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Single-mode single-polarization holey fiber using
anisotropic fundamental space-filling mode
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We present the single-mode single-polarization regime of a circular-hole holey fiber consisting of a core with
large elliptical holes. The elliptical holes in the core, which produce large anisotropies, split the fundamental
mode into two orthogonally polarized fundamental modes, often referred to as slow and fast modes. This
fiber can guide only one polarization state of the fundamental mode when a fundamental space-filling mode
index of the cladding region is designed to lie between these indices of the slow and fast modes of the core
region. We demonstrate one design example of this fiber and show that the single-polarization regime can be
achieved over a wide wavelength range. © 2007 Optical Society of America

OCIS codes: 060.2310, 060.2400, 060.2420, 060.2430.
A holey fiber (HF) that guides by total internal reflec-
tion is a photonic crystal fiber [1] consisting of a ho-
mogeneous medium with a regular lattice of air
holes. Owing to their high index contrast, photonic
crystal fibers provide a variety of attractive and
unique guiding properties, including anomalous
waveguide dispersion at short wavelengths [2,3],
large mode area [4], high nonlinearity [5,6], endlessly
single-mode behavior [7], and high birefringence
[8,9]. In HFs consisting of a hexagonal arrangement
of holes, birefringence can be produced by breaking
the sixfold symmetry [10] of the fiber, which supports
the degeneracy of two fundamental modes. Elliptical
holes are effective to break the symmetry, and vari-
ous birefringent HFs using elliptical holes have been
proposed [11–14]. Additionally, the systematic inves-
tigations of the birefringence of elliptical-hole HFs
having a core consisting of multiple defects have re-
cently been reported [15]. In this Letter the realiza-
tion of single-mode single-polarization HFs using the
difference between the fundamental space-filling
mode (FSM) [7] for circular-hole lattices and the an-
isotropic FSM for elliptical-hole lattices is demon-
strated by using a numerical simulation [15,16].

To break the sixfold symmetry, we introduce large
elliptical holes in the core region of a circular-hole
HF. The elliptical-hole core region behaves as an an-
isotropic medium. The schematic design of our HFs is
indicated in Fig. 1. The HF in Fig. 1 represents an
elliptical-hole core circular-hole HF (EC–CHF) and is
characterized by a lattice pitch �, a circular hole size
�=dc /�, an elliptical hole size �e=dy /�=0.9, and an
ellipticity �=dy /dx=2.0. The refractive index of fused
silica is 1.45. In this fiber, the slow and fast modes
correspond to the HE11

y and HE11
x modes, respectively.

The FSMs for circular- and elliptical-hole lattices
can be controlled by changing the hole size and ellip-
ticity. Figure 2 shows the effective indices neff of
the FSM for several circular-hole lattices ��

=0.61,0.63,0.65,0.67� and an elliptical-hole lattice
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(�e=0.9 and �=2.0). Here, � /� is the normalized fre-
quency. In Fig. 2, the solid and dashed curves denote
the FSMs for the circular holes and the two orthogo-
nally polarized FSMs for the elliptical holes, respec-
tively. In HFs, the FSM provides the cutoff of the
guided mode in the infinite hole lattice. When the
FSM of the cladding region is designed to lie between
those of the slow �FSMe

y� and fast �FSMe
x� modes of

the core region consisting of elliptical holes, the HF
can guide only one polarization state. In Fig. 2, this
condition is satisfied when the solid curve lies be-
tween the two dashed curves corresponding to the
slow and fast FSMs of the elliptical-hole lattice.

Figure 3 shows the circular hole sizes (shaded re-
gion) satisfying this design condition. The permis-
sible range of circular hole sizes expands as � /� de-
creases. This is because the FSM birefringence of the
elliptical hole increases with wavelength. This range
also depends on the ellipticity and size of elliptical
holes. In the permissible range, the FSM of the circu-
lar hole lies between the two polarized FSMs for the
elliptical hole. The fundamental mode in the EC-CHF

Fig. 1. Circular-hole HF having a core consisting of ellip-

tical holes.
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lies between the FSMs for the circular- and elliptical-
hole lattices. This is because the two orthogonally po-
larized FSMs for the elliptical-hole lattice are con-
verted to the slow and fast guided modes in the EC-
CHF when elliptical holes in the core surround are
replaced by circular holes. Moreover, the two polar-
ized modes coincide with the FSM for the circular-
hole lattice, if all elliptical holes are replaced by cir-
cular holes. Figures 4(a) and 4(b) show the intensity
distributions of the slow mode for the single-
polarization EC-CHF ��=0.63� at � /�=4.6 and � /�
=0.8, respectively. The guided mode at � /�=4.6 is
not affected by the average index of the core, whereas
the mode field at � /�=0.8 is confined to the core re-
gion. In addition, circular hole sizes � should be ex-
panded to achieve a better confinement of light. Cut-
off of the first higher-order mode is another
important characteristic of single-mode single-
polarization fibers. In Fig. 3, the normalized cutoff
frequency of EC-CHF against the circular hole size �
of cladding is also indicated by the dashed-dotted
curve.

An example is shown in Fig. 5 for an EC-CHF with
�=0.65, �e=0.9, and �=2.0. The cutoff frequency is in-

Fig. 2. Effective index neff of the FSMs for circular- (solid
curves) and elliptical-hole (dashed curves) lattices against
the normalized frequency � /�. FSMe

y and FSMe
x correspond

to the slow and fast FSMs of elliptical-hole lattice,
respectively.

Fig. 3. Permissible range of circular hole sizes satisfying
only one polarization state against the normalized fre-
quency. The dashed–dotted curve indicates the normalized

cutoff frequency of EC-CHF.
dicated on the horizontal axis by an arrow. For the
EC-CHF, the first higher-order mode corresponds to
the HE21

y mode. In Fig. 5, the thick, thin, and dashed
curves correspond to the single-polarization funda-
mental mode, the FSM for the cladding region, and
the two polarized FSMs for the core region, respec-
tively. This EC-CHF can guide only one polarization
state over a wide wavelength range. Additionally, the
single-mode single-polarization regime can be
achieved in the frequency range to the left of the ar-
row ��� /��c=1.16�. Figure 6 shows the intensity dis-
tribution of the slow mode at � /�=0.8. Although the
mode field has a central dip, it is well confined and is
relatively comparable with those of standard fibers.
For silica [17], the calculated chromatic dispersion of
this example is illustrated in Fig. 7, where a lattice
constant of �=1 �m is assumed. In Fig. 7, the solid
and dashed curves denote total DT and material DM
dispersions, respectively. The total dispersion is
given by

DT = −
�

c

d2neff

d�2 , �1�

where c is the velocity of light. Since this example is
not designed to have optimum dispersion properties,

Fig. 4. Intensity distributions of the slow mode for an EC-
CHF with �=0.63 at (a) � /�=4.6 and (b) � /�=0.8.

Fig. 5. Dispersion properties of the single-polarization
fundamental mode (thick curve), the FSM (thin curve) for
the cladding region, and the two polarized FSMs (dashed
curves) for the core region in an EC-CHF with �=0.65.
FSMe

y and FSMe
x correspond to the slow and fast FSMs of

elliptical-hole lattice, respectively. The cutoff frequency is

indicated on the horizontal axis by an arrow.
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it has large total dispersion associated with the large
waveguide dispersion of a HF having large air holes.
The total dispersion can be easily controlled by
changing air hole sizes. These optimum dispersion
designs will be investigated in the future. Its disper-
sion slope changes from negative to positive with in-
creasing wavelength. As mentioned above, the reason
for this is that in the short wavelength range a
guided mode is not affected by the average index of
the core consisting of elliptical holes. In this case, the
cutoff wavelength is �c=1.0/1.16�0.862 �m and is
indicated by an arrow. On the other hand, the single-

Fig. 6. Intensity distributions of the slow mode for an EC-
CHF with �=0.65 at � /�=0.8.

Fig. 7. Chromatic dispersion for an EC-CHF of Fig. 5.
Solid curve, total dispersion DT. Dashed curve, material
dispersion DM. The cutoff wavelength �c is indicated by an
arrow.
mode single-polarization transmission can be real-
ized at wavelength of 1.55 �m by using the lattice
constant of �� �� /��c�1.55=1.798 �m.

In conclusion, we have demonstrated a single-mode
single-polarization HF by using the anisotropic FSM
of elliptical-hole lattices. The single-polarization re-
gime can be easily achieved only by the design of the
FSMs for circular- and elliptical-hole lattices. Our
calculations indicate that the EC-CHF can guide only
one polarization state of the fundamental mode.
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