML estimation as initialization to find the optimal or suboptimal

solution of the SML. The criterion is based on the conventional SML because it is more

easier to exploit efficient algorithms for its calculation. Simulation results are shown to

proved that when DOA is resolvable, the proposed local search method can reach the
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same solution of the exact SML. Then based on the local search method, an efficient

version of AM algorithm, called EAM algorithm, is proposed. It is shown that the EAM

algorithm is much efficient than the AM algorithm. However, one problem happens in

calculation of conventional suing the AM or the EAM algorithms. That is the numerical

instability happens when two parameters are going to have a same value. To solve this

problem and reduce computational cost more, we proposed the irreducible form the

EAM algorithm. We call it IAM algorithm. Simulation results are also shown that the

IAM is numerical stable and more efficient than the EAM algorithm.
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Chapter 6

Conclusions

In this paper, we address the issue of stochastic ML estimation of DOA. First we have the

basic problem formulation of DOA and introduce the DML and SML estimation. Then

the conventional SML estimation is shown. As some other literature also pointed out

that the conventional SML estimation are formulated without considering an important

condition that the estimated signal covariance matrix must be non-negative definite. Due

to this reason, the following problems happens for the conventional SML estimation. 1)

Solutions in the noise-free case are not unique. 2) Global solution in the noisy case

becomes ambiguous occasionally. 3) There exist situations that any local solution does

not satisfy that important condition. As a result, conventional SML estimation fails in

DOA finding occasionally. More importantly, because the adequate solution of SML

is not found, the ML likelihood function can not be evaluated correctly. This involves

theoretical difficulty in applying the conventional SML to others, such as the MDL

model selection.

To solve these problems, an exact formulation of SML is given. The exact SML

can solve the problems above. It also shown that it has good resolution in the threshold

region and it does not need the information of the rank of the signal covariance matrix.

Furthermore, the exact SML has following advantages. First it provides the exact global

solution of SML, which can become a standard for evaluating estimation accuracy of

other methods, especially approximated SML methods. Second, the proposed exact

SML method does not have any theoretic problem in applying the ML solution to other

techniques such as the model selection technique based on MDL principle.

The only problem of exact SML is that it require high computational cost. To find
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the adequate solution of SML with less loss of resolution and low computational cost.

we proposed three efficient algorithms. First we proposed a local search method to-

gether with DML estimation as initialization to find the optimal or suboptimal solution

of the SML. The criterion is based on the conventional SML because it is more easier

to exploit efficient algorithms and the adequate solution of SML do exit in the local

solutions of the conventional SML. Simulation results are shown to proved that when

DOA is resolvable, the proposed local search method can reach the same solution of

the exact SML. Then based on the local search method, an efficient version of AM al-

gorithm, called EAM algorithm, is proposed. It is shown that the EAM algorithm is

much efficient than the AM algorithm. However, one problem happens in calculation

of conventional suing the AM or the EAM algorithm. That is the numerical instability

happens when two parameters are going to have a same value. To solve this problem and

reduce computational cost more, we proposed the irreducible form the EAM algorithm.

We call it IAM algorithm. Simulation results are also shown that the IAM is numerical

stable and more efficient than the EAM algorithm.

However, we have to note that until now the SML estimation can not be applied

in practice because the computational cost is still very high. So the next step of my

research is to exploit more efficient algorithms for the SML estimation. We have been

considering the gradient method such as the Newton method for the SML estimation.

Exciting results are expected.
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Appendix A

Maximization of Likelihood Function with
Respect to �1, �2, ... �r and �2 When lr.‚; vr/

< �2

First, we assume with no loss of generality that vk for k D 1, 2, ..., r are ordered so that

l1.‚; v1/ � l2.‚; v2/ � ::: � lr .‚; vr /.

When lr .‚; vr / < �2, the solution in (30) and (31) violate the contiotion of �2 < �r .

To solve the maximization of Lr .‚; �1; ..., �r ; v1; ..., vr ; �2/ with respect to �1,

�2, ... �r and �2 in this case, we consider the maximization of the function h.�/ in (29)

when the domain of � is restricted to �2 � �. The solution of this probles is abtained as

follow.

� If �2 � l , the maximum value of h.�/ is obtained at � D l .

� If l � �2, the maximum value of h.�/ is obtained at � D �2.

Assuming that lr .‚; vr / < �2, the maximization of Lr .‚; �1; ..., �r ; v1; ..., vr ; �2/

with respect to �r with the condition �2 � �r results in �r D �2. The maximization

problem with respect to �1, �2, ... �r and �2 is changed into the maximization problem

of

Lr .‚; �1; :::; �r�1; �2; v1; :::; vr ; �2/ (A.1)

D Lr�1.‚; �1; :::; �r�1; v1; :::; vr�1; �2/ (A.2)
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with respect to �1, �2, ... �r�1 and �2. Therefore we have

�k D lk.‚; vk/ for k D 1, 2, ..., r � 1 (A.3)

�r D �2 (A.4)

�2
D �2

r�1 D
.p � r/�2

r C lr .‚; vr /

p � r C 1
(A.5)

where the condition C2’) is relaxed as

C2’) �1 � ... � �r � �2 .
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Appendix B

Maximization of Likelihood Function with
Respect to v1, v2, ... vr in the Case of l1.‚; v1/

= l2.‚; v2/ = ... l�.‚; v�/

In this appendix, we use the notation that lk instead of lk.‚; vk/. Let v1, v2, ..., vr be

the solutions which maximize Lr .‚; v1; ..., vr / in (29) and assume that l1 = l2 = ... l�

(=l0) for a certain � that � � r . Then the maximum log-likelihood function is rewritten

as

Lr .‚; v1; v2; v3; :::; vr / D �M ln
n
.l

�

0 l�C1:::lr
�
�2

r

�p�r
o

�2
r D

1

p � r

0@trf QRg �

0@�l0 C

rX
kD�C1

lk

1A1A : (B.1)

The equations (4.10) and (4.11) are reduced as follows.

QRSS.‚/vk D ˛0
k1v1 C ˛0

k2v2 C ::: C ˛0
k�v� (B.2)

˛0
kk D vH

k
QRSS.‚/vk D l0 (B.3)

˛0
ki D vH

i
QRSS.‚/vk D N̨

0
ik (B.4)

for k, i D 1, 2, ..., �:

Define the following 2 � 2 matrix A12264 vH
1

vH
2

375 QRSS.‚/Œv1 v2� D

264 l0 ˛0
12

N̨ 0
12 l0

375 D A12: (B.5)

The matrix A12 has two eigenvalues, i.e., l 0
1 D l0 � j˛12j and l 0

2 D l0 C j˛12j. Let e1

and e2 be the unit eigenvectors corresponding to l 0
1 and l 0

2, respectively. Define

v0
1 D Œv1 v2�e1 and v0

2 D Œv1 v2�e2: (B.6)
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Then we have

v0H
1

QRSS.‚/v0
1 D eH

1
QA12e1 D l 0

1 D l0 � j˛12j; (B.7)

v0H
2

QRSS.‚/v0
2 D eH

2
QA12e2 D l 0

2 D l0 C j˛12j: (B.8)

If it holds that l 0
1 � �2

r , then we readily obtain the following inequality.

Lr .‚; v0
1; v0

2; v3; :::; vr /

D �M ln
n
.l2

0 � j˛0
12j

2/l
��2

0 l�C1:::lr
�
�2

r

�p�r
o

� Lr .‚; v1; v2; v3; :::; vr /: (B.9)

The equal sign in (B.9) holds iff j˛0
12j D 0. If j˛0

12j ¤ 0, the inequality in (B.9) contracts

the assumption that v1, v2, ..., vr are solution that maximize Lr .‚; v1; v2; v3; :::; vr /.

Therefore we have j˛0
12j D 0.

Although l 0
2 is greater than �2

r , l 0
1 may not. In the case that l 0

1 � �2
r , using the result

described in appendix A, the log-likelihood function is obtained as follows.

Lr .‚; v0
1; v0

2; v3; :::; vr / D Lr�1.‚; v0
2; v3; :::; vr /

D �M ln
n
.l0 C j˛0

12j/l
��2

0 l�C1:::lr
�
� 02

r�1

�p�rC1
o

(B.10)

where

� 02
r�1 D

1

p � r C 1

�
.p � r/�2

r C l 0
1

�
: (B.11)

Because l 0
1 is written in the Hermitian form of the non-negative definite matrix

QRSS.‚/ as shown in (B.7), l 0
1 has a non-negative real value. Under the conditions

0 � l 0
1 � �2

r in addition to �2
r < l0, we can derive the following inequality

Lr�1.‚; v0
2; v3; :::; vr / > Lr .‚; v1; v2; v3; :::; vr /: (B.12)
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The inequality in (B.12) is proved in appendix C.

This conflicts with the assumption that v1, v2, ..., vr are the solutions which maxi-

mize Lr . Therefore l 0
1 � �2

r and j˛12j vanishes.

From the same discussion as above, we obtain ˛ki D 0 for all combinations of k

and i that k ¤ i in f 1, 2, ..., � g. Then the equations (B.2) are rewritten as

QRSS.‚/vk D l0vk for k D 1, 2, ..., �: (B.13)

Therefore l0 becomes an eigenvalue of QRSS.‚/ with � multiplicity and v1, v2 ... v�

are the corresponding unit eigenvectors orthogonal each other.
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Appendix C

Proof of B.12

From (B.12) we have

Lr�1.‚; v0
2; v3; :::; vr / � Lr .‚; v1; v2; v3; :::; vr /

D N ln

(
l

�

0 l�C1:::lr
�
�2

r

�p�r

.l0 C j˛0
12j/l

��2

0 l�C1:::lr
�
� 02

r�1

�p�rC1

)

D N ln

(
l0

.l0 C j˛0
12j

l0

� 02
r�1

�
�2

r

� 02
r�1

�p�r
)

: (C.1)

We have the followings from above,

�2
r D

1

p � r

�
.p � r C 1/� 02

r�1 � .l0 � j˛0
12j/

�
: (C.2)

Define

˛ D
l0 � j˛0

12j

� 02
r�1

ˇ D
l0 � j˛0

12j

l0
: (C.3)

Then it follows from the relation l0 > �2
r � � 02

r�1 � l0 � j˛0
12j � 0, that

0 � ˛ � 1 0 � ˇ < 1 (C.4)

and

˛ D
l0

� 02
r�1

ˇ
l0

� 02
r�1

> 1 (C.5)

˛ > ˇ: (C.6)

Using these definitions, we have

l0 C j˛0
12j D l0 C l0 � ˇl0 D .2 � ˇ/l0; (C.7)

� 02
r�1 D ˇl0=˛; (C.8)

� 02
r D

1

p � r
.p � r C 1 � ˛/� 02

r�1: (C.9)
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Then substitute these equations into (C.1) and because of 0 � ˛ � 1, .p � r/ � 1, we

have

Lr�1.‚; v0
2; v3; :::; vr / � Lr .‚; v1; v2; v3; :::; vr /

D N ln

�
˛

.2 � ˇ/ˇ
.1 C .1 � ˛/=.p � r//p�r

�
� N ln

�
˛

.2 � ˇ/ˇ
.1 C .1 � ˛//

�
D N ln

�
˛.2 � ˛/

ˇ.2 � ˇ/

�
: (C.10)

From the inequality in (C.6), we have

˛.2 � ˛/

ˇ.2 � ˇ/
> 1 (C.11)
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Appendix D

Uniqueness of the DML Estimation in
Noise-Free Case

In assumption A5), we assume that q < 2�p=.2� C 1/ and M � �. These conditions

guarantee that a unique solution of DOA exists in the noise-free case [22]. In other

words, the following equation has a unique solution of ‚ to the observation data X

when p, q, M and � satisfy the assumption A5).

X D A.‚/S (D.1)

On the other hand, in the noise-free case, the solution O‚ of DML estimator obviously

makes the DML estimator to the minimum value 0, i.e.,

LDML. O‚/ D trfRNN . O‚/g D 0: (D.2)

Next, we demonstrate that the solution O‚ of equation (D.1) is identical to the solution

of equation (D.2).

Proof W Assumption A1) guarantees that the matrix A.‚/ has full rank. Since it

holds

X D A.‚/S ; (D.3)

then we have

AH .‚/X D AH .‚/A.‚/S : (D.4)

And since A.‚/ is not singular, we get

S D .AH .‚/A.‚//�1AH .‚/X : (D.5)
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Substituting the equation (D.5) into equation (D.1), we have

X D A.‚/.AH .‚/A.‚//�1AH .‚/X : (D.6)

Here, define

PA.‚/ D A.‚/.AH .‚/A.‚//�1AH .‚/; (D.7)

where PA.‚/ is the projection matrix onto the signal subspace spanned by A.‚/. From

the definition of V S.‚/ and V N .‚/, we have

PA.‚/ D V S.‚/V H
S .‚/; (D.8)

P ?

A.‚/
D I � PA.‚/ D V N .‚/V H

N .‚/; (D.9)

where P ?

A.‚/
is the projection matrix onto the noise subspace which is the orthogonal

complement of the signal subspace. Hence, the solution O‚ of equation (D.1) is identical

to the solution of the following equation.

X D PA.‚/X : (D.10)

Then, we have

.I � PA.‚//X D P ?

A.‚/
X D 0: (D.11)

On the other hand, from the definition of RNN . O‚/, it is obvious that equation (D.2)

is identical to the following equation.

V H
N . O‚/X D 0 (D.12)

Multiply V N . O‚/ in each side of equation (2.31), then we have

V N . O‚/V H
N . O‚/X D P ?

A. O‚/
X D 0; (D.13)
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which is the same as equation (D.11).

Therefore, the solution O‚ of equation (D.1) is identical to the solution of equation

(D.2). it demonstrates that the DML estimation has a unique solution in the noise-free

case under the assumption A5).
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