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§1. Introduction and results.

Let £ be a (real or complex} Banach space with the dual space E*.
The norms in E and E* are denoted by || || Let D be an open set in
E and let F' be a closed set in E such that FCD.

In this paper we consider the Cauchy problem

(CP) x' = fl¢, x), x(ty) = wye D, 5He[0, o0).

Here f is a continuous mapping from [0, o)x D into £ By a solution to
(CP) or to (CP; t, u,), we mean a continuously differentiable function z
from [#, oo)into D such that w(f)=wu, ond «'()=f{¢, u(t)) for all €z, oo).

As for the existence of a solution of this kind of problem, various
results have been established, for example, see F. E. Browder [3], S. Kato
[6,7], N. Kenmochi and T. Takahashi [8], D. L. Lovelady and R. Martin
[10], R. Martin [11, 12] and N. Pavel [14].

We say the set F is flow-invariant for f if w,€F implies that u(f)eF
on [t, oo) for the solution to (CP; t, u,)

I. Bony [1] and H. Brezis [2] gave sufficient conditions for the set F
to be flow-invariant for f in case K is a finite dimensional Euclidean space
and f is a locally Lipschitz continuous function of D into E. The sufficient
conditions proposed by them were generalized into a class of functions
satisfying some dissipative type condition by R. M. Redheffer [15], and
moreover some results were extended by R. Martin [12] to the case of
general Banach space. Recently, N. Kenmochi and T. Takahashi [8] gave
some simplications and improvements of results of [1Z].

The purpose of this paper is to give a criterion for the set F' to be
flow-invariant for f under more general dissipative type conditions on f.

If we consider [8, 12] from the view-point of the notion of flow-invari-
ant sets, the condition of the present paper is weaker than those of [8, 12].
In §5 we shall give some remarks and examples which connect our results
with those of others. Our approach is essentially based on the methods
in [5, 6, 7, 8].
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Let us consider first the following scalar differential equation
(1. 1) w'(t)= g<t, w(t)> , w(ty,) = W, -

Here ¢(z,7) is a real-valued function defined on (0, o) x [0, o) which is
measurable in ¢ for each fixed 7z, and continuous nondecreasing in t for
each fixed . We say w is a solution of (1. 1) on an interval [#, t,-+a] if
7w is an absolutely continuous function defined on [#4, £, + a] satisfying (1. 1)
almost everywhere on [, f,+a]. We assume furthermore that ¢ satisfies
the following conditions :

(i) ¢ 0)=0 for a.ete(0, o), and for each bounded subset B of
(0, @)% [0, o0) there exists a function «p defied on {0, co) such that

lg(¢, o) <au(t)  for all (¢,2)eB

and a is Lebesgue integrable on (#, #,) for each #,>#>0.

(i) For each Te€[0, o), w=0 is the only solution of (1.1) on [0, T]
satisfying the condition w(0)=(D"w)(0)=0, where D* denotes the right-
sided derivative of w.

From the above conditions (i) and (ii) we see that for each #, £,€[0, co)
with £,<#, w=0 is the only solution of (1. 1) on [#, %] satisfying w(z)=
(DY w) (,)=0.

We define the functional [ , ]: Ex E—~R by

[, v] = lim (ll+ iy | = ]

Now, let f be a mapping from [0, ®}x D into £ and consider the
following conditions :

(Ky) f is continuous from [0, co)x D into .

(K [z—v, flt, D1t v)] = 9l2, llx—vl)

for all =, ¥ in D and for a.e.t€(0, o).
Then we have the following main result.

THEOREM. Suppose that f satisfies the conditions (K,) and (K,). Then
the set I' is flow-invariant for f if and only if
(1. 2) lim inf p<x+ hile, z), F)//L =0

"—+0

Jor all (¢, 2)€{0, co)x F, where d(z, F) denotes the distance from z€E to F.

The author would like to express his hearty thanks to Professor T.
Shirota for the kind criticism. The author thanks also Mr. N. Kenmochi
and Mr. T. Takahashi for usefull suggestions.
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§2. Some lemmas.

In this section we give some lemmas without proof. For proofs of
Lemmas 2.1-2. 3 see [6]. In Lemmas 2. 1-2.5 we assume that ¢ satisfies
the conditions (i) and (ii) stated in §1.

LemmMa 2.1, Let ¢, ,€[0, o) be such that t,<t, and let {w,} be a se-
quence of functions from [t, t,] to [0, o) converging uniformly on [t, &] to
a function w,. Let M>0 be such that

|, (£)—w,(s)] = M|t—s| for all s, t€[t, t,] and n=1.
Suppose furthermore that for each n=1 and 0,20 with ¢, 0
w(0) < g (8 wal2) + 0w
Jor t€(t, t,) such that wi(t) exists. Then
W< gt wolt)  for a.etes, t).

LemMma 2.2, Let t, £,€[0, o) be such that 6,<t, and let © be a uni-
Jormly bounded family of functions from [t, t;] into [0, co) with the pro-
perty that, for each s, t€[t, t;] and we®, |w(t)—w(s)|S<M|t—s| for some
constant M>0.

Let wy=sup {w; we@} and let 020 be a constant. Suppose furthermore
that for each we®

w (=g <t, w(t)) +g
for te(ty, t,) such that w'(t) exists. Then
wh(t) < g(t, wo(t)> +g Jor a.e.t€(t, t,).

Lemma 2.3. Let w be an absolutely continuous function from [&, i)
(0= <, <o) to [0, ) such that w(t)=(D"w)(t)=0 and
w(B) =g (t, w(t)> Jor a.e.te(t, t).

Then w=0 on [&, t,).
Let £>0. We define a functian g, by
folt,7)  (tz 4, c20)
gz (t: T) = .
’ l o (otherwise).

For each £>0 we consider the following scalar differential equation

(2-1) wi()=g,(6w), wlt)=1w,.
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Concerning this equation we give the following two lemmas which are
used in the proof of the Theorem.

Lemma 2. 4. Let t,>0 and suppose that the maximal solution m, (-, w,)
of (2.1) through (¢, w,) exists over an interval [, t,+al. Then there exists
a 8>0 such that (2. 1) has a maximal solution m, (-, o) for each o, wy=c<
wy+0 on [t, th+al with m, (b, o)=0. Moreover, m, (-, e)~>m, (-, wy) as o~
wy+ 0, uniformly on [t, t,+al.

For a proof see [4, Theorem 2.4, p. 47].

LemMa 2.5, Suppose that the hypothesis of Lemma 2.4 are satisfied,
and let w be an absolutely continuous function on [t, t,+al. Suppose fur-
thermore that

w' (8 < gto<t, w(t)) Jor a.e.t€lty, ty+al.

Then w(t)Sw, implies that w(t) < m, (L, wy) on [t t,+al.
For a proof of the above lemma see [9, Theorem 1. 10. 4, p. 43].
The following lemma on the functional [, 1: Ex E—~R is well-known.

LevMMa 2.6, Let x, y and = be in E. Then the functional [ , | has
the following properties :

(1) ez vl =yl

(2) [z y+=] =]z vl+ =]

(3) [z vl=[x y—z2]+]z].

(4) Let u be a function from a real interval I into E such that '(¢)

and *j;“u(t)]l exist for a.e.tel  Then

"gz_ llu(t)“ = [U'(/f% ‘U'(Z’)] for a.etel.

§ 3. Local existence.

Assume that conditions (X)), (K,) and (1. 2) are satisfied. Then we have
the following important

ProrosiTioN 3. 1. Let (4, wy)€ [0, co)x F and let M, ry and T be posi-
tive numbers such thae S{ug, 2r)C D and

lfe 2||=d for all (4, x)€ [t, to+2T1] % S(ee, 2).

Then (CP; t, u,) has a unique solution u on [t, ty+ Ty such that uw(t)e FN
Slug, 7o) for all te [, ty+ Ty}, where To=Min {/2M), T1/2} and S(uy, 1o)=
{v; flo—uw| = n}.
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In order to prove this proposition, under the same assumptions and
notations as in the proposition for each ¢>0 sufficiently small we consider
the set H, of all pairs (g, a) such that #,<a=<t,+ T, and z=2(£) is a funec-
tion from [%, a] into S(u, 27y} satisfying the following conditions :

(1) =zlt)=1u, and 2(a)e F;

(i) | =(e)—=)| = 2M|z—s] for all s, 2€[t, al;

(i) J='"(&)—flg 2@ =Ze for a.e.t€(t, al;

(iv) every subinterval of [4, a], with length being =¢, contains at least
one point 7 such that z(z)e F.

Also, define an order “<” in H, by the following manner: (z,, ) < {2, @)
if and only if a;=<a, and 2(f)=2,(¢) for all 2€[#, ]. Then H, becomes
a partially ordered set and we have

LeEmMA 3. 1. H, is non-empty and inductive with respect to the order

o

Proor. For simplicity we may assume that #=0. Let (£°, v,)€[0, 27]
< (FN.S(uy 1)) Now, take a number § so that

0<<5< Min {r, &, M}
and

(3.1) A8 2)—f&, v)|| < /2

whenever £#=<¢=<¢+7d and [|x—1v,||<d, and by using (1. 2), take a number
hy with 0< A< Min {§/(0+2M), 6} having the property : for each A€(0, A,]
there is v, € F such that

(3.2) (o= h— £t w)|| < /2.

Then it follows from (3. 2) that

(3. 3) l|wa—||f2 < o/2+|| A2, )|
<5/2+M<5/2h

for all A€(0, h;). Therefore, defining

(3. 4) Q&)= Q(t; vy, 2, h)= vy +(t—2) (v, —vo)/ h

for e[, £*+h] with h€(0, &), we have by (3. 3)
“Q(t)_vo“é”'vn—‘vouéa/2<7'o

and hence Q(2)€ S(u,, 27y) for all e[, £+ A]. In particular Q(£)=wv,e F
and Q(£°+h)=v,€ F. Besides it follows from (3.2) and (3. 3) that
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|Q@—Q)||= 1z—sl]
< (6/2+M)|t—s| < 2M|t—s|

‘U,L'—‘UOH/]I

and

|Q@—£(t Q)| = ||(ws = —1(2, Q)|
<||n—vh—f1E, vo)||+ || AL, v)— A5 Q)|

<5/2+¢2<Z¢

for all £, se [ *+h]. Thus (Q, h)e H, if we take °=0 and v,=1u,, so that
H. 4.

Next we show that H, is inductive. Let L={(z; a;); 2€ 4} be any
totally ordered subset of H,, and put

a=sup {a,;; 1€d}.

If a=a, for some A€/, then (2, a,) is clearly an upper bound for L. In
case a,<a for all 2€ 4, define a function z: [0, @)>S(u,, 27,) by putting

2(2) = 2,(2) if t<a,.

Then it is easy to see that z satisfies the properties (ii), (iii) and (iv) on
[0,a). Since |[z(a)—z2(a,)]| = 2M|a;—a,| for 2, 7€ 4, the limit 2(a)=lim 2(z)

exists and z(a)e F. If we denote again by =z the function extended on
[0, @] by the limit, the pair (2, @) is clearly an upper bound for L. Thus
H, is inductive. Q.E.D.

LemMmMa 3.2, H, has a maximal element (2., a.) such that a,=t,+ T,

Proor. Since H, is inductive by Lemma 3.1, it has at least one
maximal element (z, ). Moreover a,=t,+ T,. In fact, suppose for contra-
diction that a.<#,+ T,. Then z.(a.)€ FNS(uy, 1) by (i) and (ii), and hence
we can extend z, to the interval [#, a.+/4] by means of Q)= Q(z; z.(a.)
a, h) on la,a,+h], where h is a sufficiently small positive number and
Q(#) is the function as constructed in the previous lemma. This contra-
dicts the fact that (2, @.) is maximal. Q.E.D.

Proor of Prorosition 3.1. Let {¢,} be a sequence of positive num-
bers such that ¢, | 0 as n—>o0 and let (z,, &+ 7T,) be a maximal element in
H, for each n.

We show that the sequence {z,} converges uniformly on [&, &+ T3}
For simplicity we assume again that £=0. Let wW,.(f)= |z.(&)—=z. ()l for
tel0, Ty] and m>n=1, and remark first that w’,,(¢) exists for a.e.£€ [0, Tj]
since
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(3.5) {wm,,(t)—w,,m(s)lg4M|t—s{ for all s,2€[0, 7)) .
Thus we have by Lemma 2.6 and the condition (Kj)
(3.6) W () = [2a(H)—2.(8), 2. () —2L(8)]
< 0 (5 ||zl — 28] +]| 2D —F(2 2 0))
+me—r(e =)

=g <t, wmn(t)> +2e,

for a.e.z€(0, 1y] and m>n=1.
Let w, ()= sup {w,.,.()} for £e[0, T;]. Then w,(0)=0 for all n=1. It thus
m>n

follows from (3.5), (3. 6) and Lemma 2. 2 that

(3.7) |w.(t)—w,(s)| < 4Mlt—s|  for all 5 te[0, T}]
and
(3.8) W) < g(t, w,(e)+26,  for acre(0, Ti].

Since 02w, (H)=Zw,(0)+4MetZ4MT, for £€[0, T3] and n=1, the sequence

{w,} is equicontinuous and uniformly bounded, and hence it has a subse-
quence converging uniformly on [0, 73] to a function w=w(¢), and obviously
w(0)=0. From (3.8) and Lemma 2.1 we have

w(@)Zg(t,w(e)  for all aere(0, Ty].

We show next that (D" w)(0)=0. For each ¢>0 we can fined a 6>0 such
that

46, 2)—A0, w)||<e  for all (1 )€ [0, 8] x S(us, 3).
Let 6,=Min {0, §/2M}. Since ||z,()—u|| £2Mt<5 by (ii),
I 2 (0) =2, 20 <2
whenever m>n>1 and ¢€[0, 8. From Lemma 2.6 we have
) (2) = [ 2 () —2.(8), 2L (0)— 21, (8)]
= |2 —A(s za@) |+t 2 0)|

+HAe ule) (s = t0)
<2(e+e,)
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for a.e.t€]0, 6], and hence, by integrating the above inequality, 0= 1w0,,,.(2)
<2(e+zs,)t, whence (D'w)(0)=0. Consequently, from Lemma 2.3 we de-
duce now that w==0, and this implies that the sequencs {z,} is uniformly
convsrgent on [0, T,]. The limit 2=2(¢) of of this sequence satisfies

2(8) = uo+ SO Fs, =) ds  for te[0, Tu].

Thus 2=2(¢) is a solution to (CP; 0, u,) and 2(£)€ FNS(u, 7o) on [0, T4}
Since the uniqueness of a solution to (CP; 0,u,) is well-known (cf. [6,
Theorem 1], the proof of Proposition 3.1 is complete.

§4. Proof of Theorem.

Before proving Theorem, we prepare the following two lemmas.

Lemma 4. 1. Let b be any positive number and let u,€ F. Then there
exists a 6>0 for which (CP; s, uy) has a solution w on [s, s+ 48] for each
s€[0, b] such that u(t)e F for all t€ (s, s+4d].

Proor. We first see from the continuity of fon [0, o)x D that there
exist positive constants 7, and M such that

” e, x>|[gM for all (¢, 2)€ [0, 4b] 5 S(uo, 27) .

Let 0 =Min {3b/4, r/2M}. Then, by Proposition (3.1), (CP; s, %,) has a
unique solution # on [s, s+4d] for each se€[0, 4] such that

u(t)ye F for all tels, s+5]. Q.E.D.

LemmMa 4.2, Let £,>0 and uge F.  Suppose that T is a positive number
such that (CP; ty, uy) has a solution u such that w(g)€ F for all te[t, t,+ T).
Then there exists a positive nwmber r having the property: for each v,€
FNS(ug, v), (CP; &, v,y) has a solution v such that v(t)e F for all t€{t, t,+ T).

Proor. By the condition (ii) in §1, w==0 is a maximal solution on
[te, 2+ T of (2. 1) with w()=(D"w)(#)=0. It thus follows from Lemma
2.4 that there exists a positive number ¢ such that (2. 1) has a maximal
solution m, (-, ¢) for each o, 0=¢<d on [4, t,+ T'] with m, (4, 6)=0. More-
over, m, (-, o) converges to 0 uniformly on [&, £,+ 7T'] as 6—+0. Since the
set {(¢, u(2)); te[t, t,+ T)} is compact in [#, z,+ T] x D, there exist positive
constants @ and M such that

(4.1) |7 x)H§M for all £€ [z, t+ T] and xeS(u(z) p).

Here we may choose 2 such that S(u(#), ©)c D for all ze(4, t,+7]. Con-
sequently, we can choose a positive number » such that 0<»<Min {3, 0} and
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(4.2) [, (8 lfvo—] )| <P

for all (2, vy) € [, &+ T1 % (F'NS(utq, 7).

By virtue of Proposition 3. 1, (CP; £, v,) has a unique local solution v with
v(£)€ F' on some interval [, ¢+ T(v,)) for each v,& FNS(uy 7). Assume
that T(vg)<T and [ty t,+ T(v,)) is a maximal interval of existence of v
with the property that v(£)€ F on [&, t,+ T(v,)).

Since Jlv(2)—u(t)]| is absolutely continuous on each closed interval [#, 4+

T(vy)) we have

I

e lloto—utef]=[ete—ute. e vte) (e ()]
0(5 ol —ua))

for a.e.te[ty, ty+ T{v,)). Hence we have by Lemma 2.5

A

Hv(t)—u(t)“ =m, <t, Hvo—uOID for all ze€ [to, ty+ T(‘vo)> .
It thus follows from (4. 1) and (4. 2) that
A& v@)|= b1 for all te[t, to+ Tiw),

and this implies that lim v(#) exists in F. Applying Proposition 3.1 once

11w,
again we have a contra:iiétion. Thus T<7T(v,) and the proof is complete.

Proor of the TaEorREM. The method of the following proof is essen-
tially based on that of [8].

Let (f, ue)€[0, o)y x F.  Then, by Proposition 3.1, (CP; %, u,) has a
unique local solution # on some interval [#, #] such that u(2)e F for all
telt, t;]. We note that £>0 and w(#)e F. Let & be any positive number
such that 5>#. Then, by Lemma 4.1, there exists a positive constant
such that (CP; s, u(#)) has a solution v with v(2)€ I on [s, s+6] for each
s€(0,5]. We note here that if s=0, then we can not apply Lemmas 2. 4,
2.5 and 4. 2 in the following discussion. Therefore, we omit the case s=0.

Now, let C be a connected component in F containing «(z) and let

G, = {xe C; (CP; s, x) has a solution v such that v(z)e F' for
tels, s+5]} for each se(0, 5].

Then G, is not empty since u(t)e G, for each s€(0,5] by Lemma 4. 1.
Moreover, G, is relatively open in C for each fixed s€(0, 4] by Lemma 4. 2.
We show that G, is also relatively closed in C. For this, let {x,} be any



On the global existence of unique solutions of differential equations in a Banach space 67

sequence in G, which converges to x€ C and let v, be a solution to (CP;
5, x,) on [s,s+36]. Then

()= 0n (D) = [walt)—van(2), £t val8) =[5, vu(2)) ]
< (s o0

for a.e.t€[s,s+38]. Thus we have by Lemma 2.5

low@1=onto < m (5|2 =

for all z€[s,s+6] and for sufficiently large positive integers n and m.
Since lim [|x,—x,]|=0, the sequence {v,} converges uniformly on [s, s+J]

to a flinction v by Lemma 2.4, and clearly v is a solulion to (CP; s, x)
on [s,s+4d] and hence x€G,. Consequently, G,=C for all s€(0,8]. In
particular, #«(¢;) € G,,=C and hence (CP; #, u(t,)) has a solution v on [z, £,+4]
such that v(#)e F for te[t, t,+68]. If #+6<b, then (CP; 4+4, v(ty+93))
has a solution w on [4+6, f,+20] such that w(#)e F for t€[5+0, -+ 26],
because v(t,+8)€ G, +,=C. Obviously

u(z) (HSetst)
T(E)= ¢ v(£) (LSt 4+0)
w(z) B+ =t =¢4+20)
is a solution to (CP; #, u,) on [#, #,+20]. Repeating this argument we see
that (CP; #, u,) has a solution on [£, b]. Since » was arbitrary number
such that 6>¢,, it is proved that (CP; %, #,) has a solution u* on [#, o)
such that «*{£)e F for all €[, c0). Thus the sufficiency is proved.

Conversely, suppose that the set F' is flow-invariant for f and let « be
a solution to (CP; #, u,) on [f, o0) such that «(z)€ F for all £€[#, o). Then

d(uty+ hf(to, we), F) [0 < || (wlte+ ) — e[ — it uO)H

and

|| (2o + )= () | — i, )]
Hence the necessity follows. Q.E.D.

-0 as h—+0.

§5. Remarks and examples.

In this section we give some remarks and examples which connect
our results with those of others.
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REMARk 1. In the previous paper [6] we used the functional

(9> = (= y]—[z —v])/2.

But it can be easily seen that [z, y]=<{x, y) for each z, ¥ in E. Hence the
Theorem of the present paper gives an improvement of Theorem 2 in [6].

Let J be the duality mapping from E into 2% (i.e., for each x in E,
S(x)={z* e E* ; z*(x)=|zl*=|=*|}.

For each z, ¥ in E, define
{x, yy;=inf {Re <x*(y)> . xfe J(x)} }

Then for each =0 and v in E, [z, y]=<{x, vD/llx| (see [11]) Thus the
condition (K,) is equivalent to the following :

(5. 1) (a—y, f1t, D=t v), < le—vllglt, |2—v])

for all , y€ D and for a.e.£€(0, o0.)

We note also that Proposition 3.1 remains valid even if F is a relatively
closed subset of . Hence, this fact and (5. 1) imply that our Theorem
gives a generalization of Theorems 3 and 4 in R. M. Redheffer [15] into
a general Banach space.

ReMARK 2. Let B be a real-valued function defined on (0, oo) satis-
fying the following conditions :

(B1) For each #, ,€(0, o) with £, <7, B is Lebesgue integrable on (#, &)

(B.) For each £>0, lim sup [s exp <52‘8(T> df>]< + oo.
The condition (8,) was considered by C. V. Pao [13] to prove the unique-
ness of solutions to (CP; 0, uy)
If g(z, t)=pB(t)z, then the conclusion of our Theorem remains valid. In
fact, it is obvious that this function S(¢)c satisfies the condition (i) in § 1.
To prove that B(#)r satisfies also the condition (ii) in § 1, let w be a solu-
tion of the equation w'(¢)=p(¢) w(¢) on [0, T] satisfying w{0)=(D*w)(0)=0.
Then for each £>0, we have

0= w(z) = wle)exp (| f(c) dr)
= cexp ([ p(z) dr) (zo(e)—0(0))/e

for tele, T]. This implies that w=0 on [0, 7). Thus B(¢)r satisfies (i)
and (ii) in §1. However, the function B(£)r need not be nondecreasing
in = for fixed £ The nondecreasing nature is used only in establishing
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Lemma 2.3 (see [6]) which is valid for ¢(z, 7)=p8(¢#)z. Thus our result ex-
tends those of [10, 11, 14] when g¢{¢ o)=5(¢) <.

Remark 3. Recently, N. Kenmochi and T. Takahashi [8] proved the
following theorem which gives an improvement of [12].

TrEOREM A. Let I be a closed subset of L. Suppose that f satisfies
the following conditions :

(5.2) £ is continuous from [0, co)x F into E.
(5.3) {z—y, fit, D)—ft, v)), < o) |z—y|?

Jor all (¢, x), (¢, y)€ [0, c0)x F, where w is a real-valued continuous function
defined on [0, o). Suppose furthermore that

(5. 4) lim inf d(z+Af(t, ), F)/h =0

R0
Jor all (¢, 2)€[0, c0)x F. Then (CP; 0, u,) has a unique global solution u
defined on [0, o0) for each uy€ F.
This result is intimately related to the notion of flow-invariant sets.
If we consider this theorem from the view-point of the notion of flow-
invariant sets we have the following

TaeoreM B. Let D be an open set in E and let F be a closed set
in E such that FCD. Suppose that f satisfies (5.4) and the following
conditions :

(5.5) f is continuous from [0, oo)x D into E.
(5. 6) {z—y, flt =11t ¥), S 0@ |lz—y]’

Sor all (¢, z), (¢, y)€l0, 0)x D. Then the set F is flow-invariant for f.
Since (5. 1) implies (5. 6), our Theorem contains Theorem B.
The following examples show that the condition (K,) is strictly more
general than (5. 6).

Examprre 1. Let a{¢) be the function defined by
£ 0stsp
wo= {2 051=
lov: ¢z 0),

where 0 is a constant such that #>1. Consider the function G defined by
e Hb e (620,42 ale))

Yalt) s
Tag v (r20u<at),
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where & is a real-valued continuous function from [0, o) into (—oo, 0]. It
is easily verified that the function G satisfies the following inequality :

(5. 7) |u—v+h(G(t, 1)~ G2, v))|
= (1+ /3 Ya(tP (1+3a(@)))lu—w|

for all A=<0, £>>0 and «, ve(— o0, o).

Let us take as £ the Banach space 4 of bounded sequences of real
numbers. For eabh x=(z,) and =0, define f(z, x)=(G(¢ x,)). Then fis
continuous from [0, o)x E into E. For each z=(z,), v =(y,.) in E, h<0,
we have by (5. 7)

sup {xn —Ynt+h <G (% 2,)— Gz, yn)> l—— sup 2z, — vl

= 3 Yale? (L+a(g) WP 15wl

This implies that
[2—v, 1t 2)=fit, )| = llz—yll/3 YaleF (1+3a()

for all z, ¥ in E and £>0. Let B(£)=1/3 Ya(t} (1+%a(z). Then jg,@(-:)d—:
=f;dt/3t(l+d7)= +oco. However, it is easy to see that () satisfies the
condition (f;) in Remark 2. Moreover, by a simple calculation, we have

e exp <3‘i,8(r) df)
_ e (0<e<z=0)
= (@22 exp (E—p)30(1+4P))  (0<e<p<1).
Thus, B(¢) satisfies also the condition {£,)
Consequently, for each (#, u,)€[0, oo)x E, (CP; #, %, has a unique global
solution for the above defined f-

On the other hand, for each z=(z,) and y=(y,) in E such that x>
1,>0 and z,=vy,=0 for n=2,

[2—v, 10, ©)—110, )]

1 , )
{0l

Hence we can not apply [8, 10, 11, 12, 13] to this example for the Cauchy
problem (CP; 0, u,).
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ExaMPLE 2. Next, let us take as E the Banach space 47 (1 <{p<o0)
of sequences of real numbers. Let a(z) be as in Example 1 and let M=

(w21 1/n?W2, For each x=(x,)€ E, define

e HOs (202 a0)
flta =1 "
A Ha) PO (20m<ald).

Here b(¢) is a real-valued continuous function defined on [0, co) satisfying
b(ey>MNW e for all £=0.

Define f{t, 2)=(f,(¢, x)) for (£, 2)€[0, 0)x E. Then f is continuous from
[0, ©)x E into E. Let

F={x; E>x=(x,) such that 2,20 for n=1 and ||| gp}.

Then F is closed in E. We shall show that the mapping f does not
satisfy (5. 3) but does satisfy all the conditions of our Theorem. For this
note that

(5.8) [z, y] = 2.2 sgn (x| "y 2f 2™

for all %0 and y in E.
Using (5. 8) we can verify easily that

[2—v, fit, 2=t v)]
< (b()+1/33aleF (1+%a(@)) |x—y|

for all =, ¥ in E and £>0. Let B(¢)=1/3Ya(t} (1 +%a(z)). Then S:ﬁ(t) dt
= +oco. But () satisfies the conditions (#) and (8,) in Remark 2 by the

same argument as in Example 1. Thus the above defined f satisfies (K;)
and (K,) in § 1.
To show that f satisfies (5. 4) we note that

x+nhfle, x)
= ((1=1o(6)) @, + R, or Yal))/n(1+a(d)))
for each x=(x,)e F and £=0. Thus it follows that
||+ Rft, 2| < (1=hb@) 2] + 1V P M

<o+(Vo M—pb(®) .
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By the assumption on & we have for each x€ F and £=0
z+hflt, )€ F for 0<h<Min {1/b(£) V0 [P blz)—M)}.

Consequently, the set F' is flow-invariant for f by our Theorem.
On the other hand, for each z=(x,) and y=(v,) in F such that 0=
x>y, >0 and x,=v,=0 for n=2,

[2—v, 710, 2)—£0, v)]
= (1Rt + Yy +38) —5(0)) llz—vll,

so that we can not apply [8] to this example.
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1. Let E be a Banach space with the dual space EF*. The norms
in I and E* are denoted by |||. We denote by S(u, ») the closed sphere
of center u with radius 7.

It is our object in this note to give a sufficient condition for the
existence of the unique solution to the Cauchy problem of the form
(1.1) W ()= f(t, u(t)), w0y =u,e K,
where f is a E-valued mapping defined on [0, 71 x S(u,, 7).

We compare the differential equation (1.1) with the scalar equation
(1.2) w @) =g, w(t),
where g(t, w) is a function defined on (0, ¢} x [0, b] which is measurable
in ¢ for fixed w, and continuous monotone nondecreasing in w for fixed
t. We say w is a solution of (1.2) on an interval I contained in [0, a]
if w is absolutely continuous on I and if w'(t)=¢(t, w(@)) fora.e. tel°,
where I° is the set of all interior points of I.

We assume that g satisfies the following conditions:

There exists a function m defined on (0,a) such that g(¢, w)

(i) =m() for (¢, w) e (0,a)x[0,b] and for which m is Lebesgue

integrable on (e, @) for every ¢ >0.
For each ¢, (0,al], w=0 is the only solution of the equation

(i) (1.2) on [0, t,] satisfying the conditions that w(0)= (D w)(0)=0,

where D*w denotes the right-sided derivative of w.

2. Let g be as in Section 1. Then we have the following lemmas.

Lemma 2.1. Let {w,} be a sequence of functions from [0,al to
[0, b] converging pointwise on [0, a] to a function w,. Let M >0 such
that |w, (&) —w,(S)|EM|t—s| for s, t e [0,a] and n=1. Suppose further
that for each n=1

w =gl w,()  forte(0,a)
such that wi(t) exists. Then w, is a solution of (1.2) on [0, a].

For a proof see [4].

Lemma 2.2. Let M>0 and let {w,} be a sequence of functions
from [0, a] to [0, D] with the property that |w,t)—w, ()| M |t—s| for
all s,tel0,a] and nzl. Let w=sup,., w,, and suppose that w(t)
< g, w,(t) for te(0,a) such that w,(f) exists. Then w is a solution
of (1.2) on [0, al.
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For a proof see [2].

Lemma 2.3. Let w be an absolutely continuous function from
[0,a] to [0,D] such that w(0)=D*w)(0)=0 and w({)<g(t, w(t) for
t e (0,a) such that w'(t) exists. Then w=0 on [0, al.

The proof of this lemma is quite similar to that of Theorem 2.2 in
[1] and is omitted.

3. For each u in E let F(u) denote the set of all * in E* such
that (u, 2*)=||u|f=|2*|?, where (u,2*) denotes the value of x2* at u.

Theorem. Let f be a strongly continuous mapping of [0,T]
X Suy, 1) tnto E such that
3.1 2Re (S, w)—f(t,v), 2*)Z 9@, lu—21P)
for (t,w), (&, v)e 0, TIX Sy, ) and for some x* ¢ F(u—v), where ¢
satisfies the conditions in Section 1 with a=T and b=Max {4v*, 8+MT}.
Then (1.1) has a unique strongly continuously differentiable solution u
defined on some interval [0, T',].

Proof. Since f is strongly continuous on [0, T]1Xx S(u,, r) there
exist constants 0<<r, <7, 0<T, < T and M >0 such that || f (£, w || <M for
(t, 1) e [0, T\1x S(uy, 7). Let Ty=Min{r,/M, T} and let n be a positive
integer. We set =0, and «,({%)=1u,. Inductively, for each positive
integer 1, define 07, {7, u,(t7) as follows:

(3.2) 07 =0, i+t =T,

If

3.3) -t )| <Mar and |t—tr,|<ot,
then || f(¢, v) — f (£, u (2D | S 1/

3.4) |1,(E7 ) —ug [ 7,

and 07 is the largest number such that (3.2) to (8.4) hold. Define {7
=t .+ 07 and define for each t e [t7_,, t7]

3.5) wO =)+ S u s,

Then we have

(3.6)  fu(D)—u,D|EM [t —s|, [ (&) —uy||Z 7 for s,t e 10, T,

and t% =T, for some positive integer N=N(n). For some detail see [6]
and [3]. :

Let W, () =1, —u, O | for m>nz=1 and te[0,T,]. Obviously
Wia(0)=0, and |w,,(£) — W, (|8, M |t—s| for s,t € [0, T,]. For each
t € (0, Ty) there exist positive integers ¢ and 7 such that ¢ e (¢, 7 and
te(tr.,,t9). By Lemma 1.3 in [5] and (3.5) we have
Wha(8) =2 Re (ur,(t) —un (D), xk.(2))

S W) + 21/ m A4 1/1) |1 (8) —u, (D)
S 9 Wy () + 87/ 1
for a.e. t€(0,T,) and for some % ,(t) € F'(u, (£) —u,(t)).
Let w,(8) =subnsn Wna(t) for te0,T,]. Then obviously w,(0)=0

3.7
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for n=1. By Lemma 2.2 and (3.7) we have

3.9 [0,()—w,()|=8r M |t—s|  fors,tel0, T,
and
3.9 W) =g(t, w, (L) +8ry/n for a.e. te(0,T,).

On the other hand, 0 < w,(f) < w,(0) + 8» Mt < 8r,MT, for n=1 and
te[0,T,]. Thus the sequence {w,} is equicontinuous and uniformly
bounded, and hence it has a subsequence {w,;} converging uniformly
on [0, 7,] to a function w, and obviously w(0)=0. It follows from (3.9)
and Lemma 2.1 that w'(£)=g(¢, w(£)) for a.e. £ (0, T,).

We shall next show that (D*w)(0)=0. Since f is continuous at
0,%,), given ¢>0 we can find >0 such that || /¢, w) — 70, u,) || <e when-
ever 0<t<¢ and lu—u,)|<s. Let 6,=Min{s,6/M}. Then, by (3.6),
Hua(t) — ull £ 6, for all n and tel[0,5,], and therefore | f(f,%,(£)
— f{t, 4, (1) | <2 whenever m>n=1and t¢[0,5]. By (3.3) and (3.7)
we have

W) =2 Re (f (¢, un (7 0) — @, ua(E0), 27,(8))
S | f @ wun(@7 D)) — F @, w, (o) | S 8re+1/1)
for a.e. t e (0, d,),
and hence, by integrating the above inequality, we have
0w, (O L 8ry(e+1/m),
whence (D*w)(0)=0. From Lemma 2.3, we deduce now that w=0,
and this implies that the sequence {u,} is uniformly convergent on
[0, T,]. The limit of this sequence satisfies

u(zﬁ):uﬁ—fc F(s, u(s))ds for te [0, T]

(see [3]). Consequently u is a strongly continuously differentiable
solution of (1.1) on [0, T,].

Let v be another strongly continuously differentiable solution of
(1.1) on [0, T,]. Let z(®)=|lu(@®)—2@)|PF. Then obviously 2(0)=0, and
() =2Re (f{, u®)—f (&, v(®), z*@) < g(t, (1))
for a.e. te (0, T, and for some z*(¢) € Flu(t)—v(t)). The fact (D*2)(0)
=0 follows from 0<z(1)/t=1| (u(t)—v(t)/t|}—0 as ¢|0. Therefore by

Lemma 2.8 2=0, and the proof is complete.
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§1. Introduction and results.

Let E be a Banach space with the dual space E*. The norms in
E and E* are denoted by ||l. We denote by S(u, ») the closed sphere of

center # with radius 7.
In this paper we are concerned with nonlinear abstract Cauchy prob-

lems of the forms

(D) 'd{ZZ u(t)y= f{¢, u(?)), w(0)y=u, e,
and
(D) gt— w(t) = Au(t)+ (¢, u(®)), 1(0) = uec D(A).

Here A is a nonlinear operator with domain D(A) and range R(A) in E,
and f is a E-valued mapping defined on [0, T x S{u, 7) or on [0, o) x E.

It is well known that in the case of E=R" the n-dimensional Euclid-
ean space, the continuity of f in a neighbourhood of (0, %,) alone implies
the existence of a local solution of (D). This is the classical Peano’s
theorem. However, this theorem cannot be generalized to the infinite-
dimensional case (see [3], [16]).

It is our object in this paper to give sufficient conditions for the
existence of the unique solutions to the Cauchy problems of the forms (D)
and (D).

Let the functionals {,), and {,), be defined as follows (cf. M. Hasegawa

[6)):
G w32 = lim = (l+ ol = [,
and
G, vya = 5 (Cot, vy — Ctt, —03)

for u, v in E.
In order to prove the existence of the unique solution of the equation
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(Dy) we consider the following scalar equation
(1.1) w'(t) = g(& w(t)),

where ¢(¢,7) is a scalar-valued function defined on (0, ] %[0, ] which is
measurable in z for fixed , and continuous nondecreasing in ¢ for fixed ¢

We say w is a solution of (1.1) on an interval I contained in [0, a] if
w 1s absolutely continuous on 7 and if

w'(2) = g(t, w(t) for a.e. tel’,

where I is the set of all interior points of I.
We assume furthermore that ¢ satisfies the following conditions: (i,)
There exists a function m defined on (0, ) such that

lg(z, o) < m(e) for (¢, )€(0, a] x [0, &]

and for which m is Lebesgue integrable on (¢, a) for every 0. (ii,) For
each #€(0, a], w=0 is the only solution of the equation (1.1) on [0, ]
satisfying the conditions that w(0)=(D%w)(0)=0, where D* w denotes the
right-sided derivative of zw.

First, we can state the following result.

THEOREM 1. Let f be a strongly continuous mapping of [0, T] x S{u,,
¥) into E such that

(1 2) <‘I/L‘—'U, f(t: M)*f(t, ‘U>>2 = g(t9 Hu'—‘vlb

Jor all (¢ w), (t,0)€(0, T'] % S(uy, 7), where g satisfies (i,), (ii,) with a=T and
b=2r.

Then (Dy) has a unigue strongly continuously differentiable solution u defined
on some interval [0, T,].

We next consider a global analogue of Theorem 1, and we assume
that ¢(z, ) is a scalar-valued function defined on (0, c0)x [0, co) which is
measurable in ¢ for fixed =, and continuous nondecreasing in = for fixed &
We assume furthermore that ¢ satisfies the following conditions: () ¢(z,
0)=0 for all ze(0, o0), and for every bounded subset B of (0, o) x [0, co)
let there exist a locally Lebesgue integrable function m, defined on (0, o)
such that

lg(t, o)\ S myu(t)  for (4, 7)EB.

(i1,) There exists a strictly increasing continuous function « defined on
[0, co) satisfying «(0)=0 and

fg(t,, T)'—g(tz'%)‘ g 7n3<t) a(]r-—%l)
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for (¢, 7), (¢, 5)eB.
(iii,) For every 6>0, Sadf/a(f):- oo,
0

Under these conditions we can prove the following

TueoreM 2. Let f be a strongly continuous mapping of [0, o)< E
into E, carring bounded sets in [0, oo)x E into bounded sets in E. Suppose
Sfurthermore that
(l‘ 3) <l{"“l1, f(t3 14>~f<t: v>>2 é g(ta HIL—“UH)
Jor (¢, u), (¢, v)e(0, o) x [,
Then (D)) has a unique strongly continuously differentiable solution u defined

on [0, co).

Finally, we consider the equation {[),) in a Banach space £ whose dual
space E* is uniformly convex.

We say u is a solution of (IJ,) on [0, o) with u(0)=u, if « is strongly
absolutely continuous on any finite interval of [0, o) and if

w(eD(A), -G ult)= Auld)+ flt, u®)
for a.e. tg[0, o).

We assume that A satisfies
(1. 4) {u—v, Au—Av), <0 for u, ve D(A),

and R(I—2,A)= E for some 1,>0.

If the strongly continuous mapping f of [0, o) x E into E has the strongly
continuous derivative f, with respect to ¢ and if both f and f, carry
bounded sets in [0, co)x £ into bounded sets in E, then we have

TurorEM 3. Let A, f and f; satisfy the assumptions mentioned above.
Furthermore, if f satisfies

(1.5) Cu—v, ft, W)—f(t v = BOlu—0]

Jor (¢, u), (t, V)€, 00)x E, where 8 is a locally Lebesgue integrable function
defined on (0, oo).

Then (D,) has a unique solution u on [0, co) for each wu,e D(A).

In the paper [1] F. E. Browder proved the global existence in a Hilbert
space of the unique solution of (D;) under the monotonicity condition.

Recently T. M. Flett ([4], [5]) has given the sufficient conditions for
both local and global existence in Banach and Hilbert spaces of the unique
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solution of (D).

The contents of this paper are as follows: Some lemmas concerning
the scalar differential equation (1.1) are given in §2. Theorems 1, 2 and
3 are proved in §3, 4 and 5, respectively. In §6 we shall give a simple

example and some remarks about the relations between our results and
those of F. E. Browder and T. M. Flett.

§2. Some lemmas.

In the following Lemmas 2.1, 2.2 and 2.3 we assume that ¢ satisfies
the assumptions (i,) and (ii,) stated in § 1.

Lemma 2.1, Let {w,} be a sequence of functions from [0, a] into [0, b]
converging uniformly on [0, a] to a function w, Let M>0 such that

|, () —w,(s)| < Mt—s) Jor s, t€[0,a) and nz=1.
Suppose furthermore that for each n=1
wh() S glt, wo(t))  for t€(0, a) such that w), (¢) exists.
Then
wi(t) < g2, w,(2)) for a. e te(0, a).

PROOF. Since |w,(2)—w,(s)| < M|t—s| for s, te [0, a], w}(#) exists for
a.e. t€[0,a].
Let A,={t€[0, a] ; w,(¢) does not exist} and let A= U A,, then mes (4)=0.

72=0

Set

B={te(0, a] ; lim _HJ’ o5, w,(s)) ds = g2, wo(2))}

70 z

Then, by (i;), we have mes ([0, a]—B)=0.
For each ze {[0,a]—A}nB, n=1 and for sufficiently small A>0
ttrh

w0, (t+h)—w,(f) < § a(s, w,(s)) ds.

14

By the Lebesgue’s dominated convergence theorem, we have
A

- wo(t+h)~wo(t)§s g{s, wy(s)) ds.

¢

Dividing both sides by A>0 and letting A—0, we have wi(£) < ¢g(¢, w,(?)).
Thus we have the inequality

wi(t) < g(2, wy(2)) for a.e. t€(0, a).
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LEMMA 2.2, Let M>0 and @ be a set of functions from 0, a] into
[0, b] with the property that for all s, te|0, a] and we®

(2.1 [w(t)—w(s)| = Mlt—s|.

Let z=sup {w ;weB}, and suppose that for each weP

(2.2) w(BZ gle, wlt))  for €0, a) such that w'(t) exists.
Then

2B Z gle, 2(8) Jor a.e te(0, a).

Proor. We follow an argument essentially given in T. M. Flett [4].
By the definition of z and (2.1), = satishes

|z(t)—=2(s)] = M|t—s|
and
0= z(0)—w(t) £ 2(s)—w(s)+ 2M|e—s]
for all s,2€[0, a] and all we®. From this it follows that for each positive
integer 7 we can find a positive integer %, a partition of [0, a] into £

subintervals of equal length, and % functions w,, ---, w,;€@ such that in
the jth subinterval

0= z(8—w;i)= 1/n.

We put w”=Max {w,, -, w,. Then w'™ satisfies (2.1) and (2. 2).
Since

0= 2(t)—w™ (B < 1/n

for all #€ [0, a], the sequence {w'”} converges uniformly to 2 on [0, @], and
the required result follows from Lemma 2.1.

LeMmMa 2.3, Let w be an absolutely continuous function from |0, a]
into [0, b) such that w(0)=(D*w)(0)=0 and

w ()= g8, w(t))  for a e £0, a).
Then w=0 on [0, al.

Proor. The method of the following proof is essentially due to that
of Theorem 2.2 in [2].

Suppose that there exists a ¢, 0<¢=a such that w(¢)>>0. Then there
exists a solution = of (1.1) with z(s)=w(s) on some interval to the left
of ¢. As far to the left of ¢ as z exists, it satisfies the inequality z()<
w(#), for if this were not the case there would exist a positive ¢, to the
left of o where z(g,)=1w(s,), and z(&)>w(#) for £<g, and sufficiently near o.
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By the assumptions on w we have for sufficiently small 2>0

3

‘w(al)——w(al—h)gj o(t, w(8) dt.

e —n

On the other hand, from the definition of z we have, since z(s;)=w(q,),

i

wio)—zla—h) = | ol 20,

where % is assumed so small that z exists on [¢,—A, a1].
Thus
slon—h)—wlo—h)= [ Tolt w@)—a(t 20)] dr

Since g is nondecreasing in t and z2(&)>w(#) on [¢,—h, 6,) we have the
contradiction z(o;,—h)Lw(o;—h). »

We shall next show that 2(£)>0 on 0<¢<s, as far as it exists.
Otherwise 2(£,)=0 for some £, 0<#< s, and the function £ defined by
) = { 0 0=t=1)

e wstso)
would be a function on [0, ¢] not identically zero, which satisfies
() =g(t,20), 2(0)=(D"%)(0)=0.
This contradicts the assumption (ii,). Therefore
0<2(t) = w(?)

as far to the left of ¢ as z exists.

It therefore follows that z can be continued as a solution, call it z again,

on the whole interval 0<¢<¢. Since lim 2(2)=0, we define 2(0)=0. Since
t}0

0<z(Bjt<wlt)ft for 0<t=go
and (D*w)(0)=0, we have (D¥z)(0)=0.

From (ii,) it follows z=0 on [0, ¢], but this contradicts the fact z(s)=
w(g)>0.

LemMa 2.4, If ¢ satisfies the assumptions (i), (ii,) and (iii,) stated in
§ 1, then for each T>0 and d=0 there exists a unique solution w of (1.1)
on [0, Tl with the initial condition w(0)=d.

Proor. Suppose that there are two solutions v, and w, of (1.1) on
[0, T satisfying 10,{0)=1,(0)=d. Let 2 be the function defined by

2(&) = lw, () —w,()| for e [0, T'].
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Then there exist 0€(0, T'] and ¢,€ [0, ¢) such that z(g,)=0 and 2(£)>0 for
t€ (o, o). ,
Since z is absolutely continuous, 2/(#) exists for a.e. z€ [g, o] and, by (ii,),
we have

2'(8) = [wi(t)—wi(B)] = (2, wi(2) —g (2, wa(D))]

= my(t) a(2(2)),

where B={(t, w,(t)), (£, w,(8)); €[00, o).
Since « is continuous and 2z is absolutely continuous, we have for sufficiently
small ¢>0

Y ﬂw4a®¢=yw &m@gy

wygta z{o,+2) @,

mylt) de
(see [13], p. 211).

By (iii,) and by letting ¢ | 0, we have a contradiction.

§3. Proof of Theorem 1.

Let the functionals (>, and (>, be as in §1.
We shall give the following two lemmas which are used throughout this
paper. V ‘

LemMma 3.1, (¢f. M. Hasegawa [6)). For u,v and w in E,

(1) [ oy = vl

(2) {u, v+w), S (u, vy + {u, wy

(3) lu, du+vdy = dlul| -+ {u, vy, for real number d,
(4) Cuy 092 = Ky vy,

(5) Cuy v+, = (uy v+ {uy wh,

(6) luty, VY = {u, v—w), + ]|

Proor. (1) and (2) are easy consequences of the definition. For any
real number d we have

u, du+v), = é— 1}}?; "%“(Hu—!—h(du—f—v)}{ —le—h (du%—v:)]})
1/, 1+dh 1
3 {im 57 (et g vl =)

~tim 25 (o o)} -+

20

:ﬂw+§@m»g@,@@=ﬂwuaw%
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which proves (3). ;
(4) follows readily from (2). By the definitions and (2) we have

lu, U+ {u, w,—lu, v+ wd,
= 1 ((u, w4+ (u, —(v+whH—Llu, —v) 1>
2 5 (< b=, —o) =

which implies (5).
To prove (6) we note that

lu, vy = 5 hm L <||u+hv]1—|iu hv]l)

Fc_fi" (B = {ue(2), 2/(2)), for a.e. tel.

Proor. If we denote D'u(#) and D u(2) respectively the right and left
derivatives of u(#). Then

~~~—1--~<Hu(t+h)]{—}{ut h}i) - (llu(t)+hD+u(t>H—liu(t‘)ll)
+%@W%MWWPMWM

e+ ) = Y e— B — )+ RD ()] + Hu(t)—hD“‘u(t)Hl

_
< |4 ( (t+h)—u(t)>~D+u(l‘)ﬁ+H"7li" <u<t-h>—u<t)>+D"u<t>H

->0as Al0 for a.e. tel.

Thus we have

D@l + D u@dll = <ule), Druth—<ult), —Du(th

for a.e. zel.
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It follows from the assumptions that

2% ()] = Cule), /().  for a.e.tel

Proor of THEOREM 1. Since f is strongly continuous on [0, T]x.S
(11, 7) there exist constants 0<7,<r, 0<T\<T and M>0 such that
ILf (2 wl| =M for (¢, u)€ [0, T] x Slug, 7).

Let Ty=Min {r/M, T\} and let n be a positive integer.
We set =0, and u,(&)=u, Inductively for each positive integer i, define
2ot w,(tr,) as follows (cf. G. Webb [14]):

(38.1) =0, o Ty,

(3.2) I lv—uw, (@)= Mo7 and &\ St=¢r,+067, then
£, v)= Ft, waltE )| < Ln s

8.9 2=l S 75,

and d7 is the largest number such that (3.1), (3.2) and (3. 3) hold.
Let t2=¢,+57. We set

t
w,(t) = w, (L) + S f<s, un(t?_l)) ds for each re [z, 7].
o
Then for each r€[#. 2]

t
w,(8) = w, (L) + S . f(s, u,,,(t}jﬂ)) ds
Ly

i

k-1 ‘ N
= 10, (th )+ bl (s, w0, (&} 9)> ds + S I (s, u.n(t}ﬁw_,)) ds
g 1

4 n N

Sl wgi)ds+\ (s wler)ds.
78
For each ¢, s (say ¢>s) in [0, T}] there exist i, £ such that z€[# , /] and
sel#., &]. Then
’7 ¥ ) ) i1 (05 o
s miiidse 21 1 mi)a

=kl ) ,n '/
tj"'l

+ S‘t }{f(s, u,,(t?-l)) il ds

o0, () — 2, (9)]) < g

&
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2—1

(Br—s)+ 2 M@Er—e )+ M@e—1,)

<
=M Py
M(t—s).

On the other hand

P

7 11

I (s, o (t3-2)) | s+ S £ (s, 2ea22)) | ds

72
fi-1

MA%WN<ZS

i-1

Mt r,.

We shall show that there exists some positive integer N=N () such
that ¢%=7,. Suppose, on the contrary, that this were not true. Then,
since {£}} is a nondecreasing sequence bounded from above, there is a #, in
(0, T,] such that lim #=¢,

400 ; )
Since ||u, (&) —u, (LM S M| —t]->0 as i, koo, lim w,(#)=v, exists. Let
f—reo
;>0 such that ' '

(3.5) I/ v)—f (& vl = 1/2n

whenever “|jv—v,|| £ 26, and |t—%] <20,
Since 1im FE u,(8))) = f(t, vy) there exist ¢,>>0 and sufficiently large

positive mteger { such that

(3.6) 1t 00— £ (81 e ) < 12

whenever #,—£ =06, and [Jvo—u, (&) Lo
Set 6=Min {o, 6,}. Then there exists a positive integer j such that

3.7 0r<Min {o/2M, s}.

Thus (3.5), (3.6) and (3.7) hold for ¢ and 2=Max {z, j}.
Consequently, if |lv—uw, (& WSM (0 +a/4M) and £, ZtZ18 1 +o0,
then
vl £ lv—w, (E )| + e, E ) — o)l £ 36/4+0< 20,
and
lt—t) S lt—tp| + [to— 23 1| £ 20.

It therefore follows that
1@ o) f (B ) | S WS o) = £ w0

1t 00— £ (85, a0
=1/2n+1/2n =1/n.

This is a contradiction to the choxce of &
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We next show that the sequence of continuous functions {u«,(#)} con-
verges uniformly to a E-valued function «(#) on [0, T7].
For this we set Wy, (&)= |lu,(t)—w, (&)} for m>n=1 and ze€0, T,], and
remark first that, since '

<3 8) 1zvmn(t)—tv7mz<s)* g 21‘/[“”—51 for s, L€ [Oy TO]’
wh,(£) exists for a.e. £€[0, T,]. :
For each 2€(0, T) such that w,,,(z) exists there exist positive integers
7 and j such that z€ (g, #¥) and t€ (£}, £7).
By Lemma 3.1 (1), (6) and Lemma 3.2 we have
(3.9) W (£) = un(t)—1,(8), [t 1, (E51))— S {6 1,(81) s
g g<t3zv”ln(t))+ “-f(t3 u”’f( )) f(t uﬂl(tﬂb ))H
+ Hf(t> uﬂ<t>) f(ty ll"( 'i~1)>u -
On the other hand
2 () — 20,0 (5

1)
Thus we have by (3.°
(3.10) W= g <t, w,,,,,(t)) +1/m+1n<Lyg <t, w,,m(t)> +2/n
for a.e. £€(0, T,). Let w,()=sup {w,.(t)} for £€[0, T(].

m>n

Then w,(0)=(0) for all n. It thus follows from (3. 8), (3.10) and Lemma
2.2 that

| < Mlz—zp, | SM&y and |u, (&) —u, ()] < Moy,
2)

(3.11) lw, () —w,(s)| < 2M|t—s] for s, te [0, TY],
and

(3.12) wh(8) = g(2, w, () +2/n for a.e. t€(0, T,).
Since

02w, ()£ w,(0)+2Mr = 2MT, for n=1 and z€[0, 1]

the sequence {w,} is equicontinuous and uniformly bounded, and hence it
has a subsequence converging uniformly on [0, 7] to a function w, and
obviously w(0)=0. From (3.12) and the proof of Lemma 2.1 we have

W (S g(tw)  for a e te(0, T).

We show next that (D'w) (0)=0. Since f is continuous at (0, u,),
given ¢>0 we can find >0 such that || /(¢ «)— f(¢ u,)l|<e¢ whenever 0
t=<d and Jlu—wu)|<6. Let §o=Min {4, d/M}. Since [[u,(t)—u || M3, ||f
(2, un(6))— f (2, 16,(£)]} <2¢ whenever m>n>l and €0, d,]. By Lemma 3.1
(1) and (3.9) we have : :
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Wi (2) = () —w,(8), f(2, 0,,(8521)— (2, w0, (251) )2
S N unltien))— £(8 walgn)]
S un®)—F & w () +2/n < 2(e+1/n)
for a.e€(0, 8,), and hence, by integrating the above inequality,
0= W (D)= 2(e+1/n) ¢,

whence (D*w) (0)=0.

From Lemma 2.3 we deduce now that w=0, and this implies that the
sequence {u,} is uniformly convergent on [0, 7,]. The limit # of this
sequence satisfies

() = up+ SO Flsuls)ds  for te[0, Ty,

To show this, note that

S:f<s, u(s)> ds = k}fjl Stj f(s, u(s)> ds + S f<s, u(s)) ds

F=1 7
j-1

for te{fr_;, £2]. Then we have by (3. 4)

Hun(t)— (uo + S: I <s, u(s)) ds)

7

<y Slj 1 (s, s 23)) = £ (s, ()| | s

=1 ,?“1
+ S; H f <s, o, (27 1)) - f(s, u(s))”ds
<[1/n+Max||£(s, w(8) = £ (s, u(s))||] 7

0SssT,
Because of the uniform convergence of {u,} to u on [0, Ty},
C={u,®), u(t); 0=t<T,, n=1,2,---} is a compact set in E.
Since f(¢ u) is uniformly continuous on [0, T;] x C we have

Max “f(s, u,,(s)) -—f(s, u(s))“——>0 as n—>o00,

053s7,

and hence the required result follows.

Thus u is a strongly continuously differentiable solution of (D) on {0, T5].
Let v be another strongly continuously differentiable solution of (D)

on [0, T¢] and let z(f)=|lu(s)—v(#)]]. Then =z(0)=0,

and

2'(8) = Cult)—v(2), f(6, u@) =f (& v(t)): = 9(2 2(8))
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for a.e.£€(0, Ty). The fact (D*z) (0)=0 follows from
0=zt =] (u(t)—v(t))/lﬂ~>0 as 0.

It therefore follows from Lemma 2.3 that z==0. The proof is complete.

§4. Proof of Theorem 2.

Proor of TuroreEm 2. It follows from Lemma 2.4 and Theorem 1
that there exists a unique local solution u of (D;) on some interval [0, 77).
We assume that [0, 7%) is a maximal interval of existence of . We have
only to show that 7§ <oo leads to a contradiction.

Let w()=|lu(t)—u| for &[0, T5). Then, by Lemma 3.1 (6), we have

w!'(2) = CulB)—uo, fUt ul))s

(4.1) < Cult)—uo, flt ()= Ft we)po+ |18 w0
< g(t, w(2)+ L f
for a.’e. #€(0, T}), Wwhere L= Max || f (¢, w)].

In virtue of (i,), (ily) and (iiiy) the differential equation
(4.2) 2'(t) = g(t, z(&))+ L

has a unique solution z on [0, 7] with the initial condition =(0)=0.
It therefore follows from (4.1) that

(4. 3) / w{t) < (1) for all [0, T¥).

In fact, if we assume that there exists a o€ (0, Ty) such that w(e)>=2(s).
Then there exists a 6,€ [0, ¢) such that w(e)==2(g,) and w(f)>z(?) for t€
(@0, 0].
Let #(t)=w(t)—=2(¢). Then, by (4.1), (4.2) and (ii,), we have

9 () =w'(t) =2 () < g(t, w(8))—g(2 2(t)) =my(t)a(0(2))
for a.e. t€ [0, 0], where B={(z, w(t)), (¢, 2(8)); 0,=tZ0)}.
Since « is continuous and @ is absolutely continuous, we have for sufficiently
small ¢>0

|| owrlow)a ="

drla(t) < Sa my(2) dt.
8o, +e) oy ie
By (iii,) and by letting ¢! 0, we have a contradiction.
(4. 3) implies that
(@) ]| = lloll + Max {(2)} for z€ [0, T5).
0stsl,”

0

Since {f{(¢, u(t)); te [0, T5)} is a bounded set in E, we have
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—0 as 5,1 1y .

ut—u(s | 1 (e wlo))ll a=

Let vo=lim #(¢#), then we can apply Theorem 1 once more with the initial
Ty

condition u(7y)=wv, and obtain a unique continuation of the solution
beyond 71§, which contradicts the assumption on 7.

§5. Proof of Theorem 3.

Throughout this section we assume that the dual space E* is uniformly
convex.

We say that F' is a duality mapping of E into E* if to each u in E
it assigns (in general a set) F(x) in E* determined by '

F(u) = {x*; x* e E* such that (u, x*) = |lu|? = Hx*]]z},

where (u, 2*) denotes the value of x* at w.
Since E* is uniformly convex F is single-valued and umformly con-
tinuous on any bounded subset of E (see [9]).

LemMA 5.1. For each u#0 and v in E
{u, vy, = Re (v, F(w))fllu]l.

Proor. Since {u, v),=Re{v, F(u))/||u| for each #*0 and v in E (see
the proof of Proposition 2.5 in [11]),

Ct, 0 = %Re(v, F(u)> —Re(—‘v, F(u)> _ Re<v, F(u)>.
We recall that A satisfies
(6.1) du—v, Au—Av), <0 for u,ve D(A),

and R(I—1A)=E for some 2,>0.
For such an operator A we have

LEMMA 5.2. (I—2A)" exists for any 1>0.
Set J, = (I~——712—A)'1 and A,=A J,=n(J,—1I) Sfor n=1,2,--,.
Then

(1) Nt — ol < |lu—vl| for u,ve E,
(2) (Aul < Aull  for ue D(A),
(3) du—v, Au—A,v, =0 for u,ve k,

and
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(4) A is demiclosed, that is, if u,€ DA), n=1,2, -+, u,—~>u
(strongly in E) and Au,~>v (weakly in E), then ue D(A) and v=Au.
Proor. In virtue of Lemma 5.1, —A is m-monotonic in the sense of

T. Kato [9], and hence, the existence of (I—21A4)" and (1), (2) and (4) follows
from Lemma 2.5 in [9]. To prove (3) note that

lu—v, Au— A0, = nlu—v, Jau—Jv—(u—1)),

= n((u—-v, JnU-Jn'U%“”u“UU)

£ n(lJau— Tl —lu—ol) L0,
where we used (1) and Lemma 3.1 (1), (4).

In Theorem 2, if g(¢, v)=p(¢) z, where B is a locally Lebesgue integrable
function defined on (0, o), then the conclusion of Theorem 2 remains valid.
In fact, it is obvious that this function B(¢)c satisfies the conditions (i),
(ii,) and (ili,) except that B(¢)z need not be nondecreasing in = for fixed &
However, the nondecreasing nature of g in ¢ was used in establishing
Lemma 2.3 which is valid for this S(¢)z.

LemMma 5.3. Under the hypothesis of Theorem 3 the differential equa-
tion

d
T u,(t) = Anu,,(t)+f<t, un(t)>, 1,(0) = uy€ E,
has a wunique strongly continuously differentiable solution u, defined on
[0, co).

Proor. Since A u—A,v]| £ 2nflu—v) for w, v in E, Au+f(t, u)
carries bounded sets in [0, co)x E into bounded sets in E. By Lemma 3.1
(5) and Lemma 5.2 (3) we have

Qu—v, Au+ft, u)—(Av+ f(t ),
=u—v, Au—A,0),+{u—v, f(t, u)—f& v
= B@)llu—l|
for (¢, u), (¢, v)e[0, o)x E.
Hence the assertion follows directly from Theorem 2 and the above men-

tioned remark.
We shall now deduce some estimates for u, (£).

Lemma 5.4, Let uye D(A). Then {u,(8)} and {u.t)} are bounded on
any finite interval of [0, oo).

Proor. By Lemma 3.1(3) and Lemma 5. 2(2), (3)
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L sl = )=ty A0+ £l 555

é <Z¢ (&) —to, Ayt ()py+ (e (D) —1a, [ (2, 20,(8) ),

LS D=ty S () 6wy (6wl A
= BOwn(t)— ol + 1 £ wo)ll + | A walf-

Thus we have

-l 5 [rexo ([ ) ae) (176 wll +114 wl s

for n=1,2,---. This implies

(5. 2) a2 = ool + 50 exp (S B(z) df)@ Fls, ug + | A uou)ds
for te [0, c0) and n=1,2, - a
For each fixed >0 we have, by Lemma 3.1(5) and Lemma 5.2 (3),

-*;—Z{[ |t (24 B)— 10, (8) || = {wtn(t+ D)~ 1, (8), A, (t+ h)— A, (2)

Sy + e+, w,(e+h))— Ft w6
= (uplt+h)—u,(t), f(t+h, w,(t+h)—fF(t, w. () -
= G E+hy—u,(8), fE+h, w,(t+h)—F(2 u, (B

+ [+ Ry w(8)— f(8 w(2) ]
COE B+ w R =, (D) I EF A, w,(0)— FlE w(0))) .

It follows that
,[u7L(t%h>‘u7t(t)!l = “u u’n<0>“

+ exn (S B+ Wy e (s+ b, ,09) = £ (s, 09 1

By dividing the above inquality by A and letting 2| 0, we have

5.3) el < )+  exo ([ pte) 145, w1 s

for n=1,2,---. This completes the proof.
We shall now give the proof of Theorem 3.

Proor of THEOREM 3. By (5.2) and (5. 3) there exists constant M;>0
for each T>O such that

(5. 4) Het (D) + LA (8, w, (8] £ M, for te [0,7) and n=1.
By Lemma 3.1(5) and Lemma 5.1, for each #€ [0, 7] such that
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-g{ e, (&) — 2w (B)1] exists and w,,(8)—u,, () # 0,

‘% Hun(t>"‘ltm,(t) “ = <un~(t)_'um<t)7 Anu’n(t)_Amum(t)
+f<t’ un(t))_f(ts um(t))>2

S B ua(t)—un (0]
+ 2M )| F (14, ()= 4 (£)) — F (1, () = Tt ()| Nl (E) — 10, B) || .

It follows that

“(% n‘ltn(lf>“ um(t) HZ é Zﬁ(t) ”u"(t)_ u""'(t) H2
+AM || F (4, ()= n () — F (Jattn () = St ()] -

On the other hand, for each e [0, T'] such that ~% N2, () — w0, (B)]] exists
and 2,()— ., (£)=0,

A= tnB] = €O, A= At = 0.

Thus we have

A = 0O S 28(6) 10— 0 ()
+ 4]\4T;!F(11n(t)"um<t))_ F(Jnun(t)* Jmum (t)) H

for a.e. t€ [0, T} and n, m=1.
Consequently

(8= e (D) |2 < 4MT§; exp (S 28(z) dz‘) L F (16, (5) =t (5)) — F (ot (s)
— Tt (5))l| ds
for ¢ [0, T] and n, mz=1.
In virtue of (5.4) and the definition of A,
1
m

Hu,,,(s)—— umr(s>—<']nun(s)_‘]mum @)N é ﬂ7_1l_ “Anun(s) H “+ !Amum<5) H
< Mp(l/n+1m)—~0 as n, m—»oo0.

Since F(u) is uniformly continuous on any bounded set in E, {u,(#)} con-
verges uniformly to a continuous function #(£) on [0, T'] for each T>0.
The absolute continuity of #(#) on [0, T'] follows from the inequality

lint=e,9) <[ st

= Mylt—s| for ¢,s€ [0, T].
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We show next that «(z) is a solution of (1)
By (5. 4) we have ‘ '

(5.5) A, (O = (DN + 1/ w(0)]l = My
for te [0, 7] and n=1.

This implies that {A,u,(£)} is a bounded set in L% [0, T'] for each 7>,
where L% [0, T} denotes the set of all square mtegrable E-valued strongly
measurable functions on [0, 17].

Thus some subsequence of {A,u,(£)} converges to an element z weakly
in L% [0, 7]. For notational convenience we assume that {A4,u,(¢)} itself
converges to 2 weakly in L% [0, T']. ‘

Let C[¢] be the set of all weak limit in £ of a subsequence of {A,u,(£)}
for each fixed ¢€ [0, T'].

We will show that u(z)e D(A) for all t€ [0, T'] and z(t)=A u(z)
for a.e. te [0, T7] (cf. T. Kato [10]).

To show this we note that for each ve C[z] there exists a subsequence
{A it (t)} such that w—lifn A, it (t)=7v, where w-lim denotes weak limit
in E. Since Jumtlyn )= 1t(8), Jumttnn(£)€ D(A) and A, pmtlom(£)=A Jopttyn(t), it
follows from the demiclosedness of A that '

u(t)e D(A) and v=A u(f).

Hence C[¢] consists of only one element for each z€ [0, T']. Since any
subsequence of {A,u,()} has a subsequence converging weakly to the same
element v=v(z), {A,u,(t)} itself converges weakly to v(¢) for each z€ [0, T].
Since {A,u,()} converges to =z weakly in L% [0, T'], = is the strong limit
of the type Z a; A, it,.;. Here {a;} is a finite set of nonnegative numbers
such that Z‘ ab—l

Thus we can find a subsequence of the above sequence converging to z(¢)
strongly in E for a.e.ze [0, T].

Let U be any open convex neighbourhood of 0 in the weak topology
of E. Then there exists an open convex neighbourhood V of 0 in the
same topology of E such that V+ VcU.

Since v(£)+ V is open convex in the weak topolopy of E, there is a 7, such
that
A ult)ev()+V for n=n,.

Thus the convex combination of the type X a;A, s, .:(t) belongs to v(#)+V

for nzn, Hence z(t)€(v(t)+ V), where (v{t)+ V)™ denotes the closure
of v()+ V with respect to the weak topology of E. Since
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@B+ Vyeclv@+ V)i+ Vou(n+ U,
it follows that z(¢)—wv(f)e U. This implies that
2(8) = v(z) for a.e. te [0, T].
Since || A, (t)]] €M, the norm of a convex combination of A,u,(£)s

is also <M,. It follows that |[2(6)| KM, for a.e.z€ [0, T] and that =(z) is
Bochner integrable on [0, T"]. Since L% [0, T'|*==L%. [0, T] and since

(10, (£, %) = (11, %)+ S: (A,lm,(s)—i— f(s, z,L,L(s)), x*)ds
for each x*€ E* and z€ [0, T}, we have by going to n—>co
(e @%) = )+ [ 29 (5, uls), 2%)as.
Thus we obtain that ;]i; u(t) exists for a.e.z€ [0, T'] and

e u(t) = 20+ f(t, w(t) = A u@)+ f{t, ul?) for a.e.te [0, T].

Since T is arbitrary, the proof is complete.

§6. Remarks and an example.

In this section we give some remarks about the relations between our
results and those of F. E. Browder and T. M. Flett. We give also a simple
example to which our Theorem 2 applies.

ReEMARK 1. In the papers [4] and [56] T. M. Flett has given sufficient
conditions for the existence in Banach and Hilbert spaces of the unique
local solution of (1)) on some interval [0, 1] under the following conditions :
(A) E is a Banach space and f is a continuous mapping of [0, 7] x.S(u,, )
into E such that for all (z ), (¢, v)€(0, T] % S(u,, )

(6.1) £ (8 w—F& ol =gl lu—ol);

(B) E is a Hilbert space with inner product (,) and f is a continuous
mapping of [0, T']x .S (u,, 7) into £ such that for all (¢ u), (¢, v)e (0, T]x.S
(240, 7)

(6.2) Re (f(t, u)— f(t, v), u—v)= fu—vllg(t, fu—vl]),

where g is a continuous function defined on (0, T} x [0, 2¢] satisfying the

condition (ii,) in §1 in this paper.
In Theorem 1 if we assume that ¢{z, 7) is continuous on (0, 7' x [0, 2#],
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then we can drop the assumption that g(¢ r) is nondecreasing in = for fixed
¢t {cf. [2]).

In virtue of this fact and Lemma 3.1(1), (4) our result is an extension of
(A). If E is a Hilbert space with inner product (,), then we can easily see
that

{u, v, = Re(v, u)/|ul] for u#0 and v in E,
and hence, our condition of Theorem 1 becomes

Re(f (s, u)— f(¢, v), u—v) = lu—vlig(t u—vl)

for all (¢, ) (¢, v)€(0, T]xS(uy, ). Thus our result is also an extension
of (B).

Let F(u) be the duality mapping of E into E* defined in §5. Then
for each #+#0 and v in E

{u, v)y = Re(v, %)/l for some r¥*e F(u)

(see the proof of Proposition 2.5 in [11]).

Thus we can replace the condition of Theorem 1 by the following one.
Re(f(t, u)—f (2, v), 2*) = flu—vllg( fu—ll)

for (¢, u), (¢, v)€ (0, T] x S(uy, v) and for all 2*€ Flu—vv).

Hence our result is a generalization of (B) into a general Banach space.

Remark 2. In [1] F. E. Browder proved the existence and uniqueness
of a strongly continuously differentiable solution of (D;) on [0, c0) under the
following conditions :

(I) E is a Hilbert space with inner product (,) and f is a continuous
mapping of [0, o)x E into E, carring bounded sets in [0, co)x E into
bounded sets in E.

(II) There exists a real-valued continuous function ¢(¢) defined on [0, co)
such that

(6.3) Re (f(t, w)—f(t, v), u—v) < c(t) lu—o|?
for all (¢, u), (¢, v)e [0, o) x E.

By the same argument as in Remark 1 we see that Theorem 2 is
a generalization into a general Banach space of the above result of F. E.
Browder.

The following example shows that the conditions of Theorem 2 are
more general than those of F. E. Browder.
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ExaMmpLE. Let E=R' and let a(f) be the function defined by
e 0tZe)
le>e)

where ¢ is a positive constant. We consider the differential equation

] Lty (620, u>alt)
-;Cﬁ- u=f(t,u) = 1
—e (> =
9 Valt) (20, usalt),

Obviously, the function f (¢, «) is continuous from [0, co)x R' into R.
However the function f(¢, «) does not satisfy the monotonicity condition
(6. 3) but does satisfy all our conditions of Theorem 2.

In fact, for w==v and £>0
Cu—wv, f(t, u)—f(t, )2 = (f(t, w)— f (¢, v)) (u—v)|u—2]|

= £ (f(t, u)—f(t, v))
(1/24 alt) )u—v]  (
)4 /24 alt) (
(1/‘)«/ a(t))|u—wv (u
0 (u,

) w, v>al(t), £>0)

Yu—v| u>alt), 0ZvZalt), £>0)
) > alt), v<0, t>0)
vZalt,) £>0).

Thus we have

Cu—wv, flt, w)—flt,v). < (1/24 a(t) ) |u—v|
for all (¢ u), (¢ v)e (0, 00) x R
Set g(t,t) = (1/24 a(t) ) = and a(f)=¢, then it follows easily that ¢ and a

satisfy all our conditions of Theorem 2.
On the other hand we have

(f(t, W)= f(t,v) u—v) < (1/24 a(t) )|ju—v|®
for all (¢ ), (¢, v)€ (0, c0)x R,

Since 1/24 a(t) is discontinuous at 0, the condition (6. 3) does not hold.

REMARK 3. In Theorem 3 if A is linear and D(A) is dense in E,
then A is the infinitesimal generator of a strongly continuous contraction
semi-group {7(¢); =0} (see M. Hasegawa [6]).

In this case the integral equation
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o(t) = uy+ SO T(t—s) f<s, v(s))ds

has a unique solution for each u,€ D (A) by the same argument as G. Webb
[15]. We don’t know whether the solution of the above integral equation
is a solution of (D,).
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On Existence and Uniqueness Conditions for Nonlinear Ordinary
Differential Equations in Banach Spaces

By

Shigeo Kato

(Kitami Institute of Technology, Japan)

1. Introduction and results.

Let E be a Banach space with the dual space E*. The norms in E and E*
are denoted by || ||. We denote by S(u,r) the closed sphere of center u with
radius r.

We consider the Cauchy problem

(CP) W@O=ft,u®),  u@)=u ek,

where f is a E-valued mapping defined on [0, T1 X S(u,, r) or on [0, o) X E.

Many authors have studied this problem and some of their articles are listed
in our references.

It is our object in this paper to give sufficient conditions for both local and
global existence of strongly continuous, once weakly continuously differentiable
solutions to (CP).

Throughout this paper, whenever we speak of a solution to (CP), we will mean
a strongly continuous, once weakly continuously differentiable function u on some
interval [0, a] (or [0, a)).

The techniques employed in this paper are similar to those of the present
author [8] and J. M. Bownds and J. B. Diaz [1].

Let E, denote the space £ with its weak topology and let f be a mapping from
[0, T] < S(uy, 1) (or [0, o) X E) into E. We say f is weakly continuous if it is con-
tinwous from [0, T} X S(u,, r) (or [0, )X E,) endowed with relative topology of
[0, o)X E, into E,.

We now state the following result.

Theorem 1. Let f be a weakly continuous mapping from [0, T1 X S(u,, r) into
E. Suppose further that the range f([0, T1x S(uy, 1)) is relatively compact in E,,.

Then (CP) has at least one solution u defined on some interval [0, a).

Remark 1. The solution u to (CP) mentioned in Theorem 1 is strongly dif-
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ferentiable for a.e.t ¢ [0, a] and satisfies _%u(l)z f(t, u(®)) for a.e.t ¢ [0, a}, where
a

T;Zt_u denotes the strong derivative of u (see [51).

If E is a reflexive Banach space then we have the following result similar to
that of Theorem 7 in F. E. Browder [2].

Theorem 2, Let E be a reflexive Banach space and let f be a weakly con-
tinuous mapping from [0, o) X E into E.

Then for each r>0 there exists a(r) >0 such that, for each u, in E with |u,]
<r, (CP) has at least one solution u defined on [0, a(r)].

Remark 2. In Theorem 2 if E is a Hilbert space, then F. E. Browder proved
that (CP) has a strongly C* solution defined on [0, a(r)] (see [2]).

We next consider the global existence and uniqueness of solutions to (CP).
We define < , >: EXE—R by
1 . 1
o, wy= lim - (|v-+hw|—{o—hwl).
2 B +0 I’L

For the properties of the functional {, > see, for example, [8], where {, > was
denoted by { , >,.

Theorem 3. Let E be a reflexive Banach space and let f be a weakly con-
tinuous mapping from [0, o) X E into E. Suppose further that

(1.1 v—w, f(t, ) —f(t, WP < B0 [[v—w|

for all v,w in E and a.e.t € (0, oo), where § ¢ L}, (0, o). Then for each u, in E
(CP) has a unique solution u defined on [0, ).

Remark 3. In Theorem 3 if E is a Hilbert space with inner product denoted
by (,). Then it is easy to see that

{v,wr=Re (v, w)/||v|| for v£0 and w in E,
and hence, the condition (1.1) becomes
Re (f(z, v) —f(t, w), v—wW) S (@) |[v —w|f

for all v,w in E and a.e.t>>0. This implies that f(¢, -)—g(®)I is dissipative for
a.e.t>0, where I denotes the identity mapping.
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2. Proof of Theorem 1.

Since ([0, T1x S(u,, 1)) is relatively compact in E, there exists a constant M
>0 such that

e nlIs=M for (¢, v) € [0, T1 X S(ug, 1).
Let a=min {T,r/M}. For each positive integer #, let
dy: 0= .. <thy=a
be a partition of the interval [0, a] such that
2.1 [4,l=max {fi—1_,; 1SkSENM}—0 as n—oo,

For each 4, the approximate solution u, to (CP) on [0, a] is defined inductively as
follows :

(2.2) U ()=, () =1, (1) + (A — (L}, un(17))

fortels,7,,] and i=1,2, ---,N(n)—1. Then it is easy to see that u, is well
defined on [0, a] and satisfies

(23) ”un(t)—"un(‘y)”éMlt—Sl

for s,t¢[0,a] and nz1. Thus u,(t) e S(u, r) fort e [0,al and n=1. Lette (0, d]
be such that ¢ e [#2, 12,,] for some i. Then

n—u)/t= 3 E:t—”“—fﬂzz_l, () + t“t ez, un()).

It follows that (i,()—11)/t € co(f([0, T1 X S(uy, 1)), where co(f([0, T1 X S(uy, 1))
denotes the convex hull of f([0, T1XS(uy, r)).  Since f([0, T1x S(uy, 1)) is relatively
compact in E,, it follows that co(f([0, T1x S(u,, 1)) is also relatively compact in E,
(see [5]). Im E, the relative compactness is equivalent to the relative sequential
compactness (see [5]). Consequently, the sequence {(u,(f)—u,)/t};_, contains a
subsequence which converges in E,, and this implies that the sequence {u,(#)} also
contains a subsequence which converges in E,. Thus we have proved that the
sequence {u,{f)};., has a subsequence which converges in E, for each 1 € [0,a]. In
virtue of (2.3) it follows, by the diagonal method, that {u,} has a subsequence {u,.}
such that @-lim u,,, () =u(?) exists for all z € [0, a], simultaneously, where w-lim means
limit in E,. For notational convenience we assume that {u,(#)} itself converges to
u(®) in E,. The limit function u satisfies

() —u(@) || =M |t —s| for 5,1 ¢ [0, al.

In fact, for each ¢>0 and for each x* ¢ E* such that
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() —u(9), x*) = || x* | ={[u() — u(s) |,

there exists an #n, such that

[(u(@®) —u(s), x*)| <] (U, () —u,(s), x*)|+¢
for n=n,, where (v, x*) denotes the value of x* at v. Thus

| u(t) — u(s) I <|(un(O) — 1, (), x*)| +¢
=M |t—s||[x*|[+e
=M ||u(@®—u®)|||t—s|+e

and hence [|u(t) —u(s)||=M |t—s|.
We next show that u is a solution to (CP) on [0,a]. Rewriting (2.2) we have

U (D) =1ty + f f(e, un(e))de + f (f1.(0) — 1z, (0)))de,

where

f4.() =1, u,(17)) for r ¢ [#,17,,] and OSi<N(n)—1,

Since C={u,(0;tel0,al,n=1,2, -- - }U{u(®); t € [0,al} is compactin E,, [0,a] X C
is also compact in [0, ) X E,. Thus, for each x* ¢ E*, (f(¢,v), x*) is uniformly
continuous on [0, a] X C, that is, for each ¢>0 there exist a neighbourhood U of 0
in E, and a §=04(e, x*) >0 such that

!(f(t9 ’U)——f(t, W)9 X*)I<6

whenever |t —s5]<d (5,2 € [0,a]) and v—w e U (v,w ¢ C). Here we may choose U
such that for some y§f € E* (j=1,2, ---, p)

U={v; (v, yP|<3, j=1,2, ---, p}.

By (2.1) we can choose an n, such that
|4,,|<min {5, 5/M max | y;“H} for n=n,
15jsp

For each = ¢ [0, a] we can choose i with 0<<i <N(n)—1 such that ¢ ¢ [, ¢7,,]. Thus
we have for n=n,

le—g|S 0, — 1 =(4,]1<8
and

|@a(t) — (D), YIS M || Y] | e — 7] <5
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for j=1, 2, - - -, p, which imply that
!(fd,,(z.)—f(z.3 lln(T)), X$)[<E~

Consequently, for n=n,

(WD) — tty— j *f(es (@, %)

_s_j (£, () — F(e, 1n(2)), )] de
<ea.

Since x* ¢ E* was arbitrary, it thus follows that

u(z)zuﬁf f(e, u(e)de  for te [0, al.

Since f is weakly continuous, u is strongly continuous, once weakly continuously
differentiable on [0, a] and satisfies

u'() =1, u(®)) for t € [0, a],

where u’ denotes the weak derivative of u. The proof is complete.

3. Proof of Theorem 2.

Since E is a reflexive Banach space and f is weakly continuous, f maps bounded
sets of [0, o) X E into bounded sets of E. Thus for each » >0 there exists M{r) >0
such that

7 MI=ME)

for each 7 € [0, 1}, v ¢ E with ||oli=<r. Leta(r)=min {1,r/M(2r)} and let {u,} be
the sequence of the approximate solutions to (CP) on [0, a(r)] as in the proof of
Theorem 1. Then for each s, ¢ ¢ [0, a(r)] and n=1

un(O) — (| S M(2r) [1—s]
and
lun(®) —u | SMQnt<r.

Thus it follows that ||u,(9)]|<2r for £ ¢ [0, a(r)] and n=1. Since co(f([0, a(r)] X
S(uy, r))) is bounded in norm, it is relatively compact in E,. By the same argument
as in the proof of Theorem 1, the sequence {u,} has a subsequence which con-
verges in E, for all ¢ ¢ [0, a(r)].

The rest of the proof is the same as the corresponding part of that of Theorem 1.
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4. Proof of Theorem 3.

It follows from Theorem 2 that there exists a local solution u to (CP) on some
interval [0, b). We assume that [0, b) is a maximal interval of existence of u. We
have only to show that b< oo leads to a contradiction. By Lemma 3.1, 3.2 in [§]
and (1.1) we have for a.e.t € (0, b)

=t = () =1t ) =)=t 0D

= u(t) — g, (2, u()) — (8, 19) > + || (2, uy) |
=B (| u(®) —usl| 11, u) |-

It follows that
() — g §f: exp (f‘ ﬁ(z‘)dz‘) (s, up) | ds.

Since f(-, 1) is continuous from [0, b] into E,, {f(s,uy); s e [0, b]} is bounded in
norm by the Banach-Steinhaus theorem. Thus we have

<t + . exp (|| sedz) s, ol ds

for £ € [0,b). Since f maps bounded sets of [0, o) X E into bounded sets of E, it
follows that

||u(t)—-u(s)|]§l£|];f(r,u(z'))|]dr—->0 as 5,11b,

which implies lim u(f)=v, exists. We can now apply Theorem 2 with the initial
AN

condition u(b)=w, and obtain a continuation of the solution u beyond b, which
contradicts the assumption on b.
Let w be a solution to (CP) on [0, ) with w(0)=w,. Thenfora.e.te (0, )

g‘it—nu(t)——w(t)ll=<u(t)—w(t), 1, u(@®)— 12, w@)>
= PO [u@®—w@) |,

and hence

6@ =@ |Slu—wol exp ([} piera).

This inequality means that a solution to (CP) is unique.
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On Local and Global Existence Theorems for a Nonautonomous
Differential Equation in a Banach Space

By

Shigeo KaTto

(Kitami Institute of Technology, Japan)

1. Introduction and results.

Let E be a Banach space with norm || ||. We denote by S,(uy) (resp. U, (u,))
the closed (resp. open) sphere of center u with radius r.
In this paper we consider the Cauchy problem

(CP) X =f(t, x), x(Q)=u, e E,

where f is a E-valued mapping defined on [0, T] xS,(i;) or on [0, o)X E. By a
solution to (CP) or to (CP; 1), we mean a strongly continuously differentiable func-
tion defined on some interval [0, a] (or [0, a)) such that u(0) =u, and u'(t) =f(t, u(®))
for ¢ € (0, a] (or (0, @)).

This kind of problem has been treated by many authors and some of their
articles are listed in our references.

It is our object in this paper to establish both local and global existence theo-
rems for (CP) under some conditions which are similar to those treated in H.
Murakami [9] and P. Ricciardi-L.. Tubaro [10]. Our theorems give some gener-
alizations of those of [7, 8, 9, 10].

Let V(z, x, y) be a functional from [0, T1 X S,(1,) X S, (1) into R satisfying the
following properties:

P) Vi, x,y)>0if xxy; =0if x=y.

(P, V(,x,y) is uniformly Lipschitz continuous on [0, T]1xS,.(u,) X S, (1) with
Lipschitz constant L.

Py lim V({, x,,y,)=0 implies lim ||x,—y,||=0 for each ¢.

-0 n—co

In order to prove the existence of the unique solution to (CP) we consider the
following scalar equation

(11) W/:g(t,w),

where g(¢,7) is a real-valued continuous function defined on (0, a} X [0, b]. We



280 S. Kato

assume furthermore that ¢ satisfies the followins conditions: (1,) g(t,0)=0 for
te(0,al. (2,) For each 4, ¢ (0,al, w=0 is the only solutions to (1.1) on (0, z,]
satisfying the condition that w(+0)=0.

Let f be a strongly continuous mapping from [0, T]x S,{1,) into E. Then there
exist some constants 0<r,<r, O0<T,<T and M >0 such that [[f(z, x}||<M for all
(, x) € [0, T,] XS, (up).

We now state the following result.

Theorem 1. Let f and V satisfying the assumptions mentioned above. Fur-
thermore, if f satisfies

(1.2) ]}i_lzl() %‘[V(f-i‘h, x-+hf(t, x), y+hi@t, )=V, x, NI<g@, VL, x, ¥)
for all (¢, x), (¢t,y) e (0, T) x U,(u,), where g satisfies (1,) and (2,) with a=T and
b=0CM+1)LT. Then (CP; u,) has a unique solution u defied on some interval
[0, T,].

We next consider a global analogue of Theorem 1, and we assume that V (¢, x, y)
defined on [0, ) X E X E satisfies (P,), (P,) and

(P5) V(t, x,y) is locally Lipschitz continuous on [0, co) X E X E.

Let g be a real-valued continuous function defined on [0, o) X [0, oo) satisfying the

following conditions: (1) g(¢,0)=0 for all 1 ¢ [0, ). (2,) For each ¢, ¢ [0, =),

w=0 is the only solution to (1.1) on [0, #,] satisfying the condition that w(0)=0.
Under these conditions we can prove the following

Theorem 2. Let | be a strongly continuous mapping from [0, o) X E into E.
Suppose furthermore that

(1.3) hl%lo %[V(t—kh, x+hf@, 0), y+hfE, ) —V(E x, NI=S9@, VE, x, )

for all (t,x), (t,y) € [0, o)X E. Then (CP; u,) has a unique solution u defined on
[0, «) for each u, ¢ E.

2. Some lemmas.

In the following Lemmas 1, 2 and 3 we assume that V and g satisty the as-
sumptions (P))—(P;) and (1,)—(2,) respectively stated in Section 1. In virtue of
(P.,), it is easy to prove the following

Lemma 1. Let u and v be continuous functions from [0, T into U, (u,) which
have left derivatives u’ (t) and v".(t) respectively for some t in (0, T]. Then
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D_V(t, u(t), v(®)= lim i[V(t+h, u(®) + hu' (t), v(&) +hv' (1)
2.1 0 1
- V(t9 u(t)’ ’U(l))],
where D_V (i, u(t), v(£)) denotes the lower left-hand Dini derivative of V(t, u(t), v{)).

Lemma 2. Let M>0 and @ be a set of functions from [0, al into [0, b] with
the property that for all s,t € [0,al and we @

2.2) (W) —w(s) €M |t—s].
Let z(ty=sup {w(t) ; w € @} for t ¢ [0, T}, and suppose that for each w e @
2.3) D_w(ty< g, w(r)) for t € [0, a]—S,
where S is a countable subset of [0,al. Then for all s,t ¢ [0, a]
2.4 [z —2()|=M [t—s5|
and for all t ¢ (0, @)
(2.5) D_z()=g(t, z(0)).
For a proof see [3, Lemma 3].

Lemma 3. Let w be a continuous function from [0, al into [0, b} such that
w(0)=0 and

D_w(@)<g@, w) for t € [0, a]—S,
where S is a countable subset of [0,al. Then w=0 on [0, dl.

The proof of this lemma is similar to that of [4, Lemma 2.3] and is omitted.

3. Proof of Theorem 1.

The following proof is essentially based on the methods in [4, 11]. Let 0<
T,<Min {T,, r,/M}, in which r,, T, and M are the same as in the remark preceding
Theorem 1, and let n be a positive integer. We set =0, and u,(t)) =u,. Induc-
tively for each positive integer i, define 8%, £, u,(¢}_,) as follows:

3.1 0720, G+ 0 =T

(3.2) If [|x—u, (@) [|=M &} and £, <t <8}, 40}, then
' 118, )= f(t_ps un (G NS 1 15

(3.3) ””n(tgq)—uonéro;
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and o} is the largest number such that (3.1), (3.2) and (3.3) hold. Let f?=17_,-4%.
We set

un(z)=un(r;zl)+f‘ 15, up(2))ds  for each 1 e [, 2],
ey

Then for each ¢ e [£7_,, 1]

n

(3.4 nO=tot % [ 1wty s+ [ s, ez s
and
(3.5) ltn(O) — () |<M |t—s|  fors,ze[0, T,

Moreover we see that there exists a positive integer N=N(n) such that %=T,.
(For detail see [4, 11]). Thus we have u,(Y) U, (u;) for all ¢ ¢ [0, T,].

We next show that the sequence of continuous functions {u,} converges uni-
formly to a E-valued function u on {0, T,]. For this we set w,, () =V (¢, 1, (D), u, ()
for m>nz=1 and t ¢ [0, T,], and remark first that by using (P,)

(3.6) W& — W ()< CM + DL [t —s| for s,t e [0, T,].

By the construction of {u,} and Lemma 1 we see that D_w,,,(¢) exists for t € (0, T,]
and m>nz=1. For each t e (0, T,] there exist positive integers i and j such that
te (@, "IN, 7. By Lemma 1 and (P,) we have

D _wy,(1)= lim —lIZ[V(t + 1, 1w, () + 1) (0, 1, () + hu,) (1))

- V(t: um(t)y un(t))]
= IL{% %[V(t + 1, U (D) + AT 1, (7 1)), Un(8) + (G 1, un(27-1)))
- V(t’ um(t)) un(t))]

=9@, V¢, un (), u,(0)) + L, un(0) — (871, 1 (15 0) ]
H11@, u () — (81, (D |-
On the other hand
U@ —u, (G- ) I=M 67 and  |Ju,(0) —u, (D |=M o7
Thus we have by (3.2)

D _w,, (D=9 Wy, () +L(1/n+1/m)

3.7 < g(t, Wra®) +2L 1
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for all 1e¢(0,T,] and m>n=1. Let w,(=sup {w,,([®)} for t<[0,T,]. Then

m>n

w,(0)=0 for all n. It thus follows from (3.6), (3.7) and Lemma 2 that

(3.8) W, (0 —w, (DM + DL {t—s| for s,t ¢ [0, T,
and
(3.9 D_w, =g, w,()+2L/n for ¢ (0, 7).

Since 0w, (N=<w,O)+CM+DLt<QCM+1DLT, for te[0,T,] and n=1 the
sequence {w,} is equicontinuous and uniformly bounded, and hence it has a sub-
sequence converging uniformly on [0, T,] to a function w. Obviously w(0)=0 and
from (3.9) and Lemma 2 we have

D_w(t)<g@t, w(®) for t € (0, Tp).
From Lemma 3 we deduce now that w=0, and this implies that

lim V(t, u, (0, u,(1)) =0 uniformly on [0, T,].

TR s C0

In virtue of (P;) the sequence {i,} is uniformly Cauchy on [0, T,] and the limit u
of this sequence satisfies

u(t) =y J-: 1(s, u(s))ds for t e [0, T,l.

In fact, for each ¢ ¢ [0, 7] and n>1 we have

O — (et [ 5, u(sds )|

< [1/n+ Max ||f(s, t,(8))— 1, u(s))u] T,

05ssTo

Thus u is a solution to (CP; i) on [0, T,]. If v is a solution to (CP; u,) on [0, T,]
and z(6) =V, u(®), v(©)), then z(0)=0 and

D_z(H)< g, 2(1) for 1 € (0, T,].

It therefore follows from Lemma 3 that z=0, which completes the proof.

4. Proof of Theorem 2.

Before proceeding to the proof of Theorem 2, we prepare the following
Lemma 4. Let uy e £ and let T be a positive number such that (CP; u,) has

a solution u on [0, T1. Then there exists a positive number r, such that for each
vy € S, (ug), (CP, vy) has a solution v on [0, T].
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Proof. We define a continuous extension § of ¢ into R X R as follows:

9(,7) (1z0, zz0)
g(t>T): g(_’taf) (t<07 TZO)
0 (— oo <t< oo, <0).

By (2,) w=0 is a maximal solution to (1.1) on [0, T] with w(0)=0. It follows
from Theorem 1.4 in [2] that there exists a § >0 such that the equation w'=g(z, w)
has a maximal solution m( ,¢) for each ¢, 0<¢<§ on [0, T] with m(0, ¢)=0.
Moreover, m( , 6)—0 as ¢— +0, uniformly on [0, T].

Since the set {(¢, u(?)); t e [0, T} is compact in [0, T] X E, there exist constants
R>0 and M >0 such that

I, ) I=M for all ¢ [0, T] and all x e Sz(u(?).

Since V(0, vy, u)—0 as vy—u, by (P3), for each ¢>>0 there exists a »>0 such that
for each v, ¢ S,(u,)

{m(t, V0, vy, up))|<e for all ¢t € [0, T].
Let v be a solution to (CP; v,) on [0,T,). Then
D_V(t, v(0), u) =4, V&, v(@®), u(®))
forte (0, 7,)N(0,T]. Thus we have
Vt, v(@0), u@®)=m(t, V(O, v,, 1)) for ¢ [0, T,) N[0, T]

(see [6, Theorem 1.4.1]).
Thus, by (P,), there exists a sufficiently small r,>>0 such that for each v, € S, (1)

lv@®)—u@®|| <R forall t e [0, T,) N[0, T].
1t follows that || f(t, v()) | M for all t¢[0,T,)N[0,T], and this implies that the
existence domain [0, T,,) of v contains [0, T].

Proof of Theorem 2. Let u, e E. Then it follows from Theorem 1 that there
exists a unique solution to (CP; 1) on some interval [0, T,]. Let C be a connected
component in E containing u, and let

D={x e C; (CP; x) has a solution on [0, T]}.

Then D¢, since u, ¢ D. By Lemma 4, D is relatively openin C.  We show that
D is also relatively closed in C. For this, let {x,} be any sequence in D which
converges x € C in C and let v, be a solution to (CP; x,) on [0, T,]. Then

D_V(t, vx(1), v, (D) S G, VT, 00 (0), (D))
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for t € (0, T,]. Thus we have
V(t, v, (8, v,(0) =m(z, V(0, x,, X)) for all ¢ € [0, T].

Since lim m(t, V(0, x,,, x,,)) =0 uniformly on [0, T,], the sequence {v,} converges

Myn— o0

uniformly on [0, T,] to a function v, and clearly v is a solution to (CP; x) on [0, T].
Hence x ¢ D. This implies that D=C. Since C is a connected component in E
containing u,, it follows that (CP; u,) has a solution on [0, k7] for any integer k= 1
and hence it is proved that (CP; u,) has a solution on [0, o).

Remark. The idea for the proof of global existence is essentially due to
N. Kenmochi and T. Takahashi [5].

5. Remarks.

Remark 1. Recently P. Ricciardi and L. Tubaro [10] proved the existence
and uniqueness of the local solution to (CP; 1), assuming the existence of a func-
tional V(z, x,y), which, in addition to (P,) and (P,) stated in Section I, has the
following properties :

(i) V(t, x,y) is Lipschitz continuous on §,(1y) X S,(uy) uniformly in ¢ with
Lipschitz constant L ;

(ii) For any ¢ ¢ [0, T] the mapping

(Ll, /U)—>D(_‘r,y) V(ta X, Y)(U, /U)

from E X E into R is subadditive, where

DG,V x, y)(u, v):]lim0 _}{[V(t, x+hu, y4+ )=V, x, ];

(iii) V(t,x,y) is partially differentiable in ¢ and V/(¢, x,y) is continuous in
(t,%,);

iv)  Vit, x, )+ D¢, V(e x, »)((E, 0, {2, y) <0 for all (¢, x), (4, ) € [0, T]X
S (ug).

This result is a generalization of that of H. Murakami [9]. It is ecasy to see
that our Theorem 1 generalizes P. Ricciardi and L. Tubaro’s theorem.

Remark 2. In Theorem 2, if ¥ (¢, x, y)=||x—y| and g(z, ) =a(z), where « is
a real-valued continuous function defined on [0, o) such that «(0)=0 and w=0 is
the only solution to w'==a(w) on [0, ) with w(0)=0. Then the condition (1.3)
becomes

lim 711—(Hx—y + 1, ) = {6 D[ —llx—y ) Sel|x—y|)

foe—0



286 S. Kato

for all (¢, x), (¢,) € [0, ) X E.
Remark 3. Let g be a real-valued continuous function defined on [0, o). If

V(%3 =lx=y] (or exp (— [ g)ds) Ix—y]) and g6z, )=o) (or g=0), then
the condition (1.3) becomes

lim —(x =+ (6 D16 ) [~ 12—y D=0 |x—]

for all (¢, x), (¢,y) € [0, o) X E.
Thus the results of R. Martin [8] and R. Martin - D.L.Lovelady [7] are the
special cases of our Theorem 2. ‘
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On the Convergence of the Successive Approximations
for Nonlinear Ordinary Differential Equations
in a Banach Space

By

Shigeo KaT0O

(Kitami Institute of Technology, Japan)

§1. Introduction and results.

Let E be a (real or complex) Banach space with norm denoted by || | and let
S(x,r) be a closed ball of center x with radius ». In this paper we consider the
Cauchy problem

(CP) ¥=ftx), x0)=xek

where f is a E-valued mapping defined on [0, a] X S(x,, ) or on [0, co) X E.
Recently, G. Vidossich [4] proved the convergence of the successive approxima-
tions for (CP) under some Kamke-type condition, namely,

(1.1 1/(2, %) = f (1, nl=g(t, |x—y,

where ¢ is a real-valued function satisfying some uniqueness condition. However,
the results obtained in [4] crucially depend on the integrability or the boundedness
of g.

It is our object in this paper to establish both local and global convergence
theorems for the successive approximations for (CP) under conditions which are
weaker than those of [4].

Let f be a mapping from [0, a] X S(x,, #) into E satisfying the following con-
ditions:

(f) f(,x)is strongly measurable in ¢ for each fixed x € S(x,, ), and f(z,-)
is continuous in x for a.e.t € [0, a].

(f,) There exists a function g € L0, @) such that

1 <) for a.e.t € [0, a] and all x e S(x, r).

Definition 1. Suppose that (f) and (f;) are satisfied. Then a function u is
said to be a strong solution to (CP) on [0, #,] if u is an absolutely continuous function
defined on [0, ¢,] satisfying u(0)=x, and u’(#)= f(t, u(t)) for a.e.f € [0, 1,].
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We define the successive approximations for (CP) as follows:

(12 u( =%+ fls,unr(sDds  (nzD),

where u, is an arbitrary continuous function from [0, a] into S'(x, 7).

In order to prove the convergence of {u,} we consider a Kamke-type uniqueness
function ¢ satisfying the following conditions:

(91) g=u9(t,7)is a nonnegative real-valued function defined on (0, a] [0, 2r]
which is Lebesgue measurable in ¢ for each fixed 7, and continuous nondecreasing in
¢ for each fixed 1.

(9,) Foreach de(0,a), w=0 is the only absolutely continuous function defined
on [0, 6] which satisfies w(0)=0 and w’(¢)=g(¢t, w(¢)) for a.e.t ¢ (0, 9).

(g;) There exists a function « defined on (0, ] such that

9(t,v)=sa(t)  for (2,7) € (0, a] X [0, 2r]

and « € LYy, a) for every 7 € (0, a).

In the following, for simplicity, we say that g satisfies (¢,)—(g;) on (4, £,] X [0, 2r]
if g is defined on (¢, £,] X [0, 2r] and satisfies (g,)-(¢g,) with 0 and a replaced by ¢, and
1, respectively.

Now, we can state the following result.

Theorem 1. Suppose that (f)-(f,) and (g,)-{(g.) are satisfied. Suppose fiir-
thermore that

(1.3) 1/ (2, %)= (=9 | x—yI)

foraete(,alandall x,y e S(x,, ). Then the successive approximations {u,} de-
fined by (1.2) converges uniformly on some interval [0, t,] to a unique strong solution
to (CP).

We next consider the global convergence of {u,}. Let f be a mapping from
[0, 00) X E into E satisfying (/1)—~(f;) with [0, a], S(x,, #) and g € L0, a) replaced by
[0, 00), E and B e Li,(0, oo) respectively.

Theorem 2. Suppose that | satisfies the above mentioned condition. Suppose
Jurthermore that for each (t,, z,) € [0, o0) X E, there exist positive constants a, r and a
Junction g satisfying the conditions (¢,)~(g) on (1, t,+a]Xx[0, 2r] such that

(1.4) 1/ (2 x)— [ »)I=9(t, | x—yI)

Jor aete(ty, ty+al and all x,y € S(z,, r). Then the successive approximations {u ,}
converges uniformly on any compact interval of [0, o0) to a unique strong solution to
(CP).
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In case f is a continuous mapping we give the following

Definition 2. Let f be a continuous mapping from [0, co) X £ into E. Then
a function u is said to be a C! solution to (CP) on [0, 7] if u is a strongly continu-
ously differentiable function defined on [0, 7] satisfying #(0)=x, and /(t)= f(t, u(t))
for all z € [0, #,].

In the following Theorem 3 the condition (g,) can be replaced by the following
(g,) which is slightly weaker than (g,).

(¢, For each § ¢ (0, a), w=0 is the only absolutely continuous function de-
fined on [0, §] which satisfies w/(¢)=g(t, w(t)) for a.e.t€(0,9), and w(0)=(D*w)(0)
=lim,_,, w(t)/t=0.

Theorem 3. Let f be a continuous mapping from [0, oo0) X E into E such that
Lf (& N=<p@) for a.e.t € [0, 00) and all x ¢ E,

where e Li,(0, 00). Suppose furthermore that for each (ty,z,) € [0, 00) X E, there
exist positive constants a,r and a function g satisfying the conditions (g,), (g,) and
(g,) on (t,, t,+a) X [0, 2r] such that

(1.5) 1/ ()= (& =90 Ix—yD

Sfor all (t,x), (t,y) € (ty, to+al X S(zo, 7). Then the successive approximations {u.,}
converges uniformly on any compact interval [0, 00) to a unique C* solution to (CP).

§2. Proof of Theorem 1.

Before proving Theorem 1 we prepare the following two lemmas.

Lemma 2.1. Let g satisfy the conditions (g,), (¢.) (or (g,)) and (g;) on (ty, ty+
al %10, 2r], and let w be an absolutely continuous function from [t t,+a] into [0, 2r].
Suppose furthermore that w(f,)=0 (or w(ty)=(D*w)(t;)=0) and

w/ ()< gz, w(t)) for a.e.t € (ty, t,+al.
Then w=0 on [f,, t,+al.
For a proof see Lemma 2.3 in [3] or [1, p. 56].

Lemma 2.2. Suppose that f satisfies the conditions ( f;) and (f,). Then for each
strongly measurable function z from [0, al into S(x,, 1), f(t, z(t)) is strongly measurable
and Bochner integrable on [0, a).

Proof. Let {z,} be a sequence of finitely-valued functions on [0, a] such that
lim,,_., z,(t)=z(t) for a.e.t € [0,a]. Then, by (f), f(t, z,(1)) is strongly measurable
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on [0, a] for each n=1 and
lim f(t, z,())=f(t, z(?)) for a.e.t € [0, al.

It therefore follows that f{z, z(¢)) is strongly measurable on [0, a]. Moreover, ()
implies that f(z, z(¢)) is Bochner integrable on [0, 4] (see {5)).

to
Proof of Theorem 1. Let t, € (0, a] be such that f B(¢)dt < r and set I =[0, £,].
0
Then it follows from (f,) that

)=l 155 ta Mo = [ e <

for each t € Tand n=1. This implies that u,(¢) € S(x, r) foreach r eI and n = 1.
On the other hand, we have

@) uO-u®I=|[ 176 nEld

=|[ s

—| M (6)— M(s)|

for each s, ¢ ¢ I and n=1, where M(z‘):J“ B(z)dr for t e L.
Letting s =0 in (2.1) we have '
O N SO 4 M (@)l xoll + M (o) [ ol 47

and hence {u,} is equicontinuous and uniformly bounded on 7. In order to prove
that the sequence {u,} converges uniformly on 7 to a E-valued function we define
the functions w,,,, and w, by

W) =1 11 (8) — u, ()| forteland mz=znz=1
and

W (1) =sup w,.,(t) forteland nz=l.
man

Then, by (2.1), we have

[Wan(£) = Wann($) = | tn(8) — 1) [| = [[24,(8) —2u(5) ]
Slen() — ) — W) —un( N2 |M (1) — M (s)]

and hence

22) ()= o) | SSUD ()= ()| 21 M ()= M (5)]

foralls,relfandn=1.
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Since w,(1)=<w,(0)+2M (1) <2M (1) <2r for t e [ and n=1, the sequence {w,}
is equicontinuous and uniformly bounded on /7, and hence it has a subsequence {w,,}
converging uniformly on 7 to a function w =w(¢), and obviously w(0)=0.

Let fand 4¢ >0 be such that ¢, ¢ 4- 4t ¢ I. Then we have

(2.3) [Wack 0y (E A1) =Wy o0, (0]
é sup iwmn(k+1)(t+At)_wmn(k+l)(z)!‘
mznlk+1)

On the other hand, for each m=n(k + 1) we have

{wmn(k{-l)(t +AZ)_wnm(k+1)(t)l
é”um(t +At)—Um(t)_(un(kﬂ)(t +At)_'un(k+l)(t))“

L+ At
=[5 D= 16t oD s
LAt
éjt g(Sa HunL—l(S)—'un(k+l)-1(S)li)ds
(21
:J‘c 98, Waminci 51y -1(8)) ds
t+ 4
éJ‘c 9(8, Waqr+1y-1(8)) ds.

Here we used the fact that g=g(,c) is nondecreasing in z and w,,;,(s)=
Win-tn+ny—1(8) for all s e [1, ¢ + 4¢] and m Zn(k +1).

Since n(k)<n(k +1)—1 in general, W, , (1) =W, 41,-(f) for all e [ and this
implies that

905, W SN Z I, Wiy o())  for all s € [1, 7 + A1),

Consequently, we have by (2.3)
¢+ 4t
@4 et + 40 =g (OIS [ 908, W)
We show next that for each ¢ >0 there exists an integer N, such that

(2.5) Wae () S w(s)+e¢ forallse[t,t +4dt]and k= N..

In fact, since w is uniformly continuous and {w,.,} is equicontinuous on I, there
exists a §==0(¢) >0 such that

[w(s)—w(®)|<e/3, [Waey(8) — Wa,($)|<e/3

whenever | s —3§]<4 (5,8 e [1, t +41)).
Let t =5, <s,<:.-<s,=t+ ¢t be a partition of [¢, 1 + 4¢] such that Max,.;.,
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(s;—5;_)<8. Then for each i (i=0,1, ..., p) there exists an integer N, (i) such
that

Wa(s)w(s)+e/3  for k=N(i).
Let N.=Maxc;<, N.(i). Then we have
Wy (SIS w(s)+¢/3 forall k=N, and i (0<i < p).
For each s e [, t + 4¢] there exists an s, such that s € [s,, 5;,,], and hence

Wy ($) =] W (8) — Wiy () | Wy ()
<w(s)+2e/3<w(s)+e forall k=N,

This proves (2.5). Sicne ¢ is nondecreasing in z, it follows from (2.4) and (2.5) that

2.6) W (7 +Az>—wn<k+1>(z>|§j:”’ (s, w(s)+e)ds

for k= N,. Since limy_,., W,,(¢)=w(¢) uniformly on 7, it is easy to see that

9t +48) = w ()] 1m 6,0t + 40— Woee (1)
and this with (2.6) shows that
(e +Az>——w(z>lgf“ 9(s, w(s)+e)ds.

By the continuity of g in 7 and the dominated convergence theorem of Lebesgue, we
have by letting e— 40

.7 w(t +At)—-w(t)|§ﬂ+ﬂ (s, w(s))ds.

From (2.2) and the fact that lim,_ ., W,,(#)=w(?) uniformly on 7, it follows that w
is absolutely continuous on /. Consequently, w/(t) exists for a.e.f €/ and (2.7)
implies

Iw/(t)|< g, w(t)) fora.etel

Since w(0)=0, we deduce now that w=0 on / by Lemma 2.1, and this implies that
the sequence {u,} is uniformly convergent on I. Let u(z)=lim, ., u,(¢) for t e I
Then the conditions (f;) and (f;) imply that

| (8w (N ZB() foraetel

and
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Lim f(t, u,(t))=f(t, u@®)) for aetel

n—co

‘It thus follows from the dominated convergence theorem for vector-valued functions
that

lim f 1(s, u,,(s))dszf F(s,u(s)ds  foreachrel

e o2

and this with (1.2) shows that
u(l):xo-{-Jc Fls,u(s)ds  forrel.
0

Consequently, « is a strong solution to (CP) by Lemma 2.2.
Let  be another strong solution to (CP) on [ and let w(r)=|u(t)—v(t))| for
t € I. Then wis absolutely continuous on [ and

W) Zllu' @)= D=1 u(@)— £ 0@
<g(t,w(t)) fora.et el

Since w(0)=0, it follows from Lemma 2.1 that w=0 on /. This completes the
proof of Theorem 1.

Remark 2.1. In Theorem 1 if we assume f to be continuous from [0, a] X
S{x, 1) into E in place of (f;) and (f;), then there exist constants 0<< #,<a, 0<r,<r
and M >0 such that

If@&xl=M  forall (7, x) € [0, 1] X S (X, r2)-
Let ty=Min {t,, r,/M}. Then the successive approximations {u,} converges uni-
formly on [0, 7,] to a unique C? solution to (CP).
§3. Proof of Theorem 2.

Let I'={t =0; {u,} converges uniformly on [0, ¢]} and let z,=sup I". Then,
by Theorem 1, #,>0.

We have only to show that 7,<<+ oo leads to a contradiction. Since {u,} is
equicontinuous on [0, 7] for each T =1, given ¢>0 there exists a §=05()>0 such
that

2, (8) —u,(t)]| <e/3 whenever |t —7,]<<6 and n=1.
Since lim,,_ ., u,(t,—§) exists by the definition of 7, there exists an n, such that

Hu,(ty— 8) —1,,(t,— )| <e/3 for all n,mz=n,
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and so that
|14 (1) — (2 || S| (E6) — 11, (tg — D) || || 16 {Hs — 0) — 14, (8, — O) |
Fltty—8) —u, (1) | <e

for all n,m=n, Consequently, lim,_., u,(f,)=z, exists. Corresponding to (¢, z,)
there exist positive constants a, » and a function ¢ satisfying the conditions (g,)—(g,)
on (ty, t,+a} X [0, 2r] such that

1/ (6, )= f(&, =9 |x—yI)
for a.e.t € (4, f,+a] and all x,y € S(z, r). By the equicontinuity of {u,} we can
b+
find a 7 such that 0<{y< Min {a, r}, I ’ B(t)de <r and [Ju,{t)—u,(t)||<r/2 for all
to

telty, ty+yland n=1. Since lim,_.., (%) =2, there exists an n, such that
fe(2) — 2zl <1 /2 for all n =n,.

It therefore follows that

l|14a(8) — 2o || SN 11(2) — (1) ||+ 11 (t0) — 2o | < 7
for all ¢ € [t,,f,+7] and n =n,, and this implies that

u([tes Lo+ 9D T Sz, 1) for all n=n,.

Now, let us define

Wan(B) =) =, ()] (€ [ty fh+], mz=nz1)
and

wo(t)=SuUp wo,(t) (L€l t+],nz1).
man

Then just in the same way as the proof of Theorem 1, there exists a subsequence
{Waiy} of {w,} converging uniformly on [, f,+5]. The limit function w of {w,,}
satisfles w(#,)=0 and

(w9, w())  foraete (t, -+l

It thus follows from Lemma 2.1 that w=0 on [#, #,-+7] and this implies that {u,}
converges uniformly on [4, #,-+7] which contradicts to the definition of 7, ~ Q.E.D.

Remark 3.1. In [4] G. Vidossich proved the following

Theorem. Let the hypothesis of Theorem 2 of the present paper be satisfied
except that the condition (g,) is replaced by
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(g,Y There exists a function o € L0, a) such that
glt, t) S aft) for (t,7) € (0, a] X [0, 2r].
Then the successive approximations {u,} converges uniformly on any compact interval
of [0, o0).
Our Theroem 2 contains ovbiously the above Theorem whose proof crucially

depends on the integrability of «.

§4. Proof of Theorem 3.

Let {w,,} and w be the same as in the proof of Theorem 1. Then we shall
show that (D*w)(0)=0. By the continuity of f, for each ¢>0 there exists an >0
such that

I1f (s, x)— F(0,0)|<e/2 for all (s, x) € [0, 7] X S(0, ).

Since M (t):f B(z)dz is continuous and M (0)=0, there exists a §,0<§=y, such
0

that M(6)=<#. Since ju, ()| M (s)<M(5)<y for each s € [0, §] and m=1, it fol-
lows that for each ¢ € (0, d]

Hf(sa llm_l(S))—‘f(S, un(k)—l(s))“<€
whenever s € [0, t] and m=n(k). By the definition of w,;, we have
Waiiy ()= sup () — thy (1) ]
mznlk)

= sup <et

mznk)

[ st s) = 16t s

for all 1 € (0, 8] and k=1, and hence
w(t)Zet for all ¢t € (0, 5].

This implies that (D*w)(0)=0. Therefore w=0 on I by Lemma 2.1 and this shows
that the sequence {u,} is uniformly convergent on 7. The rest of the proof is much
the same as the corresponding part of that of Theorem 2. Q.E.D.

Remark 4.1. Theorem 3 of the present paper is an extension of Theorem 3.1
in [1, p. 54] into a general Banach space.
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