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    g1. Introduction and results.

    Let E be a (real or complex) Banach space with the dual space E*.

The norms in E and E* are denoted by iRl. Let D be an open set in
E and let F be a closed set in E such that FcD.

    In this paper we consider the Cauchy problem

          (CP) Jv'=f<t, x), x(to)= ztoED, toe[O, oo).

IE-Iere f is a continuous mapping from [O, oo)xD into E. By a solution to

(CP) or to (CP; te, uo), we mean a continuously differentiable function u

from [to, oo)into D such that z{.(t,)=u, ond u'<t)x](<t, u(t)) for all tE[t,, oo).

    As for the existence of a solution of this kind of problem, various

results have been established, for example, see F. E. Browder [3], S. Kato

[6, 7], N. Kenmochi and T. Takahashi [8], D. L. Lovelady and R. Martin

{iO], R. Martin [11, 12] and N Pavel [14].

    We say the set F is flow-invariant for f if u,EF implies that u(t)GF

on [tb, oo) for the solutloR to (CP; to, uo).

    J. Bony [1] and H. Brezis [2] gave sufllcient conditions for the set F

to be fiow-invariant for f in case E is a finite dimensional Euclidean space

and f is a locally Lip$chitz continuous fuRction of D into .[il. The suflicient

conditions proposed by them were generalized into a class of functions

satis{ying some dissipative type condition by R. M. Redheffer [15], and

moreover some results were extended by R. Martin [l21 to the case of

general Banach space. Recently, N. Kenmochi and T. Takahashi [8] gave

some simplications and improvements of results of [12]. '
    The purpose of this paper is to give a criterion for the set F to be

flow-invariant for f under more general dissipative type conditioRs on f

    If we consider [8, 12] from the view-point of the notion of fiow-invari-

ant sets, the condition of the present paper is weaker than those of [8, 12].

In g 5 we sha!i give some remarks and examples which connect our resu}ts

with those of others. Our approach is essentially based on the methods
in [5, 6, 7, 8].
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    Let us consider first the following scalar differential equation

(l. i) zv'(t)=g(t, w(t)), zv(te) :wo-

Here g(t, r) is a real-valued function defiLed on (O, oo)×[O, oo) which is
measurable in tfor each fixed T, and contiRuous nondecreasing in T for

each fixed t. We say zv isasolution of (1.1) on an interval [4,%+a] if

w is an absolutely continuous function defined on [te, to÷a] satisfying (1. 1)
almost everywhere on [%, to+a]. We assume furthermore that g satisfies

the following conditions :

    (i) g(t,O)==O for a.e.tG(O, oo), and for each bouncled subset B of

(O, oo)× [O, oo) there exists a fuRction aB defied on (O, oo) such that

                  ig(t, T)i ;-SevB(t) for all (t, 7)eB

and crB is Lebesgue integrable on (tb t2) for each t2>ti>O.

    (ii) For each Te[O, oo), zvll-i=O is the only solution of (1. 1) on [O, T]

satisfying the condition zv(O>=<D""w)(O)=O, where D" denotes the right-

sided derivative of w.

    From the above conditions (i) and (ii) we see that for each tb t2E[O, oo)

with fp<t,, zvi-i=O is the only solution of (1. 1) on [tb t2] satisfying w(ti)=

(D+ xv) (t,) == O.

    We define the fuRc£ional [,]: ExE-R by

                   [x, y] = : lim Gix+ hyli - llxU )/h -

                          ft,-+-o
    Now, letfbe a mapping from [O, r)o)xD into E and consider the
following conditions :

           (K,) fis continuous from [O, oo)><D into E.

           (K2) [ar-y,j(itlt, x)-f<t, y)] S g(t, llx-ylD

for all x, y in D and for a.e.tG(O, c>o).

Then we have the following main result

    THEoREM. Szt2pose thatfsatisy7es the concUtions (Ki) and (K2). 772en

the set F is flozv-invariant for f if and only of

(l. 2) lii,n.-igfy(x+lij<t, x), Ii)/h ==O

for all (t, x)EIO, oo)×.P; whe7e d(x, F) denotes the clistance fivm 2EE to .E

    The author would }ike to express his hearty thanks to Professor T.

Shirota for the kind criticism. The author thanks a}so Mr. N. Kenmochi

and Mr. T. Takahashi for useful} suggestions.



    g2. Some lemmas.

    In this section we give some lemmas without proo£ For proofs of
Lemmas 2. 1--2.3 see [6]. In Lemmas 2. 1-2.5 we assume that g satisfies
the conditions (i) and (ii) stated in g 1.

    LEMMA 2. 1. Let tb 4e[O, oo) be such that ti<oj and let {zu,,} be a se-

quence offanctions from [ti, oj] to [O, oo) conwerging unij?)rmly on [ti, fp] to

afanction wo. Let M>O be such that

        [w.(t)-w.(s)] $Mlt---sl for all s, tE[tb 4] and nl1.

Stc2zbose farthemaore that for each n)1 and a.).O with a. J O

                wA(t) S- g (4 w.(t)) + a.

for tE(ti, fp) such that 2vA(t) exists. 711ten

                zu6(4 g. g(4 zuo(a) for a. e. tE(tb 4) .

    LEMMA 2. 2. Let tb fpE[O, oo) be such that ti<h and let di be a uni-

formly bounded family of fanctions from [t,, t2] into [O, oo) zvith the pro-

perty tha4 for each s, tE[t. 4] and zuEdi, ixv(t)-w(s)I$M[t-sl for some

constant M>O.

Let wo =sup {xv; wE¢} and let a>rm-O be a constant. Sullbose farthermoie
that for each wEdi

               w'(t) S. g(4 w(t)) +o

for tE(ti, t2) such that w'(t) exists. 71hen

               w6(t) S. g(4 w,(t))+a for a. e. te(ti, t,).

    LEMMA 2. 3. Let w be an absolutely continuous fanction from [ti, t2]

(OSti<4<oo) to [O, oo) such that w(t,)==(D'w)(t,)=O and

               w'(t) S. g(4 w(t)) for a. e. tE(tb oj) .

71hen w=-O on [ti, 4].

    Let t,>O. We define a functian gt, by

                          Ig(t, T) (t l.ll to, T)O)
                  gto(t, T) =t o (otherwise)･

For each 4>O we consider the fo}}owing scalar differential equation

(2. 1) zvt(t) == gt,(t, zv(t)), w(to)=wo.
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Concerning this equation we give the following two lemmas which are

used in the proof of the Theorem.

   LEMMA 2. 4. Let te>O and szmpose that the maximal solution mt,(･, wo)
of (2. 1) th7'ozcgh (to, zve) ex)ists owe'r an inter'val [to, to+a]. CT7ien the7'e ecists

a 6>O sztch that (2. 1) has a maximal solution mt,(･, a) for each a, weS.a<

we+S on [%, to+a] with mt,(to,a>--a Mo7eozie?", mt,(･,o)-e.mt,(･, wo) as a-i.

xvo+O, ztn21fb7vndy on [te, to+a].

   For a proof see [4, Theoerem 2. 4, p. 47].

   LEMMtx 2. 5. Stmpose that the dypothesis of Lemma 2. 4 are satiiijied,

cxnd let w be an absolutely continztous f)tnction on [to, te--a]. Sermpose far-

theiAmoie that

              w'(t) K. gt,(t, w(t)) for a. e.tG lto, te+a] .

CTIhen zv(to);:ITc7D implies that zy(t) :El 7nt,(t, tivo) o7z Ito, to-Fa].

   For a proof of the above lemma see [9, Theorem 1. 10. 4, p. 43].

   The following lemma on the functional [ , ] : ExEE.R is well-knovLTn.

   LEMMA 2. 6. Let v, y a7zcl 2 be in E. [Z7zen the .fitnctional [,] hcus

the follozving prope7'ties :

   ( 1 ) I[Jv, zx]i ;$ Uzi li.

   (2) [c, zi+2]$[u, y]+llxil･
   ( 3 ) [ zr, y] x< [ zr, gy - .D.'] -- ji .or. ll.

   (4) Let zt be a fitnction f)'om a 7'eal inte7"wal f into E such that u'(t)

    d
and 'med' lz ll zc (t)ji exist for a. e. t G L ZIZIz en

              nvd`zll- zt (t) == [u (t), z`' <t)] for a. e. tE I.

   g3. Local existence.

   Assume that conditions (K!), (K2) and (1. 2) are satisfied. Then we have

the following important

   PRoposu'ioN 3. 1. Let (%, zte)e[O, co>×Fand let M] r, and 71 be posi-

ti℃e numbe7ts sz{ch that S(ue, 2re)cD and

        At, x) rm-<M for all (t, x)G[to, to+2Z]×S(ue, 2re).

CZZhen (CP; to, ug) has a ztniqere solzttion zt on [to, to-y [T5] szech that te(t)EFA

S(zeo, ro) for all tE[to, to+7b], where 7lo==Min{re!(2M), CTI12} and S(u,, ro)a=

{v ; IIv-zioll $ re}･
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    In order to prove this proposition, under the same assumptions and

notations as in the proposition for each s>O sufliciently small we consider

the set Hl of all pairs <x, a) such that to<aSto+CZM5 and x==z(t) is a func-

tion from [4, a] into S(uo, 2rb) satisfying the following conditions :

    (i) z(to)= uo and 2(a)EF;
    (ii) l12(t)-z(s)I[ nv<. 2Mit-sl for all s, tE[tb, a] ;

    (iii) ]lz'(t)-](<t, z(t))ll m<.E for a.e.tE[tb, a] ;

    (iv) every subinterval of [%, a], with length being ).e, contains at least

one point T such that z(T)G .Z71

Also, define an order "fntEg" in Hl by the following manner: (2b ai)E(x2, a2)

if and only if aiS.a2 and 2i(t)=x2(t) for all tG[4, ail. Then Hl becomes

a partially ordered set and we have

    LEMMA 3. 1. K is non-empty and inductiwe with respect to the orcler
c` nv<.'1

    PRooF. For sirnp}icity we may assume that to=O. Let (tO, we)E[O,271,]

×(FnS(uo, rb)). Now, take a number ti so that

                       O<S< Min {ny e,, M}

and

(3. 1) f<t, zr)-f<tO, wo) ;:lil e!2

whellever te5tStO+6 and llx-?y,llSS, and by using (1.2), take a number

hi wlth O<hi<Min {S!(5+2M), 6} havlBg the property : for each hG(O, h,]

there is ℃hEF such that

(3. 2) (w,-2y,)!h-f<tO, v,) gS/2.

Then it follows from (3. 2) that

(3. 3) w,-wo /hS6!2+ fltO, z,,)
                              $ 6/2+MS 612h

for all hE(O, hi]. Therefore, defining

          '(3. 4) Q<t) == 2(t ; x),, tO, h)= v,+(t-tO)(x,,-fv,)/h

for tE [tO, tO+h] with hE(O, h,], we have by (3. 3)

               2(t)-vo ;-S wh-vo :SS!2<ro

and hence 2(t)ES(uo, 2rb) for all tE[tO, tO+hl. In particular 2(tO)=woEF

and e(tO+h)=w,EIil Besides it follows from (3. 2) and (3. 3) that
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              2(t)-Q(s) = lt-sl vh-vo lh

                        :Sl (o"f2+M)it-sl ;:S 2MIt-sI

and

            2'(t)-f(t,9(t)) - (vh-wo)lh-f(t,2(t))

               $ (v,-v,)!h-.1`<te, 2ye) + f<tO, v,)-f(t, Q(t))

               S. ti!2 + e12 S e

for al! t, sE[tO, tO+h]. Thus <2, h)GHL if we take tO=O and vo=:zto, so that

K¥of
    Next we show that Hl is inductive. Let Lm{(xa,a2); kA} be any
totally ordered subset of H, and put

                       di == sup {a2 ; kA} .

If a-ww-a2 for some 2EA, then (xb aD is clearly an upper bound for L. In

case a2<d for all 2EA, deflne a function 2: [O, di)-t.S(z{,, 2re) by putting

                       2(t) = XA <t) if t< a.2 .

Then it is easy to see that 2 satisfies the properties <ii), (iii) and <lv) on

[O, di)- Since li2(aA)-2(a,)ii ;$ 2MIa2-a,i for 2, rGA, the limit2(di) == lim Lv(t)

                                                           t ? itrr'
exists and x(di)GE If we denote again by x the function extended on
[O, di] by the limait, the pair (x, d) is clearly an upper bound for L. Thus

Hl is inductive. 9.E.D.

    LEMMA 3. 2. HL has a macimal element (2,, a,) sz{ch that ct, =:to+[ZM5.

    PRooi?. Since K is inductive by Lemma 3. 1, it has at least one
maxima} element (x. a,). Moreover a,-= to+ 7-U. In fact, suppose for contra-

diction that a,<t,÷75. Then x,(a,)GFfiS(u,, r,) by (i) and (ii), and hence
we can extend .ny., to the interval Ite, a,+h] by means of Q<t) m Q(t; x,<a,),

a.h) on [a.a,-}-h], viThere h is a sufficient!y sinall positive number and

2(t) is the function as constructed in the previous lemma This contra-

dicts the fact that (2. a,) is maxlmal. 9ED.

    PRooF of PRoposlTioN 3. I. Let {e.} be a sequence of posltive num-

bers such that e. SO as n---)oo and let (x., te+7n5) be a maximal element in

K. for each n.

    We show that the sequence {2.} converges uniformly on [to, to+[1'b].

For simp!icity we assurRe again that to=O. Let w..(t)== Ux.(t)'2n(t)il for

tff [O, Z'b] and m>n).1, and remark first that zvS,.(t) exists for a.e.tG[O, To]

since



(3･ 5) Tv..(t)-w.m(s) :S 4Mlt-sl for all s, tE[O, 7b].

Thus we have by Le;nma 2.6 and the condition (K)

(3. 6) wh.(a - [2.(t)-2.(e, 2;,(t)-zA(t)]

               S'9(t) Zm(t)avZn(t) )+ 2Se(t)-f(t) Zm(t))

                                 + 2g,(t>-f(t, z.(t>)

               :<=, g (t, Wmn(t)) + 2En

for a.e.tE(O, [Tts] and m>n}-it 1.

Let 'ua,.<t)=sup {w..(t)} for tG[O, 7-b]. Then w.(O)=O for a!l nlll. It thus
          M>7t
follows from (3. 5), (3. 6) and Lemma 2. 2 that

(3. 7) Tv.(a-w.(s) S4Mlt-si for all s, te [O, 7b]

and

(3. 8) zuA(t) :.Sg(t, zv.(t))+2e. for a.e.tE(O, 7nb].

Since OSw.(t)Sw.(O)+4MtS4M7-5 for tE[O, 751 and n)i, the sequence
{w.} is equicontinuous and unlformly bouRded, and hence it has a subse-

quence converging uniforrcly on [O, 7-61 to a function w=w(t), and obvlously

zv(O)=O. From (3. 8) and Lemma 2. 1 we have

             w'(t) .<.g(t, zv(t)) for all a.e.tE<O, 7Lb].

We show next that (D'w)(O)==O. For each s>O we can fined a6>O such
that

          !f<4 c)-f<O, uo) <s for all (t, c)G[O, tilxS(u,, 6).

Let 6,=Min {6, 612M}. Since llx.(t)-u,ll52MtSS by (ii),

                      f(t, z.(t)) -f(t, z.(t))Il <2e

whenever m>nll:1 and tE[O, tio]. From Lemma 2.6 we have

         Win,,(t) : [2.(t)-Z,,(t), Z;,(t)-Z,t,(t)]

               ;$ 2h<t)-f(t,2m(t)) ÷ 2t<t)rmf(t,Zn(t))

                                 + f(t, 2m(t))-f(t, 2n(t))

               <2(e+E.)
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for a.e.tG[O, o"ol, and hence, by iRtegrating the above inequality, OS.zv..(t)

:.{2(E+s.)t, whence <D'w)(O)=O. Consequently, from Lemma 2.3 we de-
duce now that ze,if-=O, and this implies that the sequencs {x.} is uniformly

convsrgent on IO, CZevb]. The limit z=:x(t) of of this sequence satisfies

             z(t) = zte -}- S:f(s, x(s)) cis for te [O, Tb] .

Thus x== 2(t) is a solution to (CLP; O, zto) and x(t)EFnS<ue, ro) on IO, 7"e].

SIRce the uniqueness of a solution to (Cll';O,zto) is well-kRown (cf. [6,

Theorem 1], the proof of Proposition 3. 1 is complete.

    S4. Proof of Theorem.

    Before proviRg Theorem, we prepare the following two lemmas.

    LEMMA 4. 1. Let b be a7ry posz'titve number ancl let uoE,Pl 7Zlien the7e

exists a 6>O for which (CP; s, zte) has a solution u on [s, s+6] for each

sG[O, b] sztch that u(t)EFfor all tG[s, s+o"].

    PRooF. We first see from the continuity offon [O, oo)×D that there
exist positive constants re and A4 such that

            f<t, x) SM for all (t, x)E[O, 4b]×S(zto, 2ro>-

Let 6=Min{3b/4, r,!2M}. Then, by Proposition (3.1), (CLP; s, u,) has a

unique solution u on [s,s+o"] for each sE[O, b] such that

               u(t)eP for all t([s, s÷S]. 9.ED.

    LEMMA 4. 2. Let 4>O and zteEE Sz{Lztipose that Tis apositive number
such thczt (CPl tb, tt,) has a solzttion u such that u(t)GFfor all tE[to, tb+T].

CZZhen theie exz'sts a positive mtmber r having the prope7'ily : fo7A each vo ff

FnS(ue, r), (CIZ); to, vo) has a solzttion v such that z,(t)EFfor all tE[te,4+T].

    PRooF. By the condition (iD in g1, zv-O is a maximal solution on

[te, to+TJ of (2. 1) with zv(to)=<D'w)(4)==O. It thus follows from Lemma

2.4 that there exists a positive number o" such that <2. 1) has a maximal

solution mt,(･,a) for each a, OEa<o" on [to, to+Tl with mt,<to, ff)==a. M. ore-

over, mt,(-,a) converges to O uniformly on [to, to+T] as a-s.+O. Since the

set {(t, u(t)); tE[fo, to+T]} is compact in [to, to÷T] ×D, there exist positive

constants P and M such that

(4. 1) f<t, x) :EiM for all tE[4, to÷T] and xGS(zt(t), P).

Here we may ehoose P such that S(u(t), P)cD for al} tE[te, to+T]. Con-
sequently, we can choose a positive number r such that O<r<Min{6, P} altd
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(4･ 2) mt,(t, IIwo-uoll) <P

for all (t, wo)E [to, to+ T] ×(FnS(uo, r)).

By virtue of Proposition 3. 1, <CP3 to, wo) has a unique local solution z, with

v(t)E.F on some interva! [to, to+T(wo)) for each voEFnS(uo, ri. Assume

that T(vo)$T and [to,4+T(v,)) is a maxima! interval of existence of v
with the property that 2y(t)EF on [4, to+T(vo))･

Since liv(t)-u(t)11 is absoluteiy continuous on each c!osed lnterval [%,%+

T(vo)) we have

            Sl w(t)-u(t) i == [v(t)-u(t), f(t, v(t))-f(t, u(t))]

                        S.g(t, v(t)-u(t) )

for a. e. tE[ to, %+ T(w,) ). Hence we have by Lemma 2. 5

        v(t)-u(t) $mt,(t, z7o-uo ) for all tE[%, to+T(℃o)).

It thus follows from (4. I) and (4. 2) that

              f(t, w(t)) :ll M for a}i tE [4, 4+ T(wo)) ,

and this implies that lim Q,(t) exists in 171 Applying Proposition 3. 1 once
                  telT(Vo)
again we have a contradiction. Thus T<T(wo) and the proof is compiete.

    PRooF of the THEoREM. The method of the fo}lowing proof is essen-
tia}}y based on that of [8].

    Let <to, uo)E[O, oo)×E Then, by Propositiofi 3. 1, <CP; t,, zzo) has a
unique local solution u oR some interval [4, ti] such that z{(t)EF for all

tE[to, ti]. We note that t!>O aRd u(ti)G.E Let b be any positive nuxnber

such that b>ti. Then, by Lemma 4. 1, there exists a positive constant 6

such that (CP; s, u(ti)) has a solution 2y wlth v(t)eF on [s, s+61 for each

sG(O, b]. We note here that if s==O, then we can not apply Lemmas 2. 4,

2.5 and 4.2 in the following discussion. Therefore, we omit the cases=O.

    Now, let C be a connected component in F containing u(ti) and let

      G, == (xGC; (CP; s, x) has a soiution v such that w(t) ffF for

           tE [s, s+61] for each sE(O, b] .

Then G, is not empty since u(ti)GG, for each sE(O,b] by Lemma 4. 1.
Moreover, G, is relatively open in Cfor each fixed sE(O, b] by Lemma 4. 2.

We show that G, is also relatively closed in C For this, let {22.} be any
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sequence in G, which converges to izrGC aBd let v. be a so!ution to (CP;

s, x.) on [s,s+6]. Then

          ddt z'n<t)-2vm(t) 1 = [vn(t)rmvm(t), f(t, z'n(t)) rmf(t, T'm(t))]

                        S- g (t, l wn (t) - zi ,n (t) l1)

for a. e. tE [s, s+ 6]. Thus we have by Lemma 2. 5

                   lz7n(t)-vvt(t) lS7ns(t7 cn-x7n )

for all tff[s,s+o"] aRd for sufliciently Iarge positive integers n and m.

Since iim llx.-:v.,li ==O, the sequence {v.} converges uniformly on [s, s+o"]
     7t)7tC--co
to a function v by Lemma 2. 4, and clear}y v is a solulion to (CP; s, x>

on [s,s+6] and hence cGG,. Consequently, G, ==C for a}l sE(O,b]. In
particular, u(t!)G G,,==C and hence (Cll'; tb u(ti)) has a solution v on [tb ti+o"]

such that v(t)GF for tE[t. t,+S]. If t,+S<b, then (CP; ti+S,v(ti+6))

has a solution zv on [ti+6, t,g-2S] such that w(t)EFfor te[ti+6,4+2o"],

because w(ti + 6) e G, ,..- -- C. Obviously

                         u(t) (t, ;Sl t5 t,)

                  E, (t) == v(t) (ti !$l t l!i ti+G)

                        w(t) <t,+S$tS t,+2S)

is a solutioR to (CP; te, ue) on [to, ti+2o"l. Repeating this argument we see

that (CP; te, zto) has a solution on [to, b]. Since b was arbitrary number

such that b>ti, it is proved that (CP; te, zte) has a solution u* on [te, oo)

such that u*(t)GF for all tE[to, oo). Thus the sufliciency is proved.

    Conveersely, suppose that the set F is flow-invariant for f and let u be

a solution to (Cl); to, u,) on [to, oo) such that u(t)EFfor all tE[to, oo). Then

          d(zto + 1if<to, uo), F)fh $ l(u(to÷h)-u(te))!h-f(te, uo)

and

            (u(to+h)-u(te))!h-Ato, uo)l -s'O as h->+O.

Hence the Becessity follows. 9.ED.

   SS. Remarks and examples.

   In thls sectioR we give some remarks and examples which connect

our results with £hose of others.



    REMARK 1. In the previous paper I6] we used the functionai

                   <x, y> =- ([x, y]-[x, -y])12 .

But it can be easi!y seen that lx, y]:lil<x, y> for each x, y in E. Hence the

Theorern of the present paper gives an improverr}ent of Theorem 2 in [6j.

    Let J be the duallty mapplng from E into 2E' (i. e., for each x in E,

J( z])=:{x*EE* ; c*(c)=llxll2=ll z]*1I2}.

For each x, y in E, define

                 < x, y>, = inf (Re( rc"(y)) ; Jc"E ,J( c)] .

Then for each x)FO and y in E, [x, y]==<x, y>,AixlKsee [11]). Thus the

condition (K2) is equivalent to the following :

(5. i) <u-y, f<t, x)-.1(<t, zi)>, 51 il c-zillg(t, ll c-ziID

for a}1 v, yED and for a.e.tE(O, oo.)

We note also that Proposition 3. 1 remains valid even if F is a relatively

closed subset of D. Hence, this fact and (5. 1) imply that our Theorem

gives a generalization of Theorems 3 and 4 in R. M. Redheffer [15] into

a general Banach space.

    REMARK 2. Let P be a rea!-valued function defined on (O, oo) satis-

fying the following conditions :

    (Pi) For each tb t2G(O, oo) with ti<4, P is Lebesgue integrable on (ti, t2).

    (P2) For each t> O, li rp.. eyp [s exp (Si P(T) clv)] < + oo .

The condition (P2) was considered by C. V. Pao [13] to prove the unique-

ness of solutions to (CIP; O, uo).

If g(t, T) ==P(t)T, then the conclusion of our Theorem remains valid. In
fact, it is obvious that this function P(t)T satisfies the condition (i) in g1.

To prove that P(t)T satisfies also the condition (ii) in g1, let zv be a so!u-

tion of the equation zv'(t)-P(t)w(t) on [O, T] satisfyiRg w(O)-(D"w)(O)=O.

Then for each E>O, we have

             O ;Il xv (t) : w(e) exp (SjP(T) dr)

                    = e exp (SlP(T) clt) (2e,(E)-w(O))ls

for te[e, T]. This implies that ze)E-exO on [O, T]. Thus P(t)T satisfies (i)

and (ii) in g1. However, the function P(t)T need not be nondecreasing
in T for fixed t. The nondecreasing nature is used only in establishing
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Lemma 2.3 (see l6]) which is vaiid for g<t, T)=B(t)T. Thus our result ex-

tends those of [10, 11, 14] when g(t, T)=B(t)T･

    REMARK 3. Recently, N. Kenmochi and T. Takahashi [8] proved the
following theorem which gives an improvemeBt of li2].

    THEoREM A. Let F be a closed subset ojC E. Sztiztubose thatfsatishes
the followi2zg co7zclitions :

(5. 2) f is continziozts .ISom [O, oo)xF into .l!).

(5. 3) <zr-zi, .1`<t, Jc)-y(<t, y)>, ;$l (v(t) ll c-z/li2

for all (t, x), (t, y)E [O, oo)× .P} whe7e ca is a ieal-valued contz'7zuozes fienction

defined on [O, oo). SuLpt>ose fa7"thermo7e that

(5. 4) Iig}..ln,fd(x+IijC(t, x), F)lh-O

for all (t, Jv)G[O, oo)×E T)hen (CP; O, zto) has a ztnigue global solution zc
defined on [O, oo) for each uoffE

    Th!s result is intimately related to the notion of flow-invarlant sets.

If we consider this theorem from the view-point of the notion of fiow-

invariant sets we have the following

    THEoREM B. Let D be an open set in Eand let Fbe a closed set
in E such that FcD. Su2pose that f satisy`ies (5.4) and the following
conclitions :

(5. 5) f is continztotts .fovm [O, oo)xD into E.

(5. 6) <ar-zx,flt, v)-y(<t, y)>i$(o(t)ll v-yli2

fo7- all (t, x), (t, y)E [O, oo)× D. CI7ien the set F is flow-invariant for fl

    Since (5.1) implies (5.6), ouy Theorem contains Theorem B.

    The following examples show that the condition (K2) is strlctly more

general than (5. 6).

    ExfxMpLE 1. ]Let a(t) be the function defiRed by

                      .,,)tu,{sli,2, EO,..<'-S,fP'

where P is a constant such that P>1. Consider the function G defined by

                     Ti-tytt.e'""=fi'='+b(t)ze3                                        (t ). O, u ). a(t))

            G(t, u) -
                     1 ¥aty(E- i)(-tt +b(t) .3 (t) o, .< .(t)) ,



where b is a real-valued continuous function from [O, oo) into (- oo, O]. It

is easily verified that the function G satisfies the following inequality :

(5. 7) u-z,+h(G(t, u)-G(t, v))

                   ll (l+h13 tya(t)2 (1+tyZiVt)))Iu-wl

for all h<x O, t>O and tc, vE(- oo, oo ).

    Let us take as E the Banach space eou of bounded sequences of real

numbers. For eabh x=(q.) and tlO, define f<t, x)==(G(t, t},)). Thenfis

continuous from [O, oo)xE into E. For each x=(cb,), y== (y.) in E, h<O,

we have by (5. 7)

           S:P C}LrmYn+h(G(t, `V}z)-G(t, Y7t)) mSY,P l t,t-Ynl

               >h               = 3 tya(t)2 (1+cya(t)) S:P IJUn-Ynl･

This implies that

           [x-y, f<t, x)-.f<t, y)] ;$ llx-yll!3 rydtt/ (1÷tya(t))

for all v, y in E and t>O. Let P(t)-113 rya(t)2 (1+cya<t)). Then SgP(T)dr

=S:dt13t(1+V7)-ww+oo. However, it is easy to see that P(t) satisfies the

condition (Pi) in Remark 2. Moreover, by a slmple calculation, we have

          e exp (SiP(T) clT)

               < I(e2 t)i/3 (O<E<t ;:S p)

               =" l(e2t)i"3 exp ((t-P)!3P(1+VP)) (O<e<P<t)･

Tltus, P(t) satisfies also the condition <P2).

Consequently, for each (to, u,)e[O, oo)xE, (CP; to, uo) has a unique global

solution for the above defined f

    On the other hand, for each x=(x.) and y==(y.) in E such that xi>

yi>O and x,,==y.=O for nl2,

        [x-y, flO, x)-flO, y)]

            = ( tytt/ :' :" tywtivi.w-i-･ -b(O)( c?- z],y,+,z)] il,,,-yil .

Hence we can not apply l8, 10, li, 12, 13] to this example for the Cauchy

problem (CP; O, ua).



On the global existence of unigue solutions of d4fflerential egttations in a Banach space 71

    ExAMpLE 2. Next, let us take as E the Banach space e" (1<p<oo)
of sequences of real numbers. Let a(t) be as in Example 1 and let M==
(:.ee. i 11n")ii". For each a == ( v,,) E E, define

                  '5''1"(1¥Xw"um.'id"')'ur-b(t)Xn (t)-O,x.ka(t))

         fi(t, X) == um
                  w}'/i'('l",Y.>'as"r -b(t) c･b                                        (t ). O, X. < a(t)) .

Here b(t) is a real-valued continuous function defined on [O, oo) satisfying

b(t)>MIV'b- for all tkO.

Define .lf<t, x) =(.L,(t, x)) for (t, x)E[O, oo)×.[l. Then f is continuous from

[O, oo)×.Zl into E. Let

      Fa= (x; EDxxe (x.) such that x.>ww.O for nk.-1 and l@IK. P].

Then F is closed in E. We shal} show that the mapping f does not

satisfy (5.3) but does satisfy al} £he conditions of our Theorem. For this
note that

(5･ 8) [V, ZI] ": Znop-!Sgn(Cn)iJVni"'iYnAIJCIi"-i

for all x#O and y in E.

    Using (5. 8) we can verify easily that

               [ V-Y, f<t, X)--IC<t, y)]

                   EEI (b(t)+ 113 kfbT<Tt)rm2rm (1 + ?fa<t) )) II[zr-yIl

                                               '
for all x, y in E and t>O. Let P(t) == 1!3 tylt' ("Z'i2"(1+kfhmu('tY). Then S:P<t)clt

 =+oo. But S(t) satisfies the conditions (P!) and (P2) in Remark 2 by the

same argument as iR Examp}e l. Thus the above definedfsatisfies <Ki)
and <K) iR Sl.

    To show that f satisfies <5. 4) we note that

           x+ 1ijC<t, x)

               =- ((1-hb(t)) x.+h(tyx],' or kfa-(t)-)f7z(1 +gYd(}t5T) ))

for each x=(x.)GF. and tkO. Thus it follows that

                x+ 1ijC(t, x) s (1-hb(t)) IIxli +hV 'p" M

                           S p+ (V-p" M- pb(t)) h .
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By the assumption on b

        `c+hf<t, u)EF

Consequently, the set F

    On the other hand,
xi >yi >O and x. =" y. == O

         S. Kato

we have for each xEF and t}iO

 for O<h<Min (lfb(t), V-P-1(V-li- b<t)-M)) .

is flow-invariant for f by our Theorem.

 for each x= (x,,) and y =(y.) in F such that

for nl2,

P2}i

               [x-y, flO, x)-flO, y)]

                    == (lf(sl/IIEIi-+ ?/ c, zt, + k/117r/ ) -b(o)) ll c- zi il ,

so that we can noe app!y [81 to this example.
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    1. Let E be a Banaeh space with the dual space E*. The norms
iR E and E" are denoted by g Il. We deRete by S(u, r) the closed sphere

of ceRter 2e with radius x

   It is our object in this note to give a suMcient conditiolt for the

existenee of the unique solution to the Cauchy problem of the £orm
(1.1) zc'(t)=f(t, 2e(t)), 7c(O) == 7toeE,
where f is a E-valued mapping dedned on [O, T] ×S(zee, 7').
   We compare the differential eqtiation (1.1) with the sealar eqtiation

(1.2) zv'(t)mg(t, zv(t)),
where g(t, w) is a functiok defined olt (O, a] × [B, b] which is measurable
ln t foy fixed zv, aikd continttous moltotone ltoirdeereasing in 2e for fixed

t. We say w is a solution of (1.2) on an interva! I contained in [e, ai

if w is absolute}y contintious on I and if zv'(t) = g(t, w(t)) for a.e. t e IO,

wkere IO ls the set of all in£erloy points of J.

   We assume that g satisfies the £ollowing coRditioRs :
       There exists a fullction m defined on (O,a) sueh that g(t,w)

    (i) Sm(t) for (t,w)e(O,a)×[e,b] aiid for which m is Lebesgue
       integrable on (E, a) for every E>O.

       For each toe(O,a], w:-:O is the only solutioR of the equation

   (iD (1.2) on [O, t,] satisfying the conditioRs that ?v(O)=(D"w)(e)=O,

       where D'2v denotes the yigh"sided derivative o£ zv.

    2. Let g be as in Seetion l. Theii we have the £ollowing }emmas.
    Lemma Z.1. Let {2o.} be a sequence o.f fzenctions f7'om [e,a] to

[O, b] conve7'gying point2vise on [e,a] to a fzmctio?z w,. Let M>e szech

that lw.(t)-zv.(s)l;!SMlt-sifor s, t G [O, a] ancl nli1. Szep2)ose fzw"ther

that for eaeh ?z>xl
               zv;,(t) .<,., g(t, zv .(t)) .for tG (e, a)

szech that 2va(t) exists. Then zv, is ct soZzction of (1.2) o7z [e, a].

    For a proof see l4].

    Lemma 2.2. Let M>O and let {zv.} be a seq?eenee of fzmctions
fr"o7n [O, a] to [O, b] zeith the p7'operty that izv.(t)-zv.(s)l;$IMlt-sl for

aZZ $,te[O,a] a?zd nkl. Let w :sup..,zv., ana szcppose that wa(t)
:llg(t,zv.(t)) for te (O,a) szech thctt zvA(t) exists. Then ?v i$ cL solzetion

of (1.2) on [e, a].



314 [['. SAIT6 [Vol. 50,

    For a proof see [2].

    Lemma 2.3. Let w be an absoZ2stely eontimeoz{s fzenction f7"om
[O, a] to [O, b] szech that zv(O) = (D"w)(e) == O and w'(t) h<. g(t, w(t)) foT

tG (O,a) szech that zv'(t) exists. Then zv iE!O on [O, a].

    The pToof of this lemma ls q"ite similar to that of Theorem 2.2 in

[1] and is omitted.

    3. IVor each ze in E7 Iet F(zL) denote the set of all x* in E* such

that (ze,x*) = lluli2=:11x"ll2, where (ze,x") denotes the value of x* at ze.

    Theorem. Let f be a stTongly eontinztozes 7napptng of [O,T]

× S(uo, T) into E] such that

(3.1) 2 Re (f(t, z`)-f(t, v), x*)$g(t, 11u-vll2)
fo7n (t,ze), (t,v)e(O,T]xS(u,,7") anel foT some x*eF(ze-v), where g

satisfies the conelitions in Section 1 with a = T anel h =Max {4fn2, 8TMT}.

Then (k.1) has a ze7ziqzee strongJy continuously diffeTe7ztiable solution ze

defineel on some inteTval [O, T,].

    Proof. Since f is strongly continuous on [O,T]xS(u,,7") there
exist constants O<T, l.{ T, O< T, ;.{ T and M>e sueh thaqlf(t, u) l1 :SM for

(t, ze) e [O, Ti]×S(zeo, To). Let To==Min {To!M, T,} and let n be a positive
integer. We set tg==O, and u.(t,")=zee. Inductively, for eaeh positive

integer i, define 6ij･ , tij･ , u.(tty･) as follows :

(3.2) 67･ lllO, t7･-,+6: :SI T,･
If

(3.3) gv-ze.(tPL-,)ll:$M5; and lt-t7･-il$jij･,
then 11f(t, v) -f(t7･-i, u.(t7･-i) IIS11n･

(3.4) li Zen(tZ i)mZLo il$7io,
and 6ty･ is the Iargest number sttch that (3.2) to (3.4) ho!d. Define t:

=t:-,+6: and define for each 't G [t:-,, t7･]

(3.5) Z`n(t) =Zen(t?'-i)+f:?.-, f(S, Un(tY'-i))dS'

Then we have
(3･6) Il Un(t)mUn(S) IlSMlt-S1, llZen(t)-Zee11S7'o fOr S, te [O, Te],

and tk= To for some positive integer AI =N(n). For some detaii see [6]

and [3].

   IJet zv..(t)=:llzc.(t)-zL.(t)ll2 for m>nl.i)1 and te [O, T,]. Obviously

ZVonn(O) = O, and lZV..(t) rmW,..($)i;;l 8ToMIt-s1 for s, tG [O, T,]. For each

t e (O, T,) there exist positive integers i and 2' such that t G (t9-i, tY･b) and

tG (t:-i, t:･Z). By Lerrirna 1.3 in [5] and (3.5) we have

           zva.(t) :2Re(zeh(t)-zeA(t),xlj.(t))

                =2 Re (f(t, Z`m(tY'-i))-f(t, Un(t:-i)), Xitn(t))
(3.7,)
                ;!l g(t, ZV..(t)) + 2(1IM + 1ln) lj 2em(t) m ZCn(t) ll

                ::ll g(t, Zv..(t)) + 8,rie!n

for a.e. t G (O, T,) and for some x# .(t) G F(ze.(t)-u.(t))･

   Let w.(t) =sup.>.w..(t) for tG [O, T,]. Then obviously w.(O)=O
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for 7v}m}tl. By Lemma 2.2 and (3.7) we have

(3,8) I?v.(t)-?v.(s) IS 8r,M lt-sl for s, te [e, T,],

and
(3.9) zv;,(t)mg(t, zv.(t)) -l- 8r,17'b foy a.e. te (O, T,).

On the othey hand, OE 2v.(t) .<. w.(O) + 8f',MtE 87',MT, for nk1 and

tG[e,T,]. Thus the sequence {w.} is equieontinuous aRd uni£ormly
bounded, and hence it has a subsequence {w.j} convergiRg uniformly

on [O, T,] to a £unction zv, and obvious}y zv(e)=O, k fellows from (3,9)

and Lemma 2.1 that zv'(t)=g(t, zv(t)) £or a.e. te (O, T,).

    We shall next show that (D'zv)(O) =O. Since f is continuous ae
(O, u,), given E>O we can find ti>O such that gf(t, ze)-f(O, zt,) li<E whelt-

ever OSt=<3 and gze-zt,IISS. Let o",==IX{[in{6,6!M}. Then, by (3.6),

li ze.(t) - or,, g S 6, for al} 7z and t e [e, o"o] , aiid therefore II f(t, ze,. (t))

-f(t,2e.(t))ll<2e wheneveM m>nll aRd te [e,6,]. By (3.3) aRd (3.7)

we have
      2V'..(t) == 2 Re (f(t, Um(t]{-nvi)) nv f(t, 2tn(tRt-i)), X;#n(t))

            ;!l 47'o ll f(t, 2enz(t3'twu i)) ww f(t, 2`n(tij'-i)) ll ;$ 87'o(e + 1/7Z)

                                              £or a.e. te (O, 6e),
and hence, by iRtegrating the above iRequality, we have

                    O {SI Wonn(t) :El 87'e(e + 11n)t,

whence (D'tv)(O) =O. Fyom Lemma 2.3, we deduce now that w:um= O,

and this imp}ies that the sequeRee {u.} is Lmiformly eoRvergent on

[O, Tel. The limit o£ this seqttence satisfies

             2e(t) :7Lo+S: f(s, t{(s))ds for tG [O, CZ',]

(see [3]). Consequent!y ze is a strong}y continuously differentiab!e
solution of (1.1) on [O, T,].

    I[jet v be aRother stroRgly eoBtinuously dfferentiable selutiort of

(1.1) olt [O, T,]. Let z(t)= Uze(t)-v(t)II2. Then obviously z(O)== O, altd

          z'(t) =2 Re (f(t, z`(t)) -f(t, v(t)), x*(t)) :S g(t, z(t))

for a.e. te (e, T,) altd fer some x"(t) eP(u(t)-v(t)). The faet (D"z)(O)

==O fellows from O,<..z(t)/t :tIl(2{(t)-v(t))!tlI2-e as tSe. Therefore by

Lemma 2.3 ziii!O, and the proof is eomplete.
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             Some remarks on nonlinear differential

                   equations in Banach spaces

                          By Shigeo KATo

                             '
    g1. Introduction and results･

    Let E be a Banach space vvith the dual space E*. The norms in
E and E* are denoted by IBI. We denote by S(u, r) the closed sphere of

center u with radius r.

    In this paper we are concerned with nonlinear abstract Cauchy prob-

lems of the forms .
              d
(Di> -zzl u(t) -f(t, u(t)), t` (O)= u,EE,

and

              d
(D2> mmdrmt u(t) =Au(t)+f(t, u(t)), t`(O)= u,eD(A).

Here A is a nonlinear operator with domain D(A) and range R(A) in E,

and f is a E-va}ued mapping defined on [O, Tl ×S(ug, 7") or on [O, oo)×E.
    It is well known that in the case of Eat R'e, the n-dimensional Euc!id-

ean space, the continuity of f in a neighbourhood of (O, uo) alone imp}ies

the existence of a !ocal solution of (Di). This is the classica! Peano's

theorem. However, thSs theorem cannot be generalized to the infinite-
dimensional case <see [3], [16]).

    It is our object in this paper to give sufficient conditions for the

existence of the unique so!utions to the Cauchy probiems of the forms (Di)

and (D2).

    Let the functionals <,>i and <,>2 be defined as fol!ows (cf. M. Hasegawa

I6]):

                  <", V>i = !2'. I, {}, unium (" tt + hw ll - ll ttH),

and

                           1
                  <U, V>2 tt i(<U, V>1-<U? -Z7>1)

for u, v in E.

    In order to prove the existence of the unique so}ution of the equation



(Di) we consider the following scalar equation

(1. 1) 'tu'(t)-g(t, w(t)),
where g(t, T) is a scalar-valued function (lefined on (O, a]×[O, b] which is
measurable in t for fixed T, and continuous nondecreasing in T for fixed t.

    We say w is a solution of (1. I) on an interval l contained in [O, a] if

w is absolutely continuous on l and if

                  Ltv'(t) = g(t, `uv(t)) for a. e. telO,

where IO is the set of all interlor points of L

    We assume furthermore that g satisfies the following condltions : G.)

There exists a function m defined on (O, a) such that

                lg(t, T)I :S "z(t) for (t, r)E(O, a] × [O, b]

and for which m is Lebesgue integrable on (e, a) for every e>O. (ii.> For

each %G(O,a], zc,=-O is the only solution of the equation (1.1) on [O, te]

satisfying the conditions that w(O)nt (D"zv)(O)=O, where D" w denotes the

right-sided derivative of w.

    First, we can state the following result.

    THEoREM 1. Let f be a st7'ongly continuous mamping of [O, Tl ×S<uo,
iD into E such that

(1. 2) <u-v, f(t, u)-f(t, v)>2 S. g(t, liu- x, ll) /

for all (t, u), (t, v)G(O, Tl ×S(u,, 7b, whe7T g satisies (i.), (ii.) 'ivith a== 7" ancl

b=2r.
71hen (Di) has a unique strongly continuously clil17le7entiable solutioiz zc ctefined

on sonze interval lO, 7b]. '
    We next consider a g!obal analogue of Theorem 1, and we assume

that g(t, T) is a scalar-valued function definecl on (O, oo)×[O, oo) which is
measurable in t for fixed T, and continuous nondecreasing in T for fixed t.

We assume furthermore that g satisfies the fo!!owing conditions : (ib) g(t,

O)=O for all te(O, oo), and for every bounded subset B of (O, oo)×[O, oo)
let there exist a localiy Lebesgue integrabie function mB defined on (O, oo)

such that

                    lg(t, T)l<-. mB(t) for (t, T)EB.

(iib) There exists a strictly iRcrdasing continuous function cr defined on

IO, oo) satisfying a(O)=O and

                    Ig(t, T)-g(t,･-t')i :;l 7nB(t) cif(iT-7D
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for <4 T>, (t, {)EB.

(iii,) For every S>O, S:tkla<T) me oo.

    Under these conditions we can prove the following

    Tm?.oR}-:ts･{ 2. Let f be a, stron6/zly cont･inttotcs mamping of [O, co)xE

into E, carring bouncted sets in [O, oo)×E into bounded sets in E. Sumpose
.fit7'tl?eivnoie tlictt

(1. 3) <t`-w, f(t, u>-f(t, w)>2 :EE g(t, iiu-'vU)

.1`br (t, zt), (t, `v)G (O, oo) × ITI

Zr)iien (D!) has a unigtte st7ongi", continuottsly dilj(7le7entiable solution u defined

    Fina!}y, we consider the equation <D2> in a Banach space E whose duai

space E* is uniformly convex.

    We say u･ is a so!ution of (D2) on [O, oo) with u<O)== ue if u is strongly

absolutely continuous on any fini£e interval of [O, oo) and if

                             d --                            -z7t- ie(t) == Au(t>+f(4 u(t))               u(t)ffD(A),

                            '
for a e. tE [O, oo).

    We assume that ,A satisfies

(1. 4) <u -L- v, Au-Ax,>2 :KO for u, wE D(A>,

and R(I-2eA)=E for some 2o>O.

If the strongly continuous mapping f of [O, oo)×E into E has the strongly
continuous derivative f; with respect to t and if both f and f} carry

bounded sets in [O, oo)×E into bounded sets ln E, then we have

    THEoRE.M 3. Let A, .f'a7icl y(} satitilf/y the assunipt･ions mentionecl above.

Etti'thermoie, 'iff s(itishes

(1. 5) <u-v, f(t, u)-f(t, x,)>i S- P(t>lizc-'vll

foi" (t, u), (t, v)e(O, oo)× E, zvheie P is a locally Lebesgue i7ztagiuble f),tnction

dojined oit (O, oo).

77ie7z (D2) has a toziqtte solutio7z u on [O, oo) for each ueeD(A).

    In the paper [1] F. E. Browder proved the global existence in a Hilbert

space of the unique solution of <Di) under the monotonicity condition.

    Recently T.M. Flett <[4], [5]) has giveR the sufficient conditions'fo'r

both local and global existence in Banach and Hilbert spaces of the unique



2es ' S. K2zto
solution of (Di)･

    The contents of this paper are as follows: Some lemmas concerning

the scalar differential equation (1. 1) are given in g2. Theorems 1, 2 and

3 are proved in g3, 4 and 5, respectively. In g6 we shall give a simple

example and some remarks about the relations between our results and

those of F. E. Browder and T. M. Flett.

    gZ. Some lemmas.

    In the following Lemmas 2. 1, 2.2 and 2.3 we assume that g satisfies
the assumptions (i.) and (ii.) stated in g1.

    LEMMA 2: 1. Let {zu.} be a sequ'ence ofju.2zctionS from [O, a] into [O, b]

converging unijbr"zly on [O, a] to a fitnction we. Let M>O such that

          lzv.(t)-w.(s)l .<.. Mit-sl for s, tE [O, a] and nl1.

Sttmpose fi(rthemaoik7 that for each n >= 1

                                                         '
        zvh(t) l.S g(t, w.(t)) for tE (O, a) such that w;, (t) e'xists.

7L72en

                 w6<t) $g(t, w,(ab) for a. e. tE (O, a).

    PRooF. Since i`tve(t)-wo(s)lSMIt-sl for s, tE IO, a], w6(t) exists for

a. e. te [O, a],

                                                coLet A.= {tE [O, a] ; wA(t) does not exist} and let A=: UA., then mes (A>==O.
                                               7Z;=O
Set

           B = {tE (O, a] ; 1,i-m,, -i-Si"lt' g(s, w,(s)) cls = g(t, w,(t))} .

                                         'Then, by (i.), we have mes ([O, a]-B)=O.

For each tE {[O, al-A}nB, n>.,.1 and for sufliciently small h>O

                  Wn(t+h) ps Wn(t) =<= Si"lt' g(S, Wn(S)) Cis-

By the Lebesigue's dominated convergence theorem, we have

                  we(t+h)-we(t) s Si"k g(s, zve(s)) cls.

Dividing both sides by h>O and letting h-->O, we have w6(t)$g(t, zvo(t)).

Thus we have the inequality

                  zv6(t) nv<. g(t, w,(t)) for a. e. tE (O, a).
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    LEMMA 2. 2. Let AI>O ancl ¢ be a set of' fi`nctions .7f>-om [O, a] into
IO, b] zvith the p7mper4>, that fbr all s, tE! [O, a] and wetP

(2. 1) izv(t>-'zv(s)i :S MIt-sl.
Let x= sup {zv ;TvGop}, ancl sumpose that for each zorE{Z>

(2. 2> zv'(t) S. g(t, 'w(t)) fbr te(O, a.) sttch that zv'<t) e.rists.

77i.en

                  x'<4Sg(t, .ty.<t)) for a. e. t6 (O, a).

    PRooF. We follow an argument essentially given in T. M. F!ett [4].

By the definition of .`c' and <2.1>, x satisfies

                         lx(t)-x(s)l .<., A4it-sl

and

                  O ;Eg z(t>-zv(t)' :S x<s)-w(s)+2Mlt-sl

for al! s, te [O, a] and all zveop. From this it follows that for each positive

integey n we can find a positive integer k, a partition of [O, a] into k

subintervals of equal length, and k functions wi, itny, zors.edi such that in

the jth subinterva!

                         O$2(t)-wj(t) -<. 1/7i. .

We put zv(">m Max {wi, t-･, wA.}. Then zv<n) satisfies (2.1) and (2.2).

Since

                         O ;IS 2(t>-w`'i><t) ::S 1fn

{or all tE [O, a], the sequence {w('i)} converges uniformly to 2 on IO, a], and

the required result fo!lows from Lemma 2. 1.

    LEMM.･x 2.3. Let xv be tin absolutely continttotts ]`ltnction ./>"om [O,a.]

into IO, b] such tltat w(O)==(D"w)(O)nt O ancl '

                  xv'(t)Sg(t, 'tv<e) for a. e. t'(O, a).

7hen zvi-tt:O on. [O, a].

    PRooF. The method of the fo}lowing proof is essentially due to that

of Theorem 2.2 in [2].

    Suppose that there exists a a, O<aSa such that w(a)>O. Then there
exists a solution ky of <1.1) with x(a)=zv(a) on some interval to the left

of a. As far to the }eft of a as ,z exists, it satisfies the inequality 2(t)S

-w(t), for if this were not the case there would exist a positive oi to the

left of a where ky(a" ==`tu(ai), and ,x<t>>zv(t) for t<ai, and sufliclently near a.
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By the assumptions on w we have for sufliciently small h>O

                                                 '                 zv(ffi)-w(ai-h) E SIim, g(4 zv (t)) clt.

                                  i
On the other hand, from the definition of x we have, since x(ai)=zv(ai),

                 w(ai)-z(ar-h) :Sli...g(4z(t))clt, '

                                  i
where h is assumed so small that x exists on [ai-h, ai].

Thus

           2(ai-h)-w(oi-h) S SI'nv,'lg(t, w(t))-g(t, 2(t))] dt.

                               i
Since g is nondecreasing in T and 2(t)>zv(t) on [ai-h, ai) we have the

contradiction z(ai-h)Sw(oi-h).

    We shall next show that 2(t)>O on O<tSa, as far as it exists.
Otherwise 2(to)==O for some to, O<4<o, and the function fi･ defined by

. ... x'-("'=(z?t) [9e/LiM/L//l '' '"

would be a function on [O, a] not identically zero, which satisfies

               £,(t) -= g(t,'fi(t)), 2-(o) =(D+fi) (o) == o.

This contradicts the assumption (ii.). Therefore

                          O<2(t) $ W(t)

as far to the left of o as 2 exists.

It therefore follows that z can be continued as a solution, call it 2 again,

on the whole interval O<tSa. Since lim z(t)==O, we define 2(O)=O. Since
                                 tio
                   O<x(elt$w(t)/t for o<t$ff

and (D'w) (O) == O, we have (D"z) (O) == O.

From (ii.) it follows z=-O on [O, al, but this contradicts the fact 2(a)=

zv(a)>O.

    LEMMA 2. 4. lf g satishes the assumPtions <ib), (iib) afld (iiib) stated in

g 1, then for each T>O and dlO there exists a unigue solution w of (i. 1)

on [O, T] with the initial condition zv(O)=a

    PRooF. Suppose that there are two solutions wt and w2 of (1. 1) on
IO, Tl satisfying wi(O) :w,(O)=d. Let x be the function defined by

                 x(t) =: izv,(t)-w,(t)l for tff [O, Tl.
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Then there exist ffe(O, T] and aoG[O, a) such that x(ae)==O and .or.(a>O for

tG (ae, a]. ' ･Since x is absoiuteiy continuous, x'<t) exists for a. e. tE [ffo, a] and, by (iib),

we have

              x,(t) sxvl(e-zus(t)1 = lg(t, w,(t))-g(t, w,(t))1

                 l-!{ MB(t) cr (Z(t)),

where B ={(t, zeri(t)), (t, w2(t)); tG [ag, a]}.

Since cr is continuous and x is absoiutely continuous, we have for sufllciently

smal} E>O

           SI,., x'(t)fa(x(t))dt = Sl[ll.,, c(rla(r) $ Sl,., "tB(T) ck

<see [13], p. 211).

By <iiib) and' by letting beO, we have a contradiction.

    g3. Proof of Theorem 1.

    Let the functionais <,>i and <,>2 be as in S1.

We s..ball give the foYowing two }emmas which are gsed throughout this

paper.

    Lm･{MA 3. i. (efl Al Hasagawa [6]). Fbr u,v and zv i'n E,

(1) l<tt. ,v>,l ;;S llz7Il,

(2) <u, v+w>iS<u, v>i+<･lt, xU>i
(3) <u, du -t- v>2 = diluil+<u., v>2 for 7eal number d,

<4) <u, w>2 :Sl <zt, v>l,

(5) <u, w+zv>2 ;S <t{, w>2 -i- <zt, w>1,

(6) <tt, z7>2 :s <tt, v-w>2+Ilxvli.

    PRooF. <1) and (2) are easy consequences of the definition. For any

real number d we have

        <t`' th`+">2 "" umS"M 1,il, -'imant(ll"+.h(th`÷W)ll.m]i"-h(`k`+VMI)

            =: 2}- (iire, , -Nir±'h-.f[U' lnv" Olz`+ Ti"¥LdT/. vll-llz`Il                            . ･)

                   -i,ig,} -i-rZiii,dh' (fiz`- -i rmhdi, vli -iiu}E)1 ÷dgutt

            =l: dllz{ll -t- umSnd (<u,`v >i-L-<u, -lv>i) == 411ull -f- ku, w>2, '
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which proves <3).

(4) follows readily from (2). By the definitions and (2) we have

           <U, V>2+<U, W>1-<U, V+ZV>2

              '>-m -lt)- (<u, `tv>1 -t- <u, "(w + xv)>1 ww <u, ww w>1)

              k rml-' (<'u, -v>i-<u, -v>,) E' o,

which implies (5).

To prove (6) we note that

       <U, ?Y>2 =" "tt- 1,iI,{}, Hi (1lu+hwll-Ilu-livll)

          = S- iiI,{}, unh-rr(ilu+h(z]-'tv)+hwli-±lu-h(w-･iv)-hwu)

          :il th21- i,i.I,{}, mlhim (Hu+h(v-w)jg-Uu-h(v-wll +2hHzvil)

          ... <u, v-2v>2+ lIwU .

   LEMMA 3. 2. Let u(t) be a E-walued fa7zction deLIEned on a real interval

                  d
I such that u'(t) and -zjz'Ilu<t)H enis,t for a. e. tE11 CIhen

              d
             pt,rm,ltzn llu(t)11 "= <u(t), "'(t)>2 for a. e. tEI.

   PRooF. If we denote D"u(t) and D'u(t) respectively the right and left

derivatives of u(t). Then

      ''tl"' (llu(t+ h)Il - llu(t-h)ll) - -'2i- (Ilu(t) + hD"u(tMl - li zt (t) IO

                         + -mai"ww' (jiu(t) -hD"zt (t) ll - ll te(t)H)

      =- nl'i'ma llu(t+h)il-gu(t-h)ll-[lu<t) -F- hD'u(t)K+llu(t)-hDum･u(tME

      S II mai'T' (u(t+h)-u(t)) -D'u(t)li -f- jl -'tl-' (u(t-h)-u(t)) +D'u(t)H

              --"O as heO for a. e. tE .l.

Thus we have .

       D'IIu(t)ll÷DLIiu(t)ll==<u<t), D"u(t)>i-<u(t), -D-u(t)>i

              for a. e.tE 1.
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It fo}lows from the assumptions that

                d
               -d-t- llt{(t)ll ="" <tt(t), tt'(t)>2 for a. e. te f.

    PRool: of TKEoREM 1. Since f is strongly continuous oii [O,7]xS
(tto, ri there exist constants O<roS.z O<Ti=<T and M>O such that

               Ilf(t, u)Il SM for (t, te)E [O, Ti] × S(ug, 7lo).

Let CZ'b =Min {ro!A4C Z} and let n be a positive integer.

We set di== O, and u.(t6")za ug. Inductively for each positive integer i, define

6e", of, u.(t;{.i) as foiiows (cf. G. Webb [14]): ,

                                                  t tt(3. 1) o",IV III O, tl･i.., -}- S,n ;gl l'},;

(3.2) If liv-z{,,(ay.nei)llSiM62t and t,S･iwwi-<rmt5t,n..,+oV},then

               lif(t, v')-f(*-b u.(t:･:-i)ll S- 1!n ;

(.3. 3) llun (t;E-i) wu Uoli S- Tb,

and 6Et is the largest number such that (3. 1), <3. 2) and (3. 3> hold.

Let t;･i =tl･'-i+5i'i. We set

       "n(t) "" '`'n(t}'-i>+SI/},,.,f(S, Un(t}k))ds for each tEltY..,, tl.`].

Then for each tE[tlt..i, tkt]

       Un<t) = : ten<tk'-i>+ Sl,k..,f(S, "n<tZ'-i)) `is

           == un<tk' i)-F SIilllf<S･ i`n(`k'-2))`lsff" Sll,,..,f(S･ "n(`i""i>)`IS

                         'Jl･            : ''' === "o' 11111iSII-,.fb(S･ "n<'3' i))ds" Sll,.,f(S, "n('k'--i))(ls･

For each t,s<say t>s) in [O, To] there exist i, k such that t6[ttn. i, tl'] and

s E [tl` nt ,, tl'] . Then

    '                     ･lt･ n      Hun(t)-un(s)Ii S SIlt iil･.7('(S･ "n<`2--i)) ll `IS -'rm ,illlll ,Sll-, llf(S, "n(`}k)) ll `;is

                       vetm SI"lf(s, tt.(t?･ -.,)) ll cls

                           ･e-x
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                             i-1
                 $M(ttt-s)+ £ M(t3-b-t}i-i)+M(t-t;:iiumi)
                            j=k+1
                  = M(t-s).

                         '      Hu,,(t)-zioIi S- li.L;."i'l.m, 1lf(s, u,,(t}k)) ll cls -i- Sl:,rm, I1f(s, u,,(tS･t--i)) ll cls

                 lil Mt :;ll 7-, ･

    We shail show that there exists some positive integer Ar==N(n) such

that tK==71}. Suppose, on the contrary, that this were not true. Then,

since {ay} is a nondecreasing sequence bounded from above, there is a % in

<O, 7k] such that lim t,,t--%.

               e-coSince IIor･.(4t)-u.(t'kt)II:SMpti-t'k`i--->O as i, k-oo, iim u.(t'S･')::w, exists. Let

                                          .                                          wcoai>O such that ' ''
(3. 5) llf(t, w)mf(te, vo)H :S l!2n
whenever'Hft,-x?oll;512oi and lt-tol:$2ait

    Since lim f(tX, u.(tl')) =f(%, vo) there exist o2>O and suflicient!y large
         k--,oe
positive intgger i such that

(3. 6) llf<to, wo)-f(t;iumb u.<t;L..i)) li S- 112n

whenever to-tg･'LiS.a2 and live'u.(t3it-.i))Il::la2･ '

    Set a=Min {ai, a2}. Then there exists a positive integer ]' such that

<3. 7) o",'e<Min {a/2M) a}.
Thus (3.5), (3. 6) and (3. 7) hold for a aBd k-Max {i, 7'}.

Consequently, if Uv- u,,, (t',' um ,)H ;$l A4 (6 }e + af41t4) and tZb. , S. t5 tki' ., + a,

then

          Uz, ww voII $ llv-u.(tk'--i)jl + li'u?t(tit--i)mvell :;$ 3a!4+a<2a,

and
      . . . it-tbi ;;ll ltrm tlb-il+ltb-t}Lil ;S 2a.

It therefore follows that

     .llf<t, v)rmf(thi-b un(tLi)) : l!S IIf(t, 2,)Nf(te, Vo)ll . ,

                                    -l- llf(to, ?,o)'f(tkt..i, un(tlt-i)) lI

                           S .1!2n+1!2n == 11n.

This is a contradiction to lhe ch6ice 6f 'o"'kt.
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    We next show that the sequence of continuous functions {ze,,(t)} con-

gzr,ges,y,"'SOgM,kY, t8.S.,?,-Xftl."S?,)f"'?,S,`&9P/ 2`6:) 9,P>[P,tGl[lr]'and tG[o, czmb], and

remark first that, since

<3･ 8) lzpt.,.<t) rm Tu,..(s)I :;l 2Adllt-sl for s, te [O, 7h],

w;..,(t) exists for a. e. tE [O, 7'b].

    For each tG(O, CII)) such that zvS,.(t> exists there exist positive integers

'i and 1' such that te(t;,"ww,, t;i) and tE(t,"･E.,, t,"･').

By Lemma 3.I (1), (6) and Lemma 3.2 we have

<3. 9> XV;m<t> -pm <'tt,re(t)wwten<t), f<t, U"t,(t:'b.l)>mf<t, Un<t;'t-1)>>2

            :.Sg(t,xv,.,,(t))--gf(t,u.,(t))-f'(･t,u.,(t}{e.i))ll '

                       +llf(t, un(t))wwf(t, z{n(t2'-i))ll･

On the other hand

     Iitt,n(t)-'Um(tb"ki)iI S- Mlt-tS"E.ii:$A4O"jM and Ilzt.(t)mz`n(tS"-i)li ;!S A4o"tit.

Thus we have by (3.2>

(3･ 10) ZVS"t<t> :!ll g(t, 'IVmn<t)) +1!771 +1171 S- g(t, ZVn,n(t)) +217Z

for a. e.tG(O, CZb). Let ze;,,<t)mmsup {zv..(t>} for tE [O, -CZP5].

                          M>7t
Then w,,(O)=(O) for all n. It thus foliows from (3.8), (3.10) and Lernma
2. 2 that

(3. ll) lzer.(t)-W,,(S)i ;l:il 2Mltwwsl for S, tG [O, CZ"o],

and

<3. 12) w;,(t) =< g<t, zv,,(t))+ 21n for ae. tG(O, CZ",>.

Since

       O :S w.(t) ;I$ w.(O)+2Mt S. 2MCZie for n ;rm}) 1 and tE [O, CZM51

the sequence {Tv.} is equicontinuous and uBiformly bounded, and hence it

has a subsequence converging uniformly on [O, Cl-5] to a function w, and

obviously zv (O)=:O. From (3. 12) and the proof of Lemma 2. 1 we have

                zev'(t) S. g(t, zv(t)) for a. e. tE(O, 7'b).

    We show next that (D"zv) (O)==O. Since f is continuous at (O, uo),
given s>O we' can find o'>O such that IIf<t, u)-f<t, tt･o)ll<E whenever OS

tE6 and litt-uoil.<.o". Let o"o ==Min {S, o"!M}. Since lizt;,(t)-zc,IIS.Mt,<..o", ilf

(t, u.<e)-f(t, u,,(t))ll<2e whenever m>n>=1 and te[O, o"o]. By Lemma 3. 1

(1) and (3.9) we'have - '.',- ･
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           WSbn(t) = <Um(t)-U7t(t), f(t, Une(tjM-1))-f(t, U.(4"rm b)>2

           S llf(t, u.(tS{t-i))-f(ts u.,(t;tmi))Il

           S. I[f(t, u.(t))-f(t, u.(t))11 +2!n $ 2(e + 11n)

for a. e te(O, o"o), and hence, by integrating the above inequality,

                      O -<. Tu..(t) ;S 2(e + 11n) t,

whence (D'tv) <O)==O.

From Lemma 2.3 we deduce now that wEmeO, and this implies
sequence {u.} is uniformly convergent on [O, To]. The limit zt
sequence satisfies

             u(t) == uo+ S:f(s, u(s)) ds for tE [O, T5].

To show this, note that

                          ?t         S:f(s･ u(s))ds = 1 Sllkf(s･ u(s))ds + Sl.,h,f(s･ u(s))ds

for tE[t]:mub tkt]. Then we have by (3. 4)

U. (t) - (Uo +

s

S:f(s, u(s)) ds)

that

 of

                 7L             lt-1 td ,           S jZ,., ,,,,-, 1,f(S, z{n(tSLi)) -f(s, .(s)) ,is

                      + jl,,e-, f(S' Un(tkt-i))-f(S, u(s)) cis

           S[11n+,M.,,a.I f(s, u.(s))-f(s, u(s)) ]T.

Because of the uniform convergence of <u,,} to u on [O, 7'h],

C== {u.(t),u(t); O=<t$7b, n=1, 2, ･･･} is a compact set in E.

Since f(t, u) is uniform}y continuous on [O, Tbl ×C we have

              ,M-.,a-.5,, f(s, un(s)) ntf(s, u(s)) -re>o as n-oo,

and hence the required result follows.

Thus u is a strongly continuousiy differentiable solution of (Di) on

   Let v be another strongly continuously differentiable solution

on [O, ZHb] and let 2(t) ==Hu(t)-w(t)U. Then 2(O)-O,

and

           2'(t) - <u(t)-w(t), f(t, u(t)) -f(t, w(t))>2Sg<4 2(t))

the

this

[O, Tol ･

of (Di)
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for a. e. t6<O, ZI'5). The fact (D"Nty) (O)IO follows from

                                        '                          '              l),<.,, 2(t)!t = ll (u(t>-x,(t)>/til-i)O ag t--t･9,.. .. . .

It therefore follows fro.m Lemma 2.3 that 2il'i:O. The proof is comp}ete.

                                                          '                                                 '    g4. Proof of Theorem 2. ''' ''
    PRooF of T/}msoi<E.M 2. It follows from Lemma 2.4 and Theorem 1
that there exists a uniqug. Iocal solution zt of (Di) on some interval [O, 71i).

We assume that [O, 71f)' i'si a maximal interval of existence of or.. We have

only to show that To'<oo leads to a contradiction. '
    ILet zv(t)== IIze(t)-u,ll .for tE [.O, 71r). Then,.b¥ Lemma 3. 1 .(6), we have

                    xv'<t) = <u<e-u,, f<t, tt(t))>2

                                           '                                       '                                           '                   a. ,.(4. 1) ;Ell <･u(t)-z`,, f(t, u(t))-f(t, ite)>2{If<t, ue)g

               Sg(t,zv(t)>+L. .
for' a.'e:'

te' <Ol'71i:>, Whe're'L =Maxilf(t, uo)ll.

                         efitsTo'
    In virtue of (ib), (iib) and (iiib> the differential equation

(4. 2) 2'<t) =xx g(t, x(t>)+L
has a unique solutioB g,.on [O, To*] with the initial cond!tion 2(O)=O.

It therefore follows from (4. 1) that -
<4. 3) w(t) :El x<t) for all tE [O, CZts').

In fact, if we assume that there exists a aG(O, Tlf> such that w(a)>x(a).

Then there exists a ooE [O, ff) such that w(ao)=2<ae) and w(t)>z(t)` for tE
(ao, 6].

Let e(t)==w(t)-z(t). Then, by (4.1), (4.2) and (iib), we have

    0'(t)-:w'(t)-x'<t) ;.S g(t, w(t))-g(t, x(t))S. 7nB(t)a(e(t))

for a. e. tG [a,, a], where B ua {(t, zv (t) >, (t, 2(t) ) ; a, S. t:S a} .

Since cv is continuous and e is absoiutely continuous, we have for sufficiently

small e>O

                  '           Sl,,., e't(t)!cr(e(t))dt nv jli[].,, (ltfcr(T) :ls S:,., m.(t) dt.

By (iiib) and by letting e S･ O,- we have a contradiction.

    (4. 3) imp}ies that

               IIu(t)g -<- llttell -i--,l>i,ll,a,?:. {x(t)} for tE [O, CZMIf).

Since {f(t, u(t)); tE [O, 71i)} is a bounded set in E, we have



           ]I'u(t)-u(s) ll $ Sl iif(z', u(T)) ll clzr -O as s, tT 71;: .

Let we=lim u(t), then we can apply Theorem 1 once more with the initial
       tT1'o*
condition u(7"lf)=vo, and obtain a unique continuation of the solution u･

beyond 7-Uk, which contradicts the assumption on 7tr.

    g5. Proof of Theorem 3.

   Throughout this section we assume that the dual space E* is uniformly

convex.
   We say that F is a duality mapping of E into E* if to each 'u in E

it assigns (in general a set) F(u) in E* determined by

        F(u) ==(v"; v*EE* such that (u, v*) == Hull2 = i[ v*li2],

               ttwhere (u, x*) denotes the value of x* at u. '.

   Since E* is uniformly convex F is singie-valued and uniformly con-

tinuous on any bounded subset of E (see [9]).

   LEMMA 5. 1. Ibr each u#O and w in E

                     <u, ℃>, = Re (v, .F(u))/#uli .

   PRooF. Since <u, v>i=:Re(w,F(u))!llull for each utO and v in E(see

the proof of Proposition 2.5 in [111),

         <u, 'v>2 == nllny Re(v, F(u)) -Re(-z,, F(u)) - Re(v, F<u)).

   We recall that A satisfies

(5.1) <u-w, Au-Av>,;SO foru,?yED(A),
and R(I-2,A)=E for some 2o>O.
For such an operator A we have

   LEMMA 5. 2. (I-2A)H' exists for aay 2>O.

            1
Set L, == (I--ifA)rm' and /!.-A J, ==n(J,-J) for n-1,2, ･･･,.

77ien

(1) ]lcJ},u-u];,vH-<mHu-wll foru,vEE,

(2) HA.uUSAu" foruED(A),
(3) <U-V, AnZ{ im AnV>2 ;ilO fo7' U, VG E,

and
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<4) A is ctemiclosed) that is, 'ijC u.EDA), n==1,2, ･･･, u.-->u

(strongly z'n E) and Au.-->z7 (weakly in E), then uED(A) and v== Att.

    PRooF. In virtue of Lemma 5. 1, -A is m-monotonic in the sense of
T. Kato l9], and hence, the existence of (I-2A)-i and (1), (2) and (4) fo!lows

from Lemma 2.5 in [9]. To prove (3) note that

            <U-v, AnU-AnV>2 =: n<ZtumV, thU-t];tV-(ec-V)>2

            -: it(<u-v, t7;,u-t7;,x,>2-llu-vll)

            -<- nGlu7;,u-t7;,wll-llu-vIDSO,

where we used (1) and Lemma 3. 1(i), (4).

    In Theorem 2, if g(t, T)wwP(t) r, where P is a locally Lebesgue integrab!e

function defined on (O, oo), then £he conclusion of Theorem 2 remains valid.
In fact, it is obvious that this function S(t)'L" satisfies the conditions Gb),

(iib) and (iiib) except that l3(t>T need not be nondecreasing in T for flxed t.

However, the nondecreasing nature of g in r was used in establishing

Lemma 2.3 which is valid for this B(t)"

    LEMpt･m 5. 3. Unde7" the hi>{pothesis ojC 77ieoi'e7n 3 the dz:fflerential eqeca-

tiOll.

           -dwhdt un(t) rc Anien(t)+f(t, un(t)), un(O) == uoEE,

has a ztniq'ue sti-ongly contimtottsly dil17Z,ientiable solution u. dofned on

[O, oo).

    PRooi:. Since llA.tt,-A.vll.<,.2njlu-vjl for zt, v in E, A.u+f(t, u)

carries bounded sets in [O, co)xE into bounded sets in E. By Lemma 3.1

(5) and Lemma 5.2(3) we have

            <UntW, Antt+f(t, U)m(AnV+f(t, W))>2

            -<- <ecrmZ', AnecrmAnV>2-F<U-V, f(t, U)-f(t, V)>i

            SP(t)liu-v#

for (t, u), (t, v)G [O, oo)×E.

Hence the assertion follows directly from Theorem 2 and the above men-

tioned remark.

    We shali now deduce some estimates for u.(t).

   LEMMA 5.4. Let ueED(A). IM7ien {u.(t)} and {uAt)} are bouncled on

airy finite interval of IO, oo). '
   PRoo}?. By Lemma 3.1(3) and Lemma 5.2(2), (3)
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     ,. , 'rmddmut- 11or',z(t)-uoll == <un(t)-tto, Anun(t)+f(ft/.,un(t)')'>"/i'

       /                                             ttt                                             '           S <Un(t)-Ue, AnUn(t)>2+<Un(t)'Ue, f<t, Un<t))>1
   '   .A, , ,,. ;IS <"n(t)-"o, f(t, Z`n(t))-f(t) zto)>i{lf(t, uo)ll-IA.uoU

           m<- P(t)I[un(t)-uell + IIf(t, uo)N+ llA 'u･eli t

Thus we have

           jlun(t) nv uell ;!;l S,` exp (Sl i3(T) cth)(Uf(s, uo)U + IEA ueii)ds

for n=1,2,･･･. This implies

(5･ 2) llu,,(t)I[ ;:S tiuell + S`, exp (S: i3(T) clT)(Uf(s, ue)ll + IgA uoll)ds

                                                   '                                                    'for tE [O, oo) and n==1, 2, ･･･.

    For each fixed h>O we have, by Lemma 3.1(5) and Lernma 5.2(3),

       d
      '-c-lt llUn(t+h)-Un(t)ll = <'ttn(t+h)-Z{n(t), An"n(t+h)wAntc.(t>

      -･'. '･' /.,y +f(t+h, u,,(t+h))-f(t, u.(t))>?
      "<' <ZLn(t+h)mUn(t), f(t+h, Un(t+h))-f(t, Un(t))>i

      :il <Un(t+h)-Un(t), f(t+h, 'ecn(t+h>)mf(t, Un(t>)>i

                                 + lif(t-i- h, u.(t))-f(t, u,,(t))il

      =<= B(t+h)]IU,e(t+h)-Un(t) ll +"f(t+h, U,e(t))-f(t, Un(t))Ii ･'

It foiiows that

    il"n(`th)-un(`) il -< ll"n(h)m"n(O)j[

                  + S: exp (S: l3(T + h) clT) llf(s +h, u,, (s)) -f(s, tc.(s)) ll ds

By dividing the above inquaiity by h and letting hSO, we have

               /.(5･ 3) jluA(t) ll ;Sl l[u;,(O) ll + S: exp (Sl P(T) de) iM(s, u. (s)) ll ds

for n=1,2,･･･. This completes the proo£

         tt    We shall now give the proof of Theorem 3.

    PRooF of THEoREts･r 3. By (5.2) and (5.3) there exists constant MT>O

for each T>O such that

    tttt.tt ttt tlttt. t .(5･ 4) iiit,(t)ll+ilf(t, u,,.(t))11 E Mf･ for tE [O, T] and 7z >rm- l.

By Lemma 3.1(5) and Lemma 5. 1, for each tE [O, T] such that
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        d.       dt gu.(t)-u.(t)II exists and zt.(t)-u,.,(t) iE O,

        d
       "dnvt Ultn(t>mtem(t)Il == <Un(t)-Um(t), Anecn(t)-Ant,um(t)

                                  +f(t, Un(t))-f(t, Um(t))>2

    -<- P(t) ll u.(t)-u.(t) Il

         + 2Mril .F (un (t) - ztm (t) )mF(tl)tUre (t) - bl nUm (t) )IYUt`n (t) - Mne t) il ･

It follows that

   '     -ddfi iiun(t)Mu"t,(t) ll2 ;S 2P(t) ilun(t) nt u,n,(t) il2

                                             '                    -F 4MrllF(un (t) - Z`m (t) ) m F (bl;zUn(t) - ull,vUm (t) ) lI ･

                                          d
On the other hand, for each tE [O, T] such that nvtzrmi'Hu.(t)-u.,(t)Il exists

and u.(t)-'tt.(t)==O,

            d
           dt IIUn(t)mU"i(t)il == <O, AnZen(t)-Antum(t)>2 "" O.

Thus we have

     'th llUn(t)-U"t,(t) Il2 S 2B(t) li z`n(t)- um(t) ll2

                    + 4A4>'II JF (Un (t) nd Um (t) ) - F (ul;zt`n (t) - t7;nU7za (t) ) ll

for a. e. tE [O, T] and n, nz).1.

Consequently

    lIUn(t) - 'Um (t) li2 $ 4MT ji eXP ( j: 2P(r) dT) ilF (un (S) m u,n, (S) )-F<tJ;tun(S)

                                              -{Jl,,u.(s))Il cis

for te (O, T] and n, mll.

In virtue of (5. 4) and the definition of A.

                                 11    ii 'uvt (S) - ecm (S) -(J;t itn(S) - tJ;n um (S) )Il $ milz il AnUn (S) ll + 7n II AmUm (S) il

    S Mr(1!n+1/7n)->O as n, nz--t. oo .

Since F(u) is uniformly continuous on any bounded set in E, {te.(t)} con-

verges uniformly to a continuous function zt(t) on [O, T] for each T>O.

The absolute continuity of ze(t) on [O, Tl follows from the inequality

                   Sl liu;i.(T)ll dr .<., MTIt-sl for t, sG [o, T].
      H 'ttn (t) m Un, (S) ll :;l
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    We show next that u(t) is a solution of <Di).

By (5. 4) we ltave

<5･ 5) liA.u.<t) II :xg liu;t(t) Ii "'i- IV`(t,, un(t)>il ::EI S4h･

for tE [O, Tl and nl.ll.

                        '                           'This imp!ies that {A.u.(t)} is a bounded set in L% [O, T] fgr each T>O,

where L% [O, T] denotes the set of all square integrable E-valued Strongly

measurable functions on [O, T]. ･･,r ･
    Thus some subsequence of {A.u.(e} converges to an element z ･weakly

in L2E IO, Ti. For notational convenience we assume that {A,,zt,,(t)} itse}f

converges toxweakly in L2. [O, T]. ･
    Let C[t] be the set of all weak limit in E of a subsequence of {A,,u,,(t)}

for each fixed tE [O, T].

    We will show that u(t)GD(A> for all tE [O, 7"] and 2<t)--A u(t)

for ae.tE [O, T] (cf. T. Kato [10]).

To show this we note that for each vGC[t] there exists a subsequence
{Annet{nm(t)} such that Tei-Simsco A.,.u,,m(t) =w, where zu-lim denotes weak limit

in E. Since e];,mu..,,(t)-m'u(t), t7;,mu.ne(t)ED(A) and Anm'"n"v(t) =A tLt"bUn7n(t), it

follows from the demiclosedness of A that ' '･
           . u(t)eD(A) and v==A u(t).

Hence C[t] consists of only one element for each tG [O, T]. Since any
subsequence of {A.u.(t)> has a subsequence converging weakly to the same

element v=v(t), {A.u.(t)} itse}f converges weakly to w(t) for each t6 [O, T].

Since {A,,u.(t)} converges to x weakly in L2E [O, TJ, x is the strong limit

of the type ¥. aaA.+,u.+i. Here {ai} is a finite set of nonnegative numbers

such that Z a,i=1.
          i
Thus we can fiRd a subsequence of the above sequence converging to .z(t)

strongly inEfor a. e. tE [O, T]. ･
    Let U be any open convex neighbourhood of O in the weak topology
of E. Then there exists an open conveK neighbourhood V of O in the
same topology of E such that V+ Vc U.
Sinee v(t) -i- V is open convex in the weak topolopy of E, there is a no such

that

                   A.u,,(t)Gv(t)+ V for n ill no.

Thus the c.onvex combination of the type Z aiA,,+iu..i,(t) belongs to v(t)+ V

                                     i
gOfr.li,//."e .li･l,g":2,S.(Z',eE.V(ik V.'6.fek y.h,e.",g,(yv(g),'i)"tu,,d.e,2otes the ciosure
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                 <v(t)+ V>' `"c(v(t) -t- V) -i- Vc1z,(t) -t- U,

it follows that k""<t)-`u<t>eU. This implies that

                   ,x<t) == x?(t> for a. e. te [O, T].

    Since llM4L,,tt.(t)ll:.SAdT･ t}ie norm of a convex combination of A.,zt..,(t)'s

is also ;SA4hv It follows that llx(t)IIS.AdhT for a. e.tE [O, T] and that .rv.･(t) is

Bochner integrable on [O, T]. Since L% [O, T]* :LFnlt [O, T] and since

            (Un(t), X*) "=" <Uo, X")'i- S: (Antt'7t(S>+f(S, tCn(S)), X*)ds

for each :v*eE* and t(E IO, 7'], we have by going to n-oo

             (u<t>, .x*) = (z{,, :v*)-F S:( Nty(S)+f(s, u(s)), x*)ds.

                   (l
Thus we obtain that "g)t'ium 'te(t) exists for a. e. tE [O, T] and

    -t[ifl u(t) =- x(t>+f(t, zt･(t) xe A u(t) -i-f(t, u(t)) for a. e. tE [o, [z"].

Since T is arbitrary, the proof is complete.

    g6. Remarks and an example.

    In this section we give some remarks about the relatioBs between our

results and those of F. E. Browder and T･ M. Flett. We give also a simp}e

example to which our Theorem 2 applies.

    REMARK 1. In the papers [4] and [5] T. M. Flett has given sufficient

conditions for the existence in Banach and Hi}bert spaces of the unique

local solution of (Di) on some interval [O, 7b] under the fol!owing conditions:

<A) E is a BaRach space andfis a continuous mapping of [O, 7']xS(zt,, 7)

into .E such that for ail <4 tL), <t, zf)E(O, n×S(or･e, 7)

(6. i) Uf(t, u)-f(t, v) il S- g(t, llu-vll);

(B) E is a Hilbert space with inner product (,) and f is a continuous

mapping of [O, T]×S(u,, 7b into E such that for all (t, u), <t, v)E(O, T]xS
(Ue, 7)

(6. 2> Re (f<t, u)-f(t, v), t(-'v) !S llu-wllg(t, lltt-wll ),

where g is a continuous functlon defined on (O, T]×[O,27G satisfying the
condition (ii.) in g1 in this paper.

    In Theorem 1 if we assume that g(t, T) is continuous on <O, T] ×[O, 271,



then we can drop the assumption that g(t, T) is nondecreasing in T for fixed

t (c£ [2]).

In virtue of this fact and Lemma 3.1(1), (4) our resuit is an extension of

(A). If E is a Hilbert space with inner product (,), then we caR easily see

that

            <u, x,>2 = Re(v, u)IBuli for uitO and v in E,

and hence, our condition of Theorem 1 becomes

             Re(f(t, u)-f(t, v), zt-x,)S 1[u-vi[g(t} llu-x,iD

for all (t, u) (t, w)E(O, T]xS(ue, r). Thus our result is also an extension

of (B).

    Let F(u) be the duality mapping of 1!] into 1!)* defined in g5. Then

for each u#O and w in E

             <zt, v>2SRe(v, x*)AIuli for some x*EF(u)

(see the proof of Proposition 2.5 in [il]).

Thus we can replace the condition of Theorern 1 by the following one.

              Re(f(t, u)-f(t, zi), x")S Ilu-v1[g(t, Bz`-vlD

for (t, u), (t, x,)G (O, T] ×S(u,, 7D and for all x*eF(u-zi).

Hence our result is a generalization of (B) into a generai Banach space.

    Remark 2. In [1] F. E. Browder proved the existence and uniqueness

of a strongly continuously differentiable solution of (Di) on [O, oo) under the

foliowing conditions :

(I) E is a Hilbert space with inner product (,) and f is a continuous

mapping of [O, oo)xE into E, carring bounded sets in [O, oo)xE into
bounded sets in E.

<ll> There exists a real-valued continuous function c(t) defined on [O, oo)

such that

(6. 3) Re (f(t, u)-f(t, v), u-v)$c(t) llu-z,Il2

for all (t, ec), (t, w)G [O, oo)xE.

    By the same argument as in Remark 1 we see that Theorem 2 is
a generalization into a general Banach space of the above result of F. E.

Browder.

    The following example shows that the conditions of Theorem 2 are

more general than those of F. E. Browder.
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   ExApt･{pLE. Let E=nmRi and !et a(t> be the function defined by

                             ft (o .<., t s .-)
                        a(t) nm: (e (t>e)

where e is a positive constant. We consider the differential equation

                                1
            d 1+ i-¥rm?'-ww.'ur (t >-rm O, u>a(t>>

           -itJ i` =f(t, U)= 1
                          i" i+ ,r.'un('=t'y' (t )- O, usa(t)).

Obviously, the function f<t, zt) is continuous from [O, oo)xRi into R.

However the function f(t, it) does not satisfy the monotonicity condition

(6. 3) but does satisfy all our conditions of Theorem 2.

    In fact, for ze it v and t>O

         <tt-w,f(t, u.)-f(t, `v)>, = (f(t, u)-f(t, v)) (u-v)11u-vi

         ww :"･L' (f(t, t()-f(t, W))

            (112Vli/(Tt) )lu-`vi (u, x,>a(t), t>O)

            (1/2Va(t) )lu-vl <u>a(t), 05v.<.a(t), t>O)
         g
         ' (y2VUww('iY-)Itt-vi (･u.>a(t), v<o,t>o)

                 O (u, v.<..a(t,> t>O).

Thus we have

             <･u,-･v, f(t, u>-f(t, v>, =< (112Va(t) )iu-`vl

for all (t, u), (t, v)e (O, oo)×Ri.

    Set g(t, T) :: (1!2Vuma"(Z)") T an(1 a<t)=:t, then it foiiows easily that g and cx

satisfy all our conditions of Theorem 2.

    On the other hand we have

               (f(t, u)-f(t, ?y), u-w) :S (lf2Va(t) )lt`-vl2

for al} (t, u), (t, v)E (O, oo)×Ri.

Since 1!2Va<t) is discontinuous at O, the condition (6.3) does not hold.

    REMARK 3. In Theorem3 if A is Iinear and D<A) is dense in E,
then A is the infinitesirnal generator of a strongly continuous contraction

semi-group {T(t) ; t).O} (see M. Hasegawa [61).

In this case the integral equation



                     'v(t) == uo÷ Sg T(t-s) f(s, zi(s))ds

has a unique $olution for each zteED(A) by the same argument as G. Webb

[15]. We don't know whether the solution of the above integral equation

isasolution of (D2). ' '
                                        Department of Liberal Arts, Kitami
                                             Institute of Teclmology
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1. IntreductioR and results.

    Let E be aBanach space with the dual space E". The norms in E and E"

are denoted by U ll. We denote by S(u,r) the closed sphere of center u with

radius r.

    We consider the Cauchy probiem

(CP) u'(t)=f(t, u(t)), u(O) == u,EE,

where f is a E-valued mapping defined on [O, T] ×S(u,, r) or on [O, oo)×E.

    Many authors have studied thls problem and some o£ their articles are listed
in our references.

    It is our object in this paper to give sufficient conditions for both local and

global existenee o£ strongly contlnuous, once weakly continuously differentiable
solutions to (CP).

    Throughout this paper, wheRever we speak of a solution to (CP), we will mean

a strongly continuous, once weakiy continuously differentiable function u on some

interval [O, a] (or [O, a)).

    The tecimiques employed in this paper are similar to those o£ the present
author [8] and J. M. Bownds and J. B. Diaz [1].

    Let E. denote the space E wlth its weak tQpology and let f be a mapping from

[O, T] xS(u,, r) (or [O, oo)×E) into E. We sayfis weakly continuous if it is con-

tinuous from [O,T]xS(uo,r) (or [O, oo)xE.) endowed with relative topology o£

[O, co)×E. into E.,
    We now state the following result.

    Theorem 1. Let f be a weakly continuous mapping from [O, T] xS(u,, r)

E. Suppose further that the range f([O, Tl xS(u,, r)) is relatively compact in

Then (CP) has at least one solution u defined on some interval [O, a].

into

E..

Ren2ark 1 . The solution u to (CP) mentioned in Theorem 1 is strongly dif-



ferentiable for a.e.t G [o, a] and satisfies -d-u(t) =f(t, u(t)) for a.e.t e [o, a], where

                                  dt

 d   u denotes the strong derivative of u (see [5]).
 dt

    If E is a reflexive Banach space then we have the following result similar to

that of Theorem 7 in F. E. Browder [2].

    Theorem2. LetE be a refiexiye Banach space and let f be a weakly con-

tinuous mapping from [O, oo)xE into E.

    Then for each r>O there exists a(r)>O such that, for each ue in E with Ilueii

$r, (CP) has at least one solution u defined on [O, a(r)].

    Remark 2. In Theorem 2 if E is a Hilbert space, then F. E. Browder proved

that (CP) has a strongly Ci solution defined on [O, a(r)] (see [2]).

    We next consider the global existence and uniqueness of solutions to (CP).

We define < , >: E×E-R by

                 <V,W>" -ll- ,li-II.I}, -ill-GIv+hwlt-gv-hwu).

For the properties of the functional <,> see, for example, [8], where <,> was

denoted by < , >2･

    Theofem 3. Let E be a reflexive Banach space and let f be a weakly con-

tinuous mapping from [O, oo)xE into E. Sttppose further that

(!.1) <v-w, f(t, v)-f(t, w)>$f9(t) liv-wll

for all v,w in E and a.e.tE (O, oo), where B6Ll..(O, oo). Then for each u, in E

(CP) has a unique solt{tion u defined on [O, oo).

    Remark 3. In Theorem 3 if E is a Hilbert space with inner product denoted

by(,). Then it is easy to see that

              <v, ,v>=Re (v, w)AIvll £or v ,E O aRd w in E,

and hence, the colldition (1.1) becemes

                 Re (f(t, v) -f(t, w), v-w) :i; P(t) 11v-wII2

for all v,w in E and a.e.t>O. This implies that f(t, ･)-P(t)I is dissipative for

a.e.t>O, where I denotes the ideRtlty mapping.
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2. P:ooi of TheoTem 1.

    Since f([e, T] ×S(u,, r)) is relatively compact in E. there exists a constant M

>O such that

                llf(t, v) l[ ;EIM for (t, v) e [O, T] xS(u,, r).

Let a=:min {T, r!M}. For each positive integer n, let

                      An : O = tK<t: < ' ' ' <t'N' <n> :a

be a partitlon of the interval [O,a] such that

(2･1) iA.i==max{tZ-tZm,;1;SkS.N(n)}--,e as n-oo.

For each A. the approximate solution u. to (CP) on [O,a] is defined inductively as

follows :

(2･2) Un(te)=:Uo, Un(t)=l{n(tl) -l- (t nv tY')f(t:'t, Un(tij' ))

fortE[t?･,tY･.i] and i=1,2,･･･,AT(n)-1. Then it is easy to see that u. is weH

defined on [O, a] and satisfies

(2･3) UUn(t)mUn(S)ll$MltrmSl
for s,te [O, a] and nll. Thus u.(t) eS(u,, r) fortE [O,a] andnlll:1. Lette (O, a]

be such thattE [tY･,t?･.,] £or some i. Then

         (u.(t) pt ue) lt -ny :i -{L℃' " t"ki-' f(t:mi, ttn(tZ L. i)) + t nv tij' f(t}`, un (tij' )) ･

                      lt-:1 t t
It follows that (u.(t)-u,)/t e co(f([O, T] xS(u,, r))), where co(f([O, Tl ×S(u,, r)))

denotes the convex hull of f([O, Ti xS(u,, r)). Since f([O, Tl ×S(t{,, r)) is relatively

compact in E,,, it follows that co(f([O, T] ×S(tt,, r))) is also relatively compact in E.

(see [5]). In E,. the relative compactness is equivalent to tlie relative sequential

compactness (see [5]). Consequently, the seguence {(u.(t)-u,)!t},co,=, contains a

subsequence which converges in E., and this implies that the sequence {u.(t)} also

contains a subsequence which converges in E.. Thus we have proved that the

sequence {u.(t)}.coww-i has a subsequeRce which converges in E. for each te [O, a]. In

virtue o£ (2.3) it follows, by the diagonal method, that {u.} has a subsequence {u.･}

such that to-Iim u.i(t) = :u(t) exists £or all t G [O, a], simultaneously, where tu-lim means

limit in E.. For notational convenience we assume that {u.(t)} i£self converges to
 u(t) in E.. The limit functien u satisfies

                 ipt(t) -u(s) ll ::EIM1t-sl for s, t G [O, a].

In fact, for each E>O and for each x* eE* such that



                   (u(t) - u(s), x") = 1l x* lI2 = lI u(t) - u(s) I[2,

there exists an n, such that

                  [ (U(t) - U(S), X") l < 1 (Un(t) ' Un (S), X*) ] + e

for nlno, where (v,x*) denotes the value of x* at v. Thus

                    l1 U(t) rm U(S) Y2< [ (Un(t) - Un(S), X*) l +e

                              (.Mlt-sHlx*II+e

                              =M Y u(t) - u(s) iI lt-s1+e

and hence 11u(t) -u(s) lt ;ilM It-sl･

    We next show that u is asolution to (CP) on [O,a]. Rewriting (2.2) we have

             un(t) =uo + j'i f(T, Un(T))dT + f: (fd.(r) -f(T, Un(T)))dT,

where

          fd.(T)=f(t7･, U.(t//)) fOr T E [t:, t:.,] and One<.i<= N(n)-l.

Since C={u.(t) ; t E [O, a], n== 1, 2, ･ ･ ･}U {u(t) ; t G [O, a]} is compact in E., [O, a] ×C

is also compact in [O, oo)xE.. Thus, for each x" EE", (f(t,v),x*) is uniformly

continuous on [O, a] ×C, that is, for each E>O there exist a neighbourhood U o'E O
in E. and a 6=6(e,x*)>O such that

                        ] (f(t, v) -f(t, w), x*) I<e

whenever lt-sl<S (s,te [O, a]) and v-iv e U (v,wG C). Here we may choose U

such that £or some y,*･ e E* (i=1, 2, ･･･, p)

                   I]1={v ; l(v, y,"･ )i<6, i-- 1, 2, ･ ･ ･, p}.

By (2.1) we can choose an n, such that

               ldnl< Min {6, SIM ,M-.,.mX, Ilyj"' ll] fOr nl no･

For each T E [O, a] we can choosei with OSi.fSN(n)-1 such that T E [t7･, t?･.,]. Thus

we have for n)ne

                        km t7' l:El t7'+i-t: $1An1<6

and

                  1 (Un(tij')- Un(T), Yf' )I ;$l M iIYj* 1i 1r rm t: I<6
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fori=1,2, ･･･,p, which imply that

                        l (fd.(T) rm f(T, Un(r))7 X") i <e･

ConsequentIy, for n lll no

                    (u.(t) - uo - l'g f(zi, t{.(T))dzt, x*)

                        Ei S: Kfd..(r) wi f(T, Un(r)), x")i dT

                        .<.,ea.

Since x" E E" was arbitrary, it thus follows that

                  u(t) :uo +S: f(r, u(T))dT for tE [O, a].

Since f is weakly continuous, u is strongly continuous, once weakly continuously

differentiable on IO, a] and satisfies

                      u'(t) ==f(t, u(t)) forte [O, a],

where u' denotes the weak derivative of u. The proof is complete.

3. Proof of Tfteorem 2.

    Since E is a reflexive BaRach space and f is weakly continuous, f maps bounded

sets of [O, oo)×E into bounded sets of E. Thus foreach r>Othere exists M(r)>O
such that

                             Hf(t, v) il S. MO

for each te [O,1], vEE with llvil;;Sr. Let a(r)=:min {1,r/M(2r)} and let {u.} be

the sequence of the approximate soiutions to (CP) oR [O,a(r)] as in the proof of

Theorem 1. Then £or each s,te [O, a(r)] and nk1

                        II Un(t) im Un(S) #$M(2r) It-Sl

and

                         Ii u.(t) - uo ll =< M(2r)t .<.. r.

Thus it follows that ilu.(t)llm<.2r for tE [O,a(r)] and nlll. Since co(f([O,a(r)]×

S(tt,, r))) is bounded in norm, it is relatively compact in E.. By the same argufnent

as in the proo£ ef Theorem 1, the sequence {u.} has a subsequence which con-
verges in E. for all tE [O, a(r)].

    The rest of the proof is the same as the corresponding part of that of Theorern 1 ,



4. Proof of Theorem 3.

    It follows from Theorem 2 that there exists a local solution u to (CP) on some

interval [O, b). We assume that [O, b) is amaximal interval of existence of u. We

have oniy to show that b< co leads to a contradiction. By Lemma 3.1, 3.2 in [8]

and (1.1) we have for a.e.t E (O, b)

          rmdmudtml1 u(t) nt uo iI = <u(t) - uo, -EE--u(t)> = <u(t) - uo, f(t, u(t))>

                                   '          '                     ;Ell <U(t) - Uo, f(t7 U(t)) -f(t, Ue)> + ll f(t, Ue) U

                     :$ P(t) 11 u(t) -uoIl +Bf(t, uo) ]I･

It follows that

                ll u(t) - u, l1 ;!il Sg exp (S: p(T)dT) yf(s, u,) H ds.

Since f(･,u,) is continuous from [O,b] into E., {f(s,u,);se[O,b]} is bounded in

norm by the Banach-Steinhaus theorem. Thus we have

               1] u(t) II :S ll uo11 + j': exp (S: te(T)d2 ) llf(s, uo) Il ds

forte [O, b). Sincefmaps bounded sets of [O, oo)xE into bounded sets of E, it

follows that

              Il u(t) -u(s) ll ;$ fl ll f(T, u(T)) U dr -O as s, t T b,

which implies limu(t)=v, exists. We can now apply Theorem 2 with the initial
            tTb
condition u(b) =v, and obtain a continuation o£ the solution u beyond b, which
contradicts the assumption on b.

    Let w be a solution to (CP) on [O, oo) with w(O)=w,. Then for a.e.t G (O, oo)

              d
                1l u(t) -w(t) R= <u(t) -w(t), f(t, u(t))-f(t, w(t))>
             dt

                          ;;il P(t) [1 u(t) -w(t) II,

and hence

                  [lu(t) -w(tXI ;i:; lI u, -w, 11 exp (Sg Ill(T)dT).

This inequality means that a solution to (CP) is unique.
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            Differential Eguatien in a Banach Spaee

                                 By

                             Shigeo KATo

                   (Kitami Ins£itute of Technology, Japan)

1. Introduction and results.

    Let Ebe aBaRach space with norm Il U. We denote by S.(ue) (resp. U.(ue))

the closed (resp. open) sphere of center tt with radius r.

    In this paper we consider the Cauchy problem

(CP) x'=f(t, x), x(O) =:u,GE,
where f is a E-valued mapping defined on [O, T] xS.(u,) or on [e, oo)xE. By a

solution to (CP) or to (CP ; tt,), we mean a strongly continuously differentiable func-

tion defined on some interval [O, a] (or [O, a)) such that u(O) ==u, and u'(t)=f(t, u(t))

for te (O, a] (or (O, a)).

    This kind o£ problem has been treated by many autl]ors and some of their
articles are listed in our references.

    It is our object in this paper to establish both local aRd global existence theo-

rems for (CP) under soine conditions wltich are similar to those treated in H.

Murakami [9] and P. Ricciardi-L.Tubaro [10]. Our theorems give some gener-

alizations of those of [7, 8, 9, 101.

    Let Y(t, x, y) be a functional from [O, T] xS.(u,) ×S.(u,) into R satisfying the
following properties :

(P,) ii(t, Jt, y) >O if x ,i y; = O if x== y.

(P,) V(t,x,y) is uniformly Lipschitz continuous on [O,T]xS.(ue)xS,(uo) with

     Lipschitz constant L.

(P3) lim V(t, x.,y.)=O lmplies lim Ux.-y.ll ==O £or each t.

     n-oe ll-co
    In order to prove the existence of the unique solution to (CP) we consider the

£ollowing scalar equation

(1.1) w' :g(t,w),
where g(t,T) is a real-valued continuous function defined on (O,a]×[O,b]. We



assume furthermore that g satisfies the followins conditions: (1.) g(t,O)=O for

te(O,a]. (2.) For each t,E(O,a],wE-O is the only solutions to (1.1) on (O,t,]

satisfying the condition that w(+O) = O.

    Let f be a strongly continuous rnapping from [O, Tl ×S,(u,) into E. Then there

exist some constants O<r,Sr, O<T,ST and M>O such that gf(t, x)i[SM for all

(t, x) E [O, Ti] ×S.,(Uo)･

    We now state the following result.

    Theorem 1. Let f and V satisfying the assumptions mentioned above. Fur-

thermore, if f satisfies

(1.2) hm/m -!L[v(t+h, x+hf(t, x), y+hf(t, y))-v(t, x, y)]$g(t, v(t, x, y))

       h-.-o h

for all (t,x), (t, y) E (O, T)×U.(u,), where g satisfies (1.) and (2.) with a=T and

b=(2M+1)LT. Then (CP; u,) has a unique solution u defied on some interval
[O, To]･

    We next consider a global analogue of Theorem 1, and we assume that V(t, x, y)

defined on [O, oo)xExE satisfies (P,), (P3) and

(PS) V(t, x, y) is locally Lipschitz continuous on [O, oo)×E×E.

Let g be a real-valued continuous function defined on [O, oo) × [O, oo) satisfying the

following conditions: (lb) g(t, O)=:O for alltE [O, oo). (2b) For each t,e [O, oo),

wiiiO is the oniy solution to (1.1) on [O, t,] satisfying the condition that w(O) =O.

    Under these conditions we can prove the following

    Theorem 2. Let f be a strongly continuous mapping from [O, oo)×E into E.
Suppose furthermore that

(i.3) ljm 1[V(t+h, x+hf(t, x), y+hf(t, y))-V(t, x, y)]Eg(t, V(t, x, y))

       h-.-o h

for all (t, x), (t, y) E [O, oo)×E. Then (CP ; u,) has a unique solution u defined on

[O, oo) for each u, e E.

2. Somelemmas.

    In the following Lemmas 1, 2 and 3 we assume that V and g satisfy the as-

sumptions (Pi)-(P,) and (1.)-(2.) respectively stated in Section 1. In virtue of

(P,), it is easy to prove the following

    Lemma 1. Let u and v be continuous functions from [O, Tl into U.(ue) which

have left derivatives ul(t) and vl(t) respectively for sometin (O, T]. Then
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(2.1) D-V(t, U(t),v(t)) =,l.gl.b -ill-[V(t+h, u(t)+hut-(t), v(t)+hvt-(t))

                                                        - Y(t, u(t), v(t))],

where D-V(t, u(t), v(t)) denotes the lower left-hand Dini derivative of V(t, u(t), v(t)).

    Lemma 2. Let M>O and di be a set of functions fronz [O, a] into [O, h] with

the property that for all s,te [e, a] and wE ¢}

(2.2) Iw(t)-w(s)IEMIt-sl.
Let z(t) :sup {w(t) ; w E <Z>} for t E [O, T], and suppose that for each w e {Z}

(2.3) Dww }v(t) ;E$ g(t, w(t)) foi' tG [O, a] -S,

where S is a countable subset of [O, a]. Then for all s,tE [O, a]

(2.4) lz(t)-z(s)I5Mlt-sl
and for all te (O, a)

(2.5) D-z(t)$g(t, z(t)).
    For a proof see [3, Lemma 3].

    Lem!na 3. Let w bea continuous function from [O,aj into [O,b] such that

w(O) =O and

                   D-w(t) ;;llg(t, w(t)) for tE [O, a] -S,

where S is a cottntable subset oAO, a]. Then w!-:O on [e, a].

    The proo£ o£ this Iemma is similar to that of [4, Lemma 2.3] aRd is omitted.

3. Proo£ ef Theerem 1.

    The £ollowing proo£ is esseRtially based on the methods in [4, 11]. Let O<
To<Min {Ti, rolM}, ln which re, T, and M are the same as in the remark preceding

Theorem 1, and let n be a positive integer. We set tg=:O, and tt.(tg)=ue. Induc-

tively £or each positive integer i, define 6:P, t7･ , u.(t:-,) as fol}ows :

(3.1) SY >= O, tY･-,+6? .S T,;
           lf Ilx-u.(tY･-,)#l:;lM6?･ and tY･ww,S.t:StY･ww,+6L then
(3.2)
               li f(t, x) -f(t:k, u.(t:･i- i)) il :Sl l!n ;

(3･3) ll Un(ttL i)mUo llSro;



and 6ty･ is the largest number such that (3.1), (3.2) and (3.3) hold. Let t: =ag･-,+ 67･.

We set

         Un(t) =Un(tty'nvi) +j'l?,-, f(s, u.(t:-i))ds for each t G [tty･ ww,, tty･].

Then for each te [tZ-i, tZ]

(3･4) Un(t) =Ue+ ¥i fi;, f(S, "n(t'3b'-i))dS +Slnww, f(S, "n(tZ-i))dS

and

(3.5) I[ u.(t) -- u.(s) ll :$IM lt-sl for s,tE [O, To].

Moreover we see that there exists a positive integer IV=N(n) such that tk=To.

(For detail see [4, 11]). Thus we have u.(t) e U.,(ue) for all t e IO, Te].

    We next show that the sequence of continuous functions {u.} converges uni-

formly to a E-valued function u on [O, T,]. For this we set w..(t) = V(t, u.(t), u.(t))

for m>nl1 and tE [O, T,], and remark first that by using (P,)

(3･6) IWmn(t)-Wmn(S)l;l;l (2M+ 1)L lt-Sl fOr S, t E [O, To]･

By the construction of {u.} and Lemma 1 we see that D.w..(t) exists for t G (O, Te]

and m>niil 1. For each te (O, Te] there exist positive integers i andj such that

tG (t?-i, tY]n(tty･-i, t7･]. By Lemma 1 and (P,) we have

   D.wmn(t) = ttt -IL[V(t+h, um(t)+h(um)'-(t), un(t) -{-h(un)'-(t))

             h-.-e h

                                                    - V(t, Um(t), Un(t))]

                 1           =,l-!II}, -n-[V(t+h, "m(t) +hf(tge'-i, "m(t7'-i)), Un(t) +hf(tty･-i, un(tij･-i)))

                                                     - V(t, Um(t), Un(t))]

           ;:lll 9(t, V(t, u.(t), u.(t))) + L(il f(t, u.(t)) -f(t,M･ pt,, u.(t,M･-,)) it

                                           + ll f(t, Un(t)) -f(t:-i, "n(t: -i)) ll) '

On the other kand

           11 u.(t) - u.(tge･.!) II EM S}ge and II u.(t) - u.(tij･.i) ll ;S M tiij･ ･

Thus we have by (3.2)

                  D.-w..(t) $g(t, w..(t)) +L(1 1n + 1 lm)
(3.7)
                          ::l g(t, w..(t)) + 2Lln
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for all tG(O,T,] and m>nll1. Let w.(t)=:sup{itv,,,.(t)} for te[O, T,]. Then
                                       m>n
w.(O) ==O £or all n. It thus foilows from (3.6), (3.7) and Lemma 2 that

(3.8) IW.(t)-W.(S)l;;S (2M+ 1)JIIt ItnvSl fOr S, te [O, Te],

and

(3･9) D-Wn(t) ;El 9(t, Wn(t))+2L!n fOrtE (O, Te)･

Since O ;S w.(t) .<., w.(O) + (2M + 1)Lt nv-< (2M -i- l)L T, £or t e [O, T,] and n lll; 1 the

sequence {w.} is equicontinuous and uni£ormiy bounded, and hence it has a sub-
sequence converging uniformly on [O, T,] to a function w. Obviously w(O)= O and

from (3.9) and Lemma 2 we have

                   D.w(t) ;El g(t, w(t)) for t e (O, T,).

From Lemma 3 we deduce now that w:!O, and this implies that

                lim U(t, u.(t), u.(i)) =O unifornaly on [O, T,].

               M,7t--co

In virtue of (P,) the sequence {u.} ls uniformly Cauchy on [O, T,] aiid the limit tt

of this sequence satisfies

                 u(t) ur:u,+Sg f(s, u(s))ds for tE [o, T,].

In fact, for each tE [O, T,] and nik1 we have

                un (t) - (tte +S: f(s) "(s))ds) Lll

                   ;S [1 !n -i- ,M.,3.I!, IIf(S) L`n(S)) mf(S, u(s)) [l] To･

Thus u is a solution to (CP;ue) on [O, T,J. If v is a solution to (CP;uo) on [O, Te]

and z(t) == Y(t, Lt(t), v(t)), then z(O) = O and

                   D-z(t)$g(t, z(t)) for t 6 (O, T,].

It therefore foilows froin Lemma 3 that zfiiO, whick completes the proof.

4. Proo{ o£ Theorem 2.

    Before peroceeding to the proof o£ Theorem 2, we prepare the foilowing

    Lemmaa 4. Let uoEE and tet T be a positive number s"ch that (CP;uo) has

a solution u on [O, T]. Then there exists a positive number re such that for each

ve E SrE(uo), (CP, vQ) has a sotution v on [O, T].



    Proof. We define a continuous extension g of g into RxR as follows:

               ,,,,.,..lg[t:1),., E,ti-8i;.kt8,)

                      k O (- oo <t< oo, .<o).

By (2b) w=-Ois a maximal solution to (1.1) on [O, T] with w(O)==O. It follows

from Theorem 1.4 in [2] thatthere exists a 6>O such that the equation w'=g(t, w)

has a maximal solution m( ,a) for each a, O:Sla<S on [O,T] with m(O,a)=a.

Moreover, m( , a)->O as a-+O, uniformly on [O, T].

    Since the set {(t, u(t));tG [O, Tl} is compact in [O, T] × E, there exist constants

R>O and M>O such that

            Hf(t, x) ll ;;$M for all te [O, T] and all xe S.(u(t)).

Since V(O,ve, uo)-->O as v,.u, by (PS), for each e>O there exists a r>O such that

for each vo G S.(ue)

                 Im(t, V(O, ve, uo))l<e for all tE [O, T].

Let v be a solution to (CP ; vo) on [O, T,,). Then

                  DrV(t, v(t), u(t))Sg(t, V(t, v(t), u(t)))

fortE (O, T.,) n (O, T]. Thus we have

          V(t, V(t), U(t)) :SI M(t, V(O, Vo･ Uo)) fOr t E [O, Tv,) A [O, T]

(see [6, Theorem 1.4.ll).

    Thus, by (P,), there exists a sufficiently small ro >O such that for each ve E S.,(uo)

               Ilv(t)-u(t)il<R for all tE [O, T.,) fi [O, T].

It follows that Yf(t,v(t))G$M for ail t G [O, T.,) n[O, T], and this implies that the

existence dornain [O, T.,) of v contains [O, T].

    Proof of Theorem 2. Let ue eE. Then it follows from Theorem 1 that there

exists a unique solution to (CP ; uo) on some interval [O, To]. Let Cbe a connected

component in E containing ue and let

               D== {x E C; (CP ; x) has a solution on [O, T,]}.

Then D )F di, since u, ED. By Lemrna 4, D is relatively open in C. We show that

D is also relatively closed in C. For this, let {x.} be any sequence in D which

convergesxeC in C and let v. be a solution to (CP; x.) on [O, T,]. Then

                D-V(t, Vm(t), Vn(t)) :Sl g(t, V(t, Vm(t), Vn(t)))
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for tE (O, T,]. "lrhus we have

          Y(t, `Vm(t), Vn(t)) IEi M(t, V(O, X",, JUn)) fOr all t E [O, To].

Since lim m(t, Y(O,x.,x.))=O uRiformly on [O, T,1, the sequence {v.} converges

     mln-oo
uni£ormly on [O, T,] to a function v, and clearly v ls a solution to (CP ; x) on [O, To].

Kence xED. This implies that D=C. Since C is a connected compoflent in E

containing u,, it follows that (CP ; it,) has a solutioR on [O, kT,] £or any integer kk 1

and hence it is proved that (CP;u,) has a solution on [O, oo).

    Remark. The idea for the proof o£ global existeRce is essential}y due to
N. Kenmochi akd T. Takahaslki [5].

5. Remarks.

    Remark 1. Recently P. Ricciardi aRd L. Ttibaro [10] proved the existence

and uniqueness of the local solution to (CP;uo), assuming the existence of a func-

tional V(t,x,y), which, ln additioR to (P,) and (P,) stated in Se¢tion I, has the
following properties :

    (i) V(t,x,y) is Lipschitz continuous on S,(t{,)xS.(u,) uniforinly in t with

Lipschitz constant L ;

    (ii) For anytG [O, T] the mapping

                      (t{, v) ->DI.,,) V(t, x, y)(u, v)

from E×E iiito R is subadditive, where

                              i                               [Y(t, x+hu, y" hv)- V(t, x, y)] ;        Dr.,,)V(t, x, y)(u, v) == Hm
                         h--o -Ti-

    (iii) Y(t,x,y) is partially differentiable in t and Vi(t,x,y) is continuous ifl

(t, x, y) ;

    (iv) Vl(t, x, y) +D,-.,,, l/(i, x, y)(f(t, x), f(t, y)) l:le for all (t, x), (t, y) E [O, T] ×

Sr(U･o) ･

    This result is a genera}ization of that of H. Murakami [9]. It is easy to see

that our Theorem 1 generalizes P. Ricciardi and L, l]ubaro's theorem.

    Remark 2. In TheoreiiR 2, if V(t, x, y) ==IIx-yil and g(t, T) == cy(T), where ev is'

a real-valtied continuous £unction defined on [O, oo) such that ev(O) == O and wi!!O is

the only solution to w'==av(w) on [O, oo) with w(O)=O. Then the condition (1.3)

becomes

          ,l-i.n-i, }, (Ix- y -i- h(f(t, x) -f(t, y)) li -gx- :y E) .<,., a(llx-ylP



for all (t, x), (t, y) E [O, oo)×E.

    Remark 3. Let B be a real-valued continuous function defined on [O, oo). If

V(t, x, y) = Ilx-yIl (or exp (-j'i I9(s)ds) 1lx-y1l) and g(t, T)=:P(t)T (or giiiO), then

the condition (1.3) becomes

                 1
            i-i.II}, n-(I[X-y+h(f(t, x) rmf(t, y))l[-lIx-y1l) :S P(t) [Ix-yll

for all (t, x), (t, y) E [O, oo)×E.

    Thus the results of R. Martin [8] and R. Martin -- D.L.Lovelady [7] are the

special cases of our Theorem 2. '
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g 1. IntroduetioR and results.

    ]Let Ebe a (real or complex) Banaclt space witk norm denoted by ll [1 and let

S(J)c,r) be a closed ball of ceRter x with radius r. In this paper we coRsider the

Cauchy problem

(CP) x'=f(t, x), x(O)=x,E E,
whei-e f is a E-valued mapplng defined on [O, a] × S(x,, r) or on [O, oo)× E

    Recently, G. Vidossich [4] proved the coRvergence of tke successive approxima-

tions for (CP) under some Kamke-type condition, namely,

(1.1) llf(t, x) -f( t, y) il .<., g(t, IIx-yll),

where g is a real-valued functioR satisfying some ukiqueness conditioR. However,

the results obtained in l4] crucially depend on the integrability or t13e boundedness

of g･

    It is our object in this paper to establish both local and global convergence

theorems for the successive approximations for (CP) under conditions which are

weaker than those of [4].

    Let f be a mapping from [O, a]× S(xo,r) into E satisfying the fbllowing con-
ditions :

    (fl) f(･,x) is stroRgly measurable in t for each fixed xeS(x,,r), and f(t,･)

js continuous ln x for a.e.t E [O, a].

    (.f>) There exists a function B E Li(O,a) such that

           IIf(t, x) IISi3(t) for a.e.t E [O, a] an(l all x E S(x,, r).

    Definltien 1. Seppose that (fl) aRd (A) are satisfied. Then a function t{ is

said to be a strong solution to (CP) on IO, to] lf u is an absolutely continuous fuRction

defined on [O, t,] satisfyiBg zt(O)==x, and u'(t)== f(t, tt(t)) for a.e.t E [O, t,].
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    We define the successive approximations for (CP) as follows:

(1･2) bln(t) ==Xo+S,` f(S, Un.i(S))clS (n). l),

where uo is an arbitrary continuous function from [O, a] into S(xo, r).

    In order to prove the convergence of{u.} we consider a Kamke-type uniqueness

function g satisfying the fo11owing conditions:

    (gi) g=:g(t, T) is a nonnegative real-valued function defined on (O,a]×[O, 2r]
whioh is Lebesgue measurable in t for each fixed T, and continuous nondecreasing in

T fbr each fixed t.

    (g,) For each 6 E (O, a), w EiO is the only absolutely continuous function defined

on [O, 6] which satisfies w(O) ==O and w'(t) =g(t, vv(t)) for a.e.t e (O, 6).

    (g3) There exists a function cr defined on (O, a] such that

                 g(t, T) ;:g; cif(t) for (t, T) E (O, a] × [O, 2r]

and a E Li(r, a) for every r G (O, a).

    In the fbllowing, for simplicity, we say that g satisfies (gi)-(g3) on (ti, t2] × [O, 2rl

if g is defined on (t,, t,] × [O, 2r] and satisfies (g,)-(g,) with O and a replaced by t, and

t2 respectively.

    Now, we can state the following result.

    Theorem 1. Suppose that (.fl)-(.f}) and (g,)-(g3) are satisied. Suppose far-

thermore that

(1.3) 11f(t, x)-f(t, y)11Sg(t, IIx-ylD

for a.e.tE (O,a] andall x,yES(xo,r). 77ien the successive apLproJcimations {u.} de-

fined by (1.2) conyerges unijbrmly on some interval [O, to] to a uniGue strong solution

to (CP).

    We next consider the global convergence of {u.}. Let f be a mapping from

[O, oo)×E into E satisfying (.fl)-(.f>) with [O, a], S(x,, r) and P E Li(O, a) replaced by

[O, oo), E and P E LI.,(O, oo) respectively.

    Theerem 2. Suppose that f sativies the above Tnentioned condition. Stmpose

.fttrthermore thatfor each (t,, zG) e [O, oo)× E, there eJcist positive constants a, r and a

junetion g satidying the conditlons (g,)-(g,) on (t,, t,+a]× IO, 2r] sueh that

(l.4) Uf( t, x)-f( t, y) ll :S g( t, llx-y[D

for a.e.t E (to, to+a] and all x,y E S(zo, r). 77ien the successive approximations {u.}

eonverges z{nijbrmly on any compaet interyal of[O, oo) to a unique strong soltttion to

(CP).
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    In case f is a continuous mapping we give the fo11owing

    Defin#ien 2. Letfbe a continuous inapping from [O, oo)×E iRto E. Then
a function z{ is said to be a Ci solutioii to (CP) on [O, te] if u is a strongly continu-

ously differentiable function defiRed on [O, to] satisfying u(O) = Jv, and u'(t)=:f(t, t{(t))

for all t e [O, to].

    IR the followlng Tkeorem 3 tke condition (g,) can be replaced by the foilowing

(g,)' which is slightly weaker than (g2).

    (g,)' For each 6 G (O, a), >v iiEO is tlae only absolutely continuous functioR de--

fiRed on [O, 6] which satisfies w'(t) =g(t, vv(t)) for a.e.tE (O, 6), and w(O)=(D"v･v)(O)

=:limt.,, i･v (t)1t == O.

    Theorem 3. Letfbe a contimiot{s n7apl)ingfrom [O, oo)× E into Est{ch that

              Ilf(t, x) llSB(t) for a.e.tE [O, oo) and all xe E,

whei`e B E LI,,(O, oo). St{m)ose .fitrthern7oi'e that for each (te, zo) E [O, oo)× E, thei'e

exist positive constants a, r and a .function g satwfying the conditions (g,), (g,)' and

(g3) on (to, to+ a] × [O, 2r] such that

(1.5) Ilf( t, x)-f(t, y)#:!;l g( t, llx-Ml)

for all (t, x), (t,y) E (to, to+a]×S(ze,r). 7-7ien the successiye approximations {u.}

convei'ges unCfbrmly on any eonzpaet intei'yal [O, oo) to a unigue Ci solution to (CP).

g2. Preo£ of Theorem 1.

    Before proving Theorem i we pre,pare £he fo}lowing two lemmas.

    Lemma 2.1. Let g satish? tke conditions (g,), (g2) (or (g2)') and (g3) on･ (to, to+

a] × [O, 2r], and let w be an absolutely continuous.fitnction .from [to, to+a] into [O, 2r].

St{m)osefiirthei'nioi'e thauv(te)=:O (oi' }v(t,) = (D'}･v)(t,)=:O) and

                  y? '(t) :ll g(4 ;v (t )) for a.e.t e (t,, t, + a].

7-7)en wi-i:e on [to, to÷a].

    For a proof see Lemma 2.3 in [3] or [l, p. 56].

    Leinina 2.2. St4zpose thatfsatisies the eonditions (.A) and(fS). 7-7)enfor each

strongly measttrablejunetion z.f}'om [O, a] into S(xo, r),f(t, z(t)) is strongly measttrable

and Bochner integrable on [O, a].

    Proof1 Let {z.} be a sequence of finltely-valued functions on [O,a] such that

llm.-oo z.(t) = z(t) for a.e.t E [O, a]. TheR, by (.fl), .f'(t, z.(t)) is strongly measurable



on [O, a] for each n).1 and

               lim f(t, z.(t)) =f(t, z(t)) for a.e.t e [O, a].

               n-Foe

It therefore follows that flt,z(t)) is strongly measurable on [O,al. Moreover, (A)

implies thatf(t, z(t)) is Bochner integrable on [O, a] (see [5]).

    Proof of 77ieorem 1. Let t, e (O, a] be such that fjO B(t)dt $r and set I= [O, t,].

Then it follows from (A) that

               ]l u.(t)- uo11 :;SSg ilf(s, u."i(s))ll ds Sj': ie(T)dT ;sr

for each tEJand n ll: l. This implies that u.(t)E S(xo, r) for each teI and n l.) 1.

    On the other hand, we have

(2'1) i['"n(t)-"n(S)llS- S: lif(T,"n-i(T))lldr ;-S S:P(T)dT -mlM(t)-M(S)l

for each s, tEJand nll 1, where M(t)==£ P(T)dT fbr t EL

    Letting s=O in (2.l) we have '

              11Un(t)il$llun(O)11+M(t)$YXell+M(to)SIXoll+r

and hence {u.} is equicontinuous and uniformly bounded on L In order to prove

that the sequence {u.} converges uniformly on I to a E-valued function we define

the functions w.. and w. by

             yv.n(t)=l[ u.(t)- u.(t) ll for t e I and m >=n >ww- l

and

                 w.(t)== sup }v..(t) fbr tE I and n l.ll 1.

                      mkn

Then, by (2.1), we have

       lVVmn(t)-Wmn(S)lal1IUm(t)"Un(t)l1mllUm(S)-Un(S)IU

                    ;;IllUm(t)-Um(S)m(Un(t)-Un(S))ll.<.,21M(t)-M(S)l

and hence

(2･2) lWn(t)-Wn(S)lSSUP lWmn(t)-Wmn(S)l:i!2iM(t)-M(S)l
                       m)n

for all s, tEIandnl1.
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    Since w.(t)Svv.(O)+2M(t)$2M(to).<.,,2r for t E Iand nll, the sequence {iv.}

is equicoRtinuous and uniformly bounded on L and hence it has a subsequence {iv.,te)}

converging unifbrmly on I to a functiomv == >v(t), and obviousiy Tv(O) --O.

    Lettand At>O be such that t,t+AtEL Then we have

(2･3) PVn<k+i)(t+At)rm}Vn<it+i)(t)l

             ;;;il SUP IiYmn(ic+i>(t+At)-VVmn(k+i)(t)l'
               mkn(lt+1)

On the other hand, fbr each m21n(k + l) we have

           b't?onn(ic+i)(t+At)-IVmn<ic+i)(t)l

               ;;EIIIUm(t+At)mUm(t)m(Un(ic+i)(t+At)HUn(ic+i)(t))II

               :gi Sl'A` IIf(s, t{.-,(s)) - ,f'(s, zt.< ic ÷i)-i(s)) [l cty

               ;$sl+ti,
                     g(s, il tt."i(s) - tt.< ic +!)mi(s) B)ds

               =Sl"At g(s, }s'.rminck+o-i(s)) ds

               ;sS:'"t g(s, yv.,k,,,-i(s)) ds･

Here we used the fact that g== g(t, T) is nondecreasing in T and w.(ic+r)mi(s)).

Wm-in(k+i)-i(S) for ali s E [t, t +At] and m ln(k + 1).

    Since n(k)m<-n(k+l)-i in general, T･v.,k,(t)lliliv.,ic.,,-,(t) for all tEI and this

implies that

           g(S, iV.cic)(s)) lrmll: g(s, iy.(ic÷i}mi(s)) for all s e [t, t -i- At].

Consequently, we have by (2.3)

(2.4) l w.(ic .,,(t +At)-iy.,k.i,(t)l :I;il Sl"ti" g(s, w.{it)(s))ds.

    We show next tkat for each e>O there exists an integer ArL such tkat

(2.5) iv.,ic,(s) :S iv (s)+e for all sE [t, t+At] afid kl N,.

IR fact, since iv is uniformly continuous and {iy.<ic>} is equicoRtinuous on L tkere

exists a 6==6(e)>O s"ch that

              bv(s)ntw(S)l<e!3, Iw.(ic)(s)-W.(h)(S)l<e/3

wkenever ls-3I<6 (s, 3e [t, t+At]).

    Let t=:se<si< ･ ･ ･ <s,==t+At be a partition of [t, t -F At] such that MaxisiE.



(si-si-i)<6. Then for eachi(i=O, 1,･･･,p) there exists an integer ATL (i) such

 that

                 }Vn<ic)(Si) :Ill }V (SD +E13 for k lll 7VL(i).

Let IVL =Max,$is, N,(i). Then we have

          w.,ic,(si) ;:$ w(s,)+e!3 for all kZIVL and i (O ;:El i -s{;p).

For each se[t, t+At] there exists an si such that sE [si,si.i], and hence

              Wn(k)(S):!ilWn(ic)(S)-Wncic)(Si)l+Wn(ic)(SD

                   <w(s,)+2e!3<w(s)+e for all kIN,.

This proves (2.5). Sicne g is Bondecreasing in T, it follows from (2.4) and (2.5) that

(2･6) lw.(ic.i,(t +At)-w.,k.,,(t)I ;!gfl'dt g(s, w(s)+e)ds

for klil;IV,. Since lirnk-. w.,ic)(t)=w(t) uniforrnly on L it is easy to see that

             iW(t +At)mW(t)l;!ll liM lWn(ic)(t +At) rm Wncic)(t)i

                             ic-co

and this with (2.6) shows that

                f }v (t + ztlt)- }v (t)l$Sl"A` g(s, }v (s)+ E)ds.

By the continuity of g in T and the dominated convergence theorem of Lebesgue, we

have by letting e-> +O

(2.7) lw(t +At)-w(t)ISSI""t g(s, vv (s))ds.

Frorn (2.2) and the fact that lim,-.. iv.,ic,(t) =w(t) uniformly on L it follows that w

is abselutely continuous on I. Consequently, >v'(t) exists fbr a.e.tEI and (2.7)

implies

                  IM?'(t)i:S g(t, vv (t)) for a.e.tEL

Since w(O)=O, we deduce now that wEiO on I by Lemma 2.1, and this implies that

the sequence {u.} is uniformly convergent on L Let u(t)=:lim.-co u.(t) fortEL

Then the conditions (.fl) and (li) imply that

                  11f(t, u.(t )) ll ;;g P(t) for a.e.t E J

and



                  Differential Eeuations in aBanach Space 49

                lim f(t, tt.(t)) == f(t, tt(t)) for a.e.t e L

                n-co

'It thus foIlows fi om the dominated convergence theorem for vector-valued functioRs

that

             l,'-.l.i. S: f(s･ u.(s))cis == Si f(s, tt(s))ds
                                            for eack tE I

and this with (,l.2) skows that

                  u(t)= : x, -i- fi fli(s, tt(s))ds
                                         forteL

Consequently, u is a strong soiution to (CP) by Lemma 2.2.

    Let v be another strong soiution to (CP) on f and Iet w(t)-nvliu(t)-v(t))ll for

t G L Tken iv is absolutely coktinuous on Iand

               ,v'(t) e<- ll u'(t)-v'(t ) ll = llf(t, it (t )) - f(t, v(t )) ll

                   5g( t, Tv (t )) for a.e.t E L

Since iv(O)==O, it foilows fi:om Lemma 2.1 that yvmO on L This completes the

proof of Tlteorem l.

    Reinark 2.1. In Theorem i if we assurne f to be coi#ifluous from {O,a]×
S(x,, r) iRto E in piace of (fi) and (.fll), then tkere exist constants O< ti -<.a, O<ri ;Slr

and M>O such that

              ftf(t, x)USM for ali (t, x) E [O, t,]×S(x,, r,).

Let to==Min{ti,ri!M}. Then the successive approximations {u.} converges uni-

formly on [O, to] to a unique Ci solution to (CP).

g 3. Preof of Theorem 2.

    ILet 1" ={tkO; {t{.} coRverges uBiformly oik [O,t]} aRd iet t,=sup r. Then,

by Theorem 1, to>O.

    We have only to show tha£ to<+oo Ieads to a contradiction. Since {tf,,} is
equicontiRuous on [O, T] for each Tlll te, given e>O there exists a S==6(e)>O such

that

           ll ti.(t)-tt.(to)E<e!3 whenever lt- t,IE6 and nl.lir l.

Since Iim.-co tt.(to-6) exists by the defiRition of te, there exists an n, such that

               ll u.(to-ti)-u.(te-6)li<E13 for all n, m;.iir nc



and so that

          !l Un(to) m Um(to) l1 :;i; l1 Un(to) m un(to nv 6) iI + l1 un(to - 6) - um(to nv b) Il

                        + # tt.(to - 6) - um(to) i1 <e

for all n,ml.llne. Consequently, lim.-oo zt.(to)=zo exists. Corresponding to (t,,z,)

there exist positive constants a, r and a function g satisfying the conditions (g,)-(g,)

on (to, to+a]× [O, 2r] such that

                     I1 f'( t, x) - f( t, y) l1 S. g(t, l1 x- y[D

fbr a.e.tE(t,,t,+a] and all )c,yES(zo,r). By the equicontinuity of {u.} we can

find a rp such that O<ng. Min {a,r}, Sl:"n P(t)dt .<,,r and [Iu.(t)-u.(to)ll;Sr!2 for all

t e [te, to+rp] and n l.ll 1. Since Iim.-.oo u.(to)=:zo, there exists an n, such that

                   ll u.(to)-zo ll nv<-r12 for all n ll: no.

It therefore follows that

                l1 "n(t) - Ze [I ;$ 1l "n(t)- "n(to) 11 + Il "n(te) rm Ze Il :S '"

for all t e [to,to + rp] and n Ine, and this implies that

                  tt.([to, to+rp])CS(ze, r) for all n l: n,.

Now, let us define

               wmn(t)=11 Um(t)"Un(t)l1 (t E [to, to+], MliZnlll: 1)

and

                 1'L'n(t)== SUP }Vmn(t) (t E [te, to+], iZ llll l)･

                       m4n

Then just in the same way as the proof of Theorem l, there exists a subsequence

{yv.,k,} of{w.} converging uniformly on [t,, to+ty]. The limlt function w of {w.,,,}

satisfies w(t,) ==O and

                 l w'(t)I ;S g(t, yv (t )) for a.e.t e (t,, t,+rp].

It thus follows from Lemma 2.1 that wi!EO on [to, to+rp] and this implies that {u.}

converges uniformiy on [t,, t,+rp] which contradicts to the definition of t,. Q.E.D.

    Remark 3.1. In [4] G. Vidossich proved the following

    Theorem. Let the hjJtpothesis of 77)eorem 2 qf the present paper be satisy7ed

except that the condition (g,) is rqplaced by
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    (g,)' T7)ere exists ajunction a E L!(O, a) sttch that

                 g(t, T) ;;$ a(t) for (t, T) G (O, a] × [O, 2r].

7-ll2en the suecessive approximations {u.} converges unijCbi'mly on any conzpact interval

of [O, oo).

    Our Theroem 2 contains ovbiously the above Tkeorem whose proof crucialiy

depends on the lntegrability of av.

g 4. Preof of Theerem 3.

    Let {;v.(te>} aiid ;v be tlie same as in the proof of Theorem l. Then we shall

show that (D"iv)(O)==O. By the continuity offl for each e>O there exlsts an rp>O

such that

           ll.f'(s, x)-f(O, O)g<Ef2 for all (s, x) E IO, 77]×S(O, ;7).

Since M(t) = f: P(T)dT is continuous aRd M(O)=:O, there exlsts a S, O<6S.rp, such

that M(6);.Sop. Since Ut{.(s)l[,<,.M(s);:SM(6) -rm<rp for each sE [O, S] and ml.irl, it fo1-

lows that for each tG (O, 6]

                    IIf(S, "7n-i(S)) -f(S, Unck)-i(S )) ll <E

whenever se [O, t] and mllln(k). By the definition of w.(te> we have

            }Vn<k)(t);;i SUP ilUm(t)rmUnck)(t)i]

                   mln(ic)
                 =:,ff.-".R,, Sg(f(S,Um-i(S))mf(S,u.{k)rmi(s)))ds :llet

for all te (O, 6] and k). 1, and hence

                      iv (t) ;$ et for all te (O, S].

This implies that (D"w)(O)=:O. Therefoye vv =-O on Iby Lemma 2.1 and tkis shows

that the sequence {u.} is uniformiy convergent on L Tlae rest of the proof is much

the same as the corresponding part of that of Theorein 2. Q.E.D.

    Remark 4.l. Theorem 3 of the present paper is an extension of Theorem 3.1

in [l, p. 54] into a general Banach space.
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