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Abstract 
The production of electricity from the solar cells continues to attract interest as a 
power source for distributed energy generation. It is important to be able to estimate 
solar cell power to optimize system energy management. This paper proposes a 
prediction algorithm based on a neural network (NN) to predict the electricity 
production from a solar cell. The operation plan for a combined solar cell and diesel 
engine generator system is examined using the NN prediction algorithm. Two 
systems are examined in this paper: one with and one without a power storage 
facility. Comparisons are presented of the results from the two systems with respect 
to the actual calculations of output power and the predicted electricity production 
from the solar cell. The exhaust heat from the engine is used to supply the heat 
demand. A back-up boiler is operated when the engine exhaust heat is insufficient to 
meet the heat demand. Electricity and heat are supplied to the demand side from the 
proposed systems, and no external sources are used. When the NN 
production-of-electricity prediction was introduced, the engine generator operating 
time was reduced by 12.5% in December and 16.7% for March and September. 
Moreover, an operation plan for the combined system exhaust heat is proposed, and 
the heat output characteristics of the back-up boiler are characterized. 

Key words: Solar Cell, Diesel Engine Generator, Neural Network, Combined 
System, Prediction Algorithm 

 
1. Introduction 

 
Recently, the neural network (NN) has been proposed as a suitable statistical approach for 

classification and prediction problems (1), (2). A NN can be easily used in prediction problems 
due to its simplicity and adaptive pattern recognition ability. The prediction of local weather 
using NN is low in cost compared to large-scale prediction of weather using a mainframe 
computer. The objectives of this study are to develop an algorithm based on a NN to predict 
the electricity production from a solar cell and to optimize the operation plan of a combined 
solar cell and diesel engine generator. A layered NN is developed to learn and teach based 
on weather data, which includes the amount of solar radiation and the outside air 
temperature. This system allows for the construction of a power supply system with low 
environmental impact that uses renewable energy. Several studies have focused on 
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combining a solar cell and a diesel power plant (3)-(6). However, in these papers, reductions 
in energy cost by predicting electricity production from the solar cell and power load 
prediction were not investigated with respect to the heat characteristics of the proposed 
systems. The estimated power and generation capacities of solar cells have been studied (7), (8). 
The overall efficiency performance of solar cell systems about a variety of  irradiation 
conditions was proposed by Mondol et al.(7), and the accuracy of an artificial NN for 
estimating real-time maximum power generation from solar cells is studied by Syafaruddin 
et al.(8). A NN prediction algorithm (PAS) was developed by Obara (9). The relationship 
between prediction errors of the PAS and the energy cost was clarified, and the fuel 
consumption of an engine generator was proposed. However, although the output power 
from a solar cell was predicted using a NN in Ref. (9), the results were calculated and 
predicted on the order of weeks and days for the first weeks in February and August. Power 
was only supplied to the demand side, and heat from the proposed system was not 
considered. In the present paper, when the engine generator operates, exhaust heat from the 
engine is used to supply the demand. When the exhaust heat is less than the demand, a 
back-up boiler is used to supply the demand. Power and heat from the proposed system are 
used to supply the demand. 
  In addition, calculations and predicted results for solar cell electricity production as 
average values for each month and the energy supply characteristics of a solar cell and 
diesel engine generator are illustrated in this paper. Two systems are proposed in this work. 
The operation of the diesel engine generator is based on the fluctuation of the load in 
System 1, and a battery is not used. Therefore, because the engine is operated over a large 
area from a low to a high load, the average engine operation efficiency is low. On the other 
hand, in System 2 a battery is used to supply the demand when solar power is less than the 
demand, and the diesel engine generator operates at 25% or less of the battery residual 
quantity to work in safety Mode in the proposed system. Furthermore, operation of the 
engine generator is based on the charge or discharge of the battery, with maximum engine 
efficiency at maximum output power. Two operating methods are used in the two systems. 
In Method 1, we use actual electricity production calculations from the solar cell, while in 
Method 2, NN electricity production prediction results are used. This paper illustrates that 
engine generator operation time is shortened by introducing a NN prediction algorithm. The 
analysis error of the operation prediction is also considered. The heat output characteristics 
of the diesel engine and the back-up boiler are investigated. 
 
2. Procedure 

 
2.1 System model 

A block diagram of the combined solar cell and diesel engine system is shown in Fig. 1. 
As shown in the figure, the proposed system consists of a solar cell, a diesel engine 
generator, a battery, a heat storage tank, a back-up boiler and a system controller. The power 
output from the solar cell can be supplied to the power demand through a DC-AC converter 
and inverter, which also charges the battery. The power output from the inverter is supplied 
to a power grid or sold off to utilities through an interconnection device. Table 1 shows the 
specifications of the solar cell, battery, engine and generator (10). Two operating systems are 
used in this study. In System 1, a battery is not introduced into the system. When the solar 
cell power is less than the power demand, the diesel engine generator operates according to 
the load fluctuation, and the surplus power from the solar cell can be sold off. In System 2, 
the surplus power from the solar cell is used to charge a battery. The engine generator 
operates at a fixed load (3 kW output power) for maximum efficiency; the battery supplies 
the load when the power output from the solar cell is less than the demand. The battery 
capacity is measured for every sampling period. If the battery capacity drops to 25% or less 
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in the safety operation mode, the engine generator operates and charges the battery. The 
heat from the engine and boiler is used to supply the heat demand.  

Figure 2 shows the output characteristics of a test diesel engine generator; the 
maximum power output generated from the diesel engine generator is 3 kW (11). The heat 
exhaust output from the engine generator includes engine-cooling water and exhaust gas. 
The heat exhaust is stored in a heat storage tank that supplies a back-up boiler. The engine 
generator efficiency is calculated using the approximate expression shown in Fig. 2(b). 
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Fig. 1  System scheme
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2.2 Examination methods 
Two methods were used to examine the two operating systems. In Method 1, the system 

operation plan depends on actual calculations of the power output from the solar cell. On 
the other hand, in Method 2, the production of electricity from the solar cell using a NN 
prediction algorithm is introduced, and the system operation plan is based on the NN 
predicted output results for the solar cell. In this paper, the operation plan of the engine 
generator is investigated using the results of Method 1 and Method 2. 

 
2.3 Energy demand patterns 

The power and heat demand patterns of a typical household in Sapporo city, Japan, are 
shown in Fig. 3 (11), (12). In this figure, the power demand pattern does not change 
significantly each month; this is because there is no cooling load in the summer in Sapporo. 
The electricity demand includes household appliances and electric lighting. Heat demand 
comes from heating, hot water supply and baths. The operating systems were introduced 
into three apartments with the load and heat patterns shown in Fig. 3, multiplied by three. 

 
3. Analysis Method 
 
3.1 Amount of Slope–face Solar Radiation and Electricity Production of the Solar Cell  
  Direct solar radiation intensity (HD) and sky solar radiation intensity (HS) are used to 
calculate the amount of slope-face solar radiation and the electricity production from the 
solar cell (9)-(14). The formulas for direct solar radiation and the sky solar radiation are 
calculated using the following equations: 
 

θcos⋅= DD IH  (1)

δϕαδαθ coscossinsincossin ⋅⋅−⋅=  (2)

)cos1(5.0)cos1(5.0 βλβ −⋅⋅⋅++⋅⋅= HSs IIH  (3)
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δϕαϕαβ taneccossincotcoscos ⋅⋅+⋅=  (4)

 
where ID is the direct solar radiation intensity, IH is the global solar radiation intensity, IS is 
the horizontal sky solar radiation, λ  is the reflection factor, θ is an incident angle to the 
acceptance surface of the sunlight, α is the latitude of the setting point, δ is the solar 
celestial declination, ϕ  is the hour angle and β is the angle of the gradient of the 
acceptance surface. HD and HS are obtained from the standard weather, the solar radiation 
data base in the meteorology government office in Japan and AMEDAS (1990 to 2003) (14). 
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Equations 1 to 4 are used to calculate the slope-face solar radiation; the calculation results 
are shown in Fig 4. In this figure, the average values of slope-face solar radiation are 
calculated for December, March, June and April.  
  The following equation is used to calculate the average electricity production PS from the 
solar module (9). 
 

{ })100/()(1)( TOCSDSSs RTTHHSP ⋅−−⋅+⋅⋅= η  (5)

 
where PS is the output power from the solar cell, Tc is the temperature of the solar cell, Ss is 
the area of the solar cell (72 m2), ηs is the generation efficiency (14%), RT is the temperature 
coefficient (0.4%/K) and To is the reference temperature (298 K). Equation (5) is used to 
calculate the solar cell electricity production, the calculation results are shown in Fig. 5. As 
shown in this figure, the average electricity production values from the solar cell are 
calculated for December, March, June and September.  
 
3.2 Proposed neural network algorithm 
  The NN is suitable to predict the power output from the solar cell because of its speed, 
simplicity and high prediction performance (15). The prediction algorithm of the electricity 
production of the solar cell uses a layered NN, as shown in the block diagram in Fig. 6. The 
structure of the layered NN is shown in Fig. 7; it consists of three layers: the input layer, the 
hidden layer and the output layer. The successful implementation of a NN depends on the 
training (learning) process. In the learning process, the connection weights between layers 
are determined following the total minimum error. First, all weights are chosen randomly, 
and the past weather pattern of a slope-face solar radiation and outside air temperature are 
used as input signals to the NN. The electricity production teaching data from the solar cell 
are input into the output layer. During the learning process, the learning rate is specified as 
0.1, and the sigmoid function is utilized for the input-output characteristics of the neurons. 
For each neuron, the teaching data is the calculation of output power from the solar cell 
using Eq. (5); the output of neuron j in the n layer is given as: 
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The term n

jI  in Eq. (6) is the input of neuron j in layer n. It is calculated using the 
output 1−n

kO  and weight 1,
,
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where j =1,...., Ln , and k =1,......., Ln-1 

 
3.3 Learning process 
  First, all weights in the NN is determined randomly. When the random initial values are 
input into the proposed NN, the outputs agree with the correct answer with high precision. 
The past weather patterns, amount of slope face solar radiation and outside temperature are 
given to the NN, and the learning data is the actual output power from the solar cell. The 
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mean squared errors (MSE) equation is described as: 
 

∑
=

−⋅=
nL

j

N
jjN OtMSE

1

2)(5.0  (8)

 
Where tj is the output target actual power, and N

jO  is the estimated power value. The NN 
modifies the weights so that the MSE approaches 0.0055%.  
 
3.4 Weight modification 
  Equation 9 is used to calculate the corrected weighted 1,

,
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,
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kjw  and the amount of modification 1,
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in Eq. (10) is expressed in Eq. (11). The partial differential of Eq. (10) is calculated using 
Eqs. (11) and (12) (16)  
 

1,
,

1,
,

1,
,

−−−− −=−=∆ nn
kj

nn
kj

oldnewnn
kj wwwww  (9)

1
1,

,

1,
,

−
−

− ⋅
∂

∂
−=

∂

∂
−=∆ n

jn
j

N
nn
kj

Nnn
kj O

I
MSE

w
MSEw ηη  (10)

 
when Nn =  

)1()( N
j

N
j

N
jjn

j

N OOIt
I

MSE
−⋅⋅−−=

∂

∂  (11)

 
when Nn <  

)1(
1

,1
,1

n
j

n
j

L

L

nn
jLn

j

N
n
j

N OOw
I

MSE
I

MSE n

−⋅⋅












⋅
∂

∂
=

∂

∂ ∑
=

+
+  (12)

 
3.5 Analysis flow of the learning process 
   Figure 8 shows the proposed NN algorithm learning process analysis flow. All weights 
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Eq. (8). When the analysis error is smaller than the previously defined value, the training 
process stops. On the other hand, if it is larger than the threshold value, the process is 
returns and calculates repeatedly. 
 
3.6 Relation between the input data and analysis error 

In this section, the relation between input data and analysis error is illustrated. Equation 
(8) is used to calculate the analysis error, as shown in Fig. 9. In this figure, the relation 
between the input data and analysis error is graphed for three cases: in case 1, the input 
includes all outside temperature data and solar radiation data that are the average daily 
values; in case 2, ±10% of random fluctuation is given to solar radiation; and in case 3, 
±20% random fluctuation is given to solar radiation. As shown in Fig. 9, the variation of 
solar radiation influences the analysis. The biggest influence occurs in case3. 

 
4. Results and Discussion 

 
  The predicted values for the electricity production from the solar sell using NN prediction 
algorithm are shown in Fig. 10. Figure 11 presents the average power generation prediction 
error values from the solar cell; this figure was obtained by subtracting Fig. 10 from Fig. 5. 
In Fig. 11, the average error percentages are 25%, 29%, 19% and 26% for December, 
March, June and September, respectively. These values are different because of the 
differences in slope-face solar radiation and outside air temperature for each month. Figure 
12(a) is obtained by subtracting the power demand of three houses from the solar cell 
electricity production (multiplying Fig. 5 by 72 m2 to transfer values from kW/m2

 
to kW). 
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Furthermore, Fig. 12(b) is obtained by subtracting the power demand from the NN 
predictive values of electricity output from the solar cell. 

 
4.1 System 1 Results  

The surplus power of the solar cell is sold as shown in Fig. 13. When the electricity 
output from the solar cell is insufficient compared with the power demand, the engine 
generator operates and supplies the demand, as shown in Figs. 14 and 15. The peak values 
of engine heat exhaust are shown in Table 2. As shown in this table, the peak values of heat 
exhaust are reduced by 3.3%, 7.5%, 1.1% and 2.7% by introducing the NN algorithm for 
each month. In addition, the peak value of engine generator efficiency is 28.1 for the two 
methods. The engine generator operates with low efficiency because it operates according to 
load fluctuation. When the engine heat exhaust is less than the demand, the back-up boiler 
supplies the demand side, as shown in Fig. 16. In this figure, the peak heat values from the 
back-up boiler in case of Method 1 are 156 and 26 MJ at 6:00 a.m. for September and June, 
respectively, and also 145 and 54 MJ at 7:00 a.m. for March and September, respectively. 
Moreover, in Method 2, the peak heat values from the back-up boiler are 155, 153, 26 and 
57 MJ for each month at 6:00 in the morning. In System 1, the electricity is sold to the 
utilities, so the overall system efficiency is good.  

 
Table 2.  Peak values of exhaust heat from the engine generator in MJ 

Month Method 1 Method 2 Time 

December 20.97 20.27 06:00:00 PM 

March 20.3 18.77 07:00:00 PM 

June 19.6 19.39 09:00:00 PM 
September 20.21 19.67 07:00:00 PM 

 
 
4.2 System 2 results  

A battery is used to supply the demand side when the output power from the solar cell is 
lower than the demand, as shown in Fig. 17. The surplus power from the solar cell is used to 
charge the battery. The diesel engine generator operates according to the charge or discharge 
of the battery, as shown in Fig. 18. The engine generator operates an average of 8, 6, 4, and 
6 hours in Method 1 and 7, 5, 4, and 5 hours in Method 2 for each month, respectively. 
During these engine generator operating hours, the heat is supplied to the demand side. 
When comparing Fig. 18 (a) with Fig. 18 (b), the operating period of the engine generator is 
shortened by introducing the NN prediction algorithm. The engine operating time is reduced 
by 12.5% in December and 16.7% for March and September. The operation plan of the 
back-up boiler is shown in Fig. 19. In this figure, the peak values of heat from the back-up 
boiler are 8.6, 8.5, 8.3, 8.6 MJ for each month at 18:00 in Method 1. In addition, for Method 
2, the peak values are 8.6, 8.3 and 8.6 MJ for December, June and September at 18:00, 
respectively, and 8.2 MJ for March at 17:00. The average total engine heat is 51, 39, 26 and 
38 MJ; furthermore, the back-up boiler provides 77, 89, 97 and 90 MJ in Method 1 for each 
month. Moreover, for Method 2, the average values of total engine heat is 39, 32, 26 and 32 
MJ, respectively, and the average heat from the back-up boiler is 87, 87, 96 and 95 MJ for 
each month. 
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5. Conclusions 

A prediction algorithm using NN for electricity production from a solar cell is 
developed. The proposed system consists of two systems: System 1 and System 2. A battery 
is not introduced into System 1. An engine generator is operated in System 1 such that the 
solar cell power efficiency may be covered. In this case, because the operating range of the 
engine generator is wide, partial load operation with low efficiency occurs frequently. In 
addition, because the electricity is sold to utilities, the performance of System 1 is good. 
The engine generator operates at a fixed load (3-kW output power) of maximum efficiency 
in System 2; furthermore, the battery supplies the load with electricity when the power from 
the solar cell is insufficient compared to demand. The energy supply characteristics of the 
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combined solar cell and diesel engine generator system are proposed in the two methods for 
the two systems. In Method 1, the operation plan of the system depends on the calculated 
solar cell electricity production results. On the other hand, the system operation plan in 
Method 2 introduces the output power results from the NN prediction algorithm. The 
average values for the prediction error of electricity production from the solar cell are 25%, 
29%, 19% and 26% for December, March, June and September, respectively. The operating 
period of the engine generator is shortened by introducing the NN prediction algorithm for 
the power and heat supplied to the demand side. The engine operating time is reduced 
by 12.5% in December and 16.7% for March and September. The diesel engine heat 
characteristics are described, and a back-up boiler operation plan is developed. 
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