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Abstract 
In this paper, we perform crystal plasticity analyses of micro-bending of thin 
f.c.c. metal foils having thicknesses ranging from 10 to 50 micrometers. The 
scale dependent crystal plasticity model used here is a viscoplastic finite strain 
version of the model proposed by Ohashi (International Journal of Plasticity 21 
(2005) 2071-2088), in which the mean free path of moving dislocations is 
determined by a function of the densities of statistically stored dislocations and 
geometrically necessary dislocations, while the slip resistance for each slip 
system is determined only by the density of statistically stored dislocations 
through a Bailey-Hirsch type relation. The computational results are compared 
with experimental results for Ni foils, reported in Stölken and Evans (Acta 
Materialia 46 (1998) 5109-5115). Validity of the current model and a direction 
of future development of the "physically-based" scale dependent crystal 
plasticity models are discussed. 

 
 
1. Introduction 
 
In a non-homogeneous plastic deformation, dislocations are classified into the statistically 
stored dislocations (SSD) and geometrically necessary dislocations (GND). The SSDs 
develop in homogeneous deformation and are said to be ‘redundant’ to establish a given 
plastically deformed configuration. By contrast, the GNDs are ‘non-redundant’ to 
accommodate a non-homogeneous deformation, and are directly related to the plastic strain 
gradients.  
      From a physical point of view, the GNDs must play a key role in explanation of size 
effects occurring in the non-homogeneous plastic deformation of small specimens. To 
represent a size dependence of flow stress behavior, the critical resolved shear stress (slip 
resistance) c on a slip system is often assumed to be given by the following equation (Fleck 

                                                
* Author’s manuscript for Modelling Simul. Mater. Sci. Eng. Vol. 15 (2007) S13–S22. 

http://www.iop.org/EJ/abstract/0965-0393/15/1/S02


 2

et al., 1994; Han et al., 2005), which is a modified version of the classical Taylor relation, 

 c = cμb S + G , (1) 

where c  is an empirical coefficient, μ  is the elastic shear modulus, b  is the magnitude of 
Burgers vector, S  is the  SSD density, and G  is the GND density on the slip system. Eq. (1) 
makes it possible to model a size effect in the presence of a plastic strain gradient. Some 
researchers, however, have questioned this idea. Mughrabi (2004) argued that the edge GND 
density is not expected to appear in the flow stress law in single slip and the GNDs on the 
same slip system can only act as relatively weak obstacles, unlike forest dislocations that must 
be cut by the glide dislocations. Weertman (2002) also suggested that only the GNDs which 
primarily act as forest dislocations contribute the magnitude of the flow stress.  
        In a bending deformation of thin foil, a large first order plastic strain gradient (i.e. 
GNDs) is produced through the whole thickness. Thus, the bending problem of thin foil is 
expected to be suitable for investigating the strain gradient dependent mechanical behavior of 
metals at the micron scale. 
       In this paper, we employ a scale dependent crystal plasticity model recently proposed by 
Ohashi (2004; 2005), in which the slip resistance for each slip system is determined only by 
the SSD densities (unlike Eq. (1)) through a Taylor type relation, while the mean free path of 
moving dislocations is determined by a function of both the SSD and GND densities. Using 
this model, we perform finite element analyses of micro-bending of thin f.c.c. metal foils 
having thicknesses ranging from 10 to 50 micrometers. The computational results are 
compared with experimental results for Ni foils, reported in Stölken and Evans (1998). 
Validity of the current model and a direction of future development of the "physically-based" 
scale dependent crystal plasticity models are critically discussed 
 
2. Constitutive model 
 
     In a single crystal, the velocity gradient L  is decomposed into nonplastic and plastic parts: 

 L = L* + Lp . (2) 

     The plastic contribution Lp  is assumed to arise from slip on a finite number of slip 
systems: 

 
 

Lp = Dp
+Wp

=
( )p( )

+
( )w( ) , (3) 

 p( )
=
1

2
(s( ) m( )

+m( ) s( ) ) ,   (4) 

 w( )
=
1

2
(s( ) m( ) m( ) s( ) ) , (5) 

where Dp  is the plastic rate of deformation (symmetric part of Lp ), Wp  is the plastic spin 
(anti-symmetric part of Lp ), 

 

( )  is the slip rate, s( )  is the slip direction and m( )  is the slip 

plane normal for the th slip system. In the present applications, the {111} 110  twelve 

slip systems for f.c.c. metals are adopted. 
     Allowing for finite lattice rotations, the nonplastic contribution L*  is related to the stress 
rate as follows: 

 
 

*
 

= W*
+ W*

= C :D*
= C :D ( )C :p( ) , (6) 
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 D*
=
1

2
(L* + L*T ) ,   (7) 

 W*
=
1

2
(L* L*T ) , (8) 

where  is the Cauchy stress, *
 

is the lattice Jaumann rate with respect to W* , D is the rate 
of deformation tensor (symmetric part of L), the superscript T denotes ‘transpose’, and C is a 
fourth-order elastic moduli tensor. The lattice vectors s( )  and m( )  are rotated by  

 
 
s( )

=W* s( ),          m( )
=W* m( ) . (9) 

      The constitutive description for a single crystal is completed by specifying the relation for 

 

( ) . As in Peirce et al. (1983), the slip rate 
 

( )  is assumed to be given by a power law 

dependence on the resolved shear stress ( )  on slip system , 

 
 

( )
= 0 sgn(

( ) )
( )

g( )

1/m

,           ( )
= p( ) :  (10) 

where 
 0  is a reference slip rate, m is the strain rate sensitivity exponent, and g( )  is the slip 

system hardness. The g( )  is defined as a function of the density of accumulated SSD: 

 g( )
= g0

( )
+

( )cμb S
( ) . (11) 

Here, the first term g0
( )  gives the lattice friction for movement of dislocations, which is, in 

general, very small for f.c.c. crystals. The second term represents the effect of accumulated 
dislocations on moving dislocations:  S

( )  denotes the SSD density on the slip system , c  is 
an empirical coefficient (the order of 0.1), μ  is the elastic shear modulus, b  is the magnitude 

of Burgers vector, and ( )  is an interaction matrix for dislocations on slip systems  and 
. The GND densities do not directly enter the slip hardening law in Eq. (11) (Ohashi, 2004; 

2005), as mentioned in the Introduction. 
        The evolution of the SSD density is modeled as 

 
 
S
( )

=
1

bL( )
( ) , (12) 

where L( )  is the mean free path of dislocations on the slip system . The physical 
interpretation and detailed derivation of Eq. (12) have been explained in Ohashi (1994). A 
similar evolution law with an “annihilation term” (Essmann and Mughrabi, 1979) is often 
used (e.g. Evers et al., 2004). In the present application, we will investigate the material 
behavior at small or moderate strains and at room temperature. It is expected that the 
additional term will not have a big influence under these conditions. Thus, it is not considered 
for simplicity. The mean free path of moving dislocations is taken to be given by 

 L( )
= K l ( ),             l ( )

=  
1

a1 S
( )

+ a2 G
( )( )

. (13) 

Here, l ( )  represents an effective average distance between forest dislocations, which obstruct 

movement of dislocations on slip system .  G
( )  denotes the norm of the GND density on 

slip system , defined as  
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 G
( )

= ( G,edge
( ) )2 + ( G,screw

( ) )2 , (14) 

with the edge and screw components given by gradients in slip (Ashby, 1970; Fleck et al., 
1994): 

 G,edge
( )

=
1

b

( )

( )
,          G,screw

( )
=

1

b

( )

( ) , (15) 

where, ( ) and ( )  are directions parallel and perpendicular to the slip directions on the slip 
plane. In Eq. (13)2, a1  and a2  are parameters that control contributions of SSD and GND 

densities to l ( ) . A coefficient K in Eq. (13)1 represents the assumed number of forest 
dislocations that are cut by a moving dislocation before it ceases to move (usually K is 
assumed to be in a range of 10 – 100). In the present model, the GND densities that are 
gradients in slip cut the mean free paths of moving dislocations on other slip systems, and 
thus a size dependent strain hardening appears. 
    The crystal plasticity model shown above does not involve any higher-order stress 
quantities or extra slip boundary conditions, such that equilibrium equations and boundary 
conditions are identical to those in classical plasticity theories. Only the constitutive equations 
are improved to account for the effect of the GND densities. This approach is similar to that 
proposed by Han et al. (2005). But, the present constitutive modeling that involves the effect 
of the GND densities is different from their proposition based on Eq. (1).  
 
3. Problem formulation and numerical procedure 
 
The problem is concerned with a micro-bending of thin foils under plane strain states (Stölken 
and Evans, 1998). Annealed Ni foils having thicknesses H = 12.5, 25 and 50 μm were used 
in their experiments. Grain sizes were about equal to the foil thickness. The foils were 
plastically bent around a small cylindrical bar by means of loads applied through a profiled 
die. In the present computational study, such a bending process is simply modeled by pure 
bending as shown in figure 1. A polycrystal model with five square grains is considered. The 
aspect ratio, L/H, of the region is taken to be 5.  
      We apply the pure bending deformation to the specimen as follows. Taking the points, 
about which the vertical edges X1 = L  and X1 = 0  rotate, to be on the middle line X2 = H / 2 , 
the boundary conditions on the edges are expressed as (Triantafyllidis et al., 1982; Kuroda 
and Tvergaard, 2004): 

 u1 cos ±
2

u2 + X2
H

2
sin ±

2
= 0 , (16) 

 q1 sin ±
2

+ q2 cos ±
2

= 0 , (17) 

where  is the bending angle, the plus sign in front of  is for X1 = L0  and the minus sign is 
for X1 = 0 , ui  are the displacement components, and qi  are the components of the surface 
traction per current area of surface. The bending moment is given by 

 M b = qnrdrri

ro
  on  X1 = 0 , (18) 

where qn  is the surface traction per current area of surface, which is normal to the edge 
surface, r  is a coordinate along the edge X1 = 0 , ri  and ro  are, respectively,  the inner and 
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outer radii of the bent specimen. The rate of bending is given as 
 
= 0L / H . 

      Grain orientations are randomly assigned, corresponding to the sample condition in the 
experimental study1 (Stölken and Evans, 1998). Each grain is discretized by 20  20 plane 
strain quadrilateral eight node finite elements with reduced integration. A standard updated 
Langangian finite element scheme (McMeeking and Rice, 1975) is employed.  
      The spatial gradients in slip are needed to compute the GND densities, G

( ) . First, nodal 
values of slip for each element are evaluated by extrapolations from the integration point 
values. The nodal values of slip as a field quantity are calculated as the average of the nodal 
values in all the elements connected to the node. Then, the gradients in slip are computed by 
use of the derivatives of the finite element shape functions. 
 
4. Results 
 
Values of material parameters used in the present numerical computations are shown in Table 
1. For the relation for mean free path (Eq. (13)), we take a1  = 0 and a2 = 1 so that the 
strongest possible size effect appears. If we used a larger value of a1 , the size dependence 
would simply diminish compared to the present results shown below.  According to Eq. (13), 
the computed mean free path L( )  may exceed the “grain size” at the initial stage of 
deformation. This is physically impossible.  In this case, we assume that L( )  is restricted to 
the grain size, which is approximated by the length H in the present application. 
      The mechanical responses are affected by randomly chosen grain orientations. We 
performed 6 sets of computations using 6 different series of pseudo-random numbers. Figure 
2 shows computed curves of normalized bending moment verses normalized curvature for 
three selected sets of grain orientations including those that have predicted the largest and 
smallest bending moments. In the graph, B denotes the width of the specimen. For each set of 
computations, a clear size dependence is observed: i.e. the smallest specimen (H = 12.5μm ) 
exhibits the largest bending moment. In figure 3, one of the computational results (i.e. the 
middle set in figure 2) is compared to the experimental result of Stölken and Evans (1998). As 
mentioned above, we have assumed that the mean free path is fully determined by the GND 
densities, and this choice yields the maximum size effect in this model. Nevertheless, the 
predicted size effect seems to be somewhat smaller than the experimentally observed one.  It 
is noted that the “initial yield stresses” for the three foils with different thicknesses are 
predicted to be the same because the size effect is only the consequence of the plastic strain 
gradients. This point will be discussed later.  

      Figure 4 shows distributions of the GND density, G
( ) , in the primary slip system in 

each grain for H = 12.5 μm . In the cases of the other two sizes (i.e. H = 25 and 50 μm ), 
although illustrations are omitted here, distributions of the GND densities are almost identical 
to the one shown in figure 4, but with reduced magnitudes that are almost inversely 
proportional to the thickness.  
     Figure 5 shows distributions of the SSD density, S

( ) , in the primary slip system in each 
grain for H = 12.5 μm . As expected, higher SSD densities are observed near the free surfaces, 
while no accumulation of the SSD is predicted along the neutral surface of bending. The SSD 
density distributions for H = 25 and 50 μm  are very similar to those shown in H = 12.5 μm , 
but illustrations of these cases are omitted here. But, the SSD densities are also strongly size 

                                                
1 As long as we can see from the pole figure shown in Stölken and Evans (1998), the random 
orientation model is expected to give a good approximation. 
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dependent, because their evolution is governed by the GND density dependent mean free 
paths (Eqs. (12) and (13)). For example, the largest value of S

( )  for H = 12.5 μm  is 

1.08 109  mm-2, and for H = 25 and 50 μm  they are respectively, 7.72 108  and 5.47 108  

mm-2, which are approximately inversely proportional to H .  
 
5. Discussion 
 
Hardening laws in the spirit of Eq. (1) have been widely adopted since Fleck et al. (1994) (e.g. 
Han et al. (2005)). As pointed out in the Introduction, however, it has been argued that the 
edge GND density is not expected to appear in the flow stress law under single slip conditions 
and the GNDs on the same slip system can only act as relatively weak obstacles, unlike forest 
dislocations that must be cut by the glide dislocations (Mughrabi, 2004). It has also been 
suggested by Weertman (2002) that only the GNDs, which play the role of forest dislocations, 
contribute to the magnitude of the flow stress. The slip hardening model used here (Ohashi, 
2004), Eqs. (11)–(14), follows such suggestions. Acharya et al. (2003) also tried to represent 
an extra hardening effect arising from reduction of the mean free path due to existence of 
geometric dislocations, introducing an obstacle density defined with Nye’s dislocation density 
tensor. By contrast, in our model, the mean free path is explicitly determined with the SSD 
and GND densities on each slip system (Eq. (13)).  
      The present constitutive theory involves neither higher order stress quantities nor extra 
slip boundary conditions, unlike Gurtin (2002), Arsenlis et al. (2004), Evers et al. (2004), 
Yefimov et al. (2004; 2005). According to the study by Huang et al. (2004), it is expected that 
higher order slip boundary conditions affect the material response only within a thin boundary 
layer (the order of sub micron in size) of the solid and hardly influence the overall mechanical 
responses of the specimens with the size larger than ten microns as in the present application. 
A detailed study for a higher order scale dependent crystal plasticity theories with extra slip 
boundary conditions is carried out in a separate paper (Kuroda and Tvergaard, 2006). 
       Shrotriya et al. (2003) also carried out an experimental study for a size dependent 
behavior of nickel foils in micro-bend tests, and observed a degree of the size dependence, 
which is close to that reported in Stölken and Evans (1998). The present model seems to give 
a size dependence smaller than that observed in the experimental studies, as seen in figure 3. 
      In the experiments of Stölken and Evans (1998), it was observed that (i) the strain 
hardening was essentially linear and about the same for all foil thicknesses, and (ii) the initial 
yield strength increased as the foil thickness increased for uniaxial tensile tests, opposite to 
the usual understanding. In their micro-bend tests, however, (i) the strain hardening clearly 
increased as the foil thickness decreased, and (ii) a larger initial yield stress for a smaller foil 
thickness could be recognized (figure 3), although this is not so obvious since the 
measurements were not continuous. Thus, no unified understanding for size effects in tension 
and bending could be gained from their experimental results. In the present constitutive model, 
the size effect only arises from gradients in total plastic slip. Therefore, the initial yield stress 
as a limit of elastic response predicted by the present model exhibits no size dependence, as 
seen in figure 3. In a strict sense, only the strain hardening behaviors in the experiments and 
the computations might have been compared.  
       Several investigations for the size dependence of initial yielding have been carried out 
experimentally (Uchic et al., 2004; Dimiduk et al., 2005) and computationally (Benzerga and 
Shaver, 2006; Ohashi et al., 2006). In these computational approaches, the size dependence of 
initial yielding is attributed to a scale effect of dislocation sources, i.e. in principle a smaller 
dislocation source requires a larger applied shear stress to bow out. Anand et al. (2005) and 
Fredriksson and Gudmundson (2005) suggested that a dissipative gradient effect associated 
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with the plastic strain rate gradient represents the size dependence of initial yielding in a 
gradient field. Introduction of a size dependence of initial yielding into the constitutive model 
is worth pursuing. But then, we should carefully investigate the actual source of the size 
dependence of initial yielding in micro-bend tests.  
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Table and Figure Captions 
 
 
Table 1. Constitutive parameters. 
 
Figure 1. Problem formulation of pure bending of a thin foil with grain size being about equal 
to the thickness. 
 
Figure 2. Appearance of size effect on computed curves of bending moment versus bending 
angle for three sets of randomly chosen grain orientations. 
 
Figure 3. Comparison of computed curves of bending moment versus bending angle to 
experimental results of Stölken and Evans (1998). 
 
Figure 4. Deformed configurations of the foil (H = 12.5 μm ) and contours of GND densities 
on primary slip system at (a) H / L  = 0.013, (b) H / L  = 0.123, and (c) H / L  = 0.178. 
 
Figure 5. Deformed configurations of the foil (H = 12.5 μm ) and contours of SSD densities 
on primary slip system at (a) H / L  = 0.013, (b) H / L  = 0.123, and (c) H / L  = 0.178. 
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Table 1. Constitutive parameters. 

Parameter Symbol Magnitude Unit 

Young’s modulus E 220 GPa 

Poisson’s ratio  0.3 – 

Burgers vector b 0.249 nm 

Initial SSD density S0
( )  106 mm-2 

Material constant K 11 – 

Numerical coefficient a1,  a2  0, 1.0 – 

Lattice friction g0
( )  1.0 MPa 

Interaction matrix ( )  All 1.0 – 

Empirical coefficient c 0.1 – 

Reference plastic strain rate 
 0  1 s-1 

Rate sensitivity exponent m 0.002 – 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Problem formulation of pure bending of a thin foil with grain size being about equal 
to the thickness. 
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Figure 2. Appearance of size effect on computed curves of bending moment versus bending 
angle for three sets of randomly chosen grain orientations. 
 
 

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25

M
b/(

B
H

2 ) 
 (

M
Pa

)

θH/L

H = 12.5 μm

         25 μm

         50 μm

 
 
Figure 3. Comparison of computed curves of bending moment versus bending angle to 
experimental results of Stölken and Evans (1998).  
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Figure 4. Deformed configurations of the foil (H = 12.5 μm ) and contours of GND densities 
on primary slip system at (a) H / L  = 0.013, (b) H / L  = 0.123, and (c) H / L  = 0.178. 
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Figure 5. Deformed configurations of the foil (H = 12.5 μm ) and contours of SSD densities 
on primary slip system at (a) H / L  = 0.013, (b) H / L  = 0.123, and (c) H / L  = 0.178. 
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