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A previous relativistic shielding calculation theory based on the regular approximation to the
normalized elimination of the small component approach is improved by the inclusion of the
magnetic interaction term contained in the metric operator. In order to consider effects of the metric
perturbation, the self-consistent perturbation theory is used for the case of perturbation-dependent
overlap integrals. The calculation results show that the second-order regular approximation results
obtained for the isotropic shielding constants of halogen nuclei are well improved by the inclusion
of the metric perturbation to reproduce the fully relativistic four-component Dirac-Hartree-Fock
results. However, it is shown that the metric perturbation hardly or does not affect the anisotropy of
the halogen shielding tensors and the proton magnetic shieldings. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2733650�

I. INTRODUCTION

Evaluation of relativistic effects on molecular properties
is one of the most important problems in quantum chemistry.
The methodology for relativistic calculation of molecular
properties is divided into two sets of methods, i.e., four-
component �normally called fully relativistic� and two-
component �normally called quasirelativistic� methods, and
each set has merits and demerits, individually. Compared
with four-component methods, two-component approaches
are computationally much less demanding, but two-
component approaches involve too complicated operators
and are plagued by the so-called picture change problem.
Although both sets are not complete, both sets have been
applied to relativistic evaluation of molecular properties with
considerable success in the last decade.

We have recently presented a theory for relativistically
calculating nuclear magnetic shielding1 based on the regular
approximation2,3 to the method of normalized elimination of
the small component �NESC�.4,5 The NESC method was pro-
posed by Dyall4,5 as the first exact two-component method
which yields the positive energy solutions of the Dirac equa-
tion. Later, Filatov and Cremer6 applied the regular approxi-
mation to the exact NESC theory by Dyall and obtained
numerical stability in a quasivariational scheme. Several
variants of the NESC theory are proposed and discussed in
the paper by Liu and Peng.7 We introduced magnetic inter-
actions in the regular approximation to the NESC theory and
used it to the relativistic calculation of nuclear magnetic
shielding tensors in HX �X=F,Cl,Br, I� systems for com-
parison with previously reported values.8–11 We used two
levels of approximation, the zeroth-order regular approxima-
tion �NESC-ZORA� and the second-order regular approxi-
mation �NESC-SORA�, in our calculation of the nuclear
magnetic shielding tensors. We found that the NESC-SORA

results are slightly farther from the benchmark results9 ob-
tained by using the fully relativistic four-component Dirac-
Hartree-Fock �DHF� calculation than those of NESC-ZORA.
This finding was unexpected.

In the previous NESC calculations1 we ignored the rela-
tivistic two-electron contribution and the magnetic interac-
tion term contained in the metric operator. All the neglected
operators have the order of c−2. In order to improve our
regular approximation of NESC method, the two-electron
spin-orbit �SO� interaction effect, neglected in Ref. 1, was
added in the next publication.12 This calculation method was
dubbed as NESC-SORA+JLL. The calculation showed that
inclusion of the two-electron SO term improves the results,
especially the results for the proton shieldings in HX sys-
tems. However, it was shown that considerable differences
still remain between our results and DHF results.9 In the
present paper, we include in the theory the c−2 order mag-
netic perturbation term in the metric operator to improve our
regular approximation of NESC calculation. The authors
have already published a paper11 developing a relativistic
theory for molecular magnetic property calculation, in which
infinite-order two-component �IOTC� theory by Barysz and
Sadlej13 is used. The IOTC theory yields the exact decou-
pling of the positive and negative energy spectra of a one-
electron system, but it includes a cumbersome problem of
the so-called picture change error �PCE� for the two-electron
interactions. The NESC theory is free from the PCE problem
and may provide a simple formulation for introducing rela-
tivistic two-electron interactions into the theory. This is a
motivation for us to develop the regular approximation of
NESC method for calculating relativistic effects on molecu-
lar properties. In the following section, we survey the regular
approximation to the NESC theory including the metric
perturbation.
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II. THEORY

A. A brief description of the regular approximation to
NESC theory

The Dirac equation for a one-electron system under an
external magnetic flux density B0 and a nuclear magnetic
moment �M locating at the Mth nuclear position RM is given
in a.u. ��=1, e=1, me=1, and 4��0=1. Therefore, �0 /4�
=c−2 and c=137.035 989 5� by

HD�Di = �i�Di, i = 1,2, ¯ , �1�

HD = c� · � + �� − 1�c2 + Vn�r� , �2�

� = p + A = p + A0 + AM , �3�

A0 = 1
2B0 � r0, r0 = r − R0, �4�

AM = c−2rM
−3�M � rM, rM = r − RM . �5�

Here, � and � are the usual 4�4 Dirac vector and scalar
matrices, Vn�r� is the nuclear attraction potential, and R0 is
the position of the common gauge origin. The nucleus M at
the position RM is the target nucleus of the present nuclear
magnetic shielding tensor calculation. The ith four-
component wave function �Di with the eigenvalue �i is writ-
ten using the large two-component spinor �Li and the small
two-component spinor �Si. In the NESC approach, �Si is
connected with �Li via an energy-dependent nonunitary
transformation operator U��i�,

��Si� =
� · �

2c
U��i���Li� . �6�

The transformation operator U implicitly depends on the en-
ergy eigenvalue �i. The energy dependence of U is given by
a substitution of U into the Dirac equation.

For a many-electron system, the transformation operator
U must be determined self-consistently. The large two-
component wave function �Li �i=1,2 , ¯ � are written as a
linear combination of spin including basis functions,
	1 ,	2 , . . . ,	m. We write �Li �i=1,2 , . . . ,m� as

�Li = �
�=1

m

a�i	�; i = 1,2, ¯ ,m . �7�

The linear combination coefficients a�i and the orbital ener-
gies �i are written as matrices, and they are determined by
solving the self-consistent field �SCF� equation

FA = SA� , �8�

where A is the matrix consisting of the coefficients a�i and �
is the diagonal matrix consisting of the eigenvalues �i. The
Fock matrix F and the metric matrix S are computed using
the operators

F = TU + U†T − U†TU + Vn

+
1

4c2U†� · ��Vn + JLL�� · �U + JLL

− KLL + HAU + U†HA − U†HAU �9�

and

S = 1 +
1

2c2U†�T + HA�U , �10�

respectively. Here, �1/2c2�U†HAU in S is the magnetic per-
turbation term in the metric operator which was neglected in
the previous works. The kinetic energy operator T and the
magnetic interaction operator HA are defined as

T = 1
2 p2 �11�

and

HA = 1
2 �� · ��2 − T , �12�

respectively. The two-electron interaction operators JLL and
KLL are given by

JLL = �
j

occ

�Lj
† �2�

1

r12
�Lj�2�d
2 �13�

and

KLL = �
j

occ

�Lj
† �2�

1

r12
P̂12�Lj�2�d
2, �14�

respectively. P̂12 is the operator interchanging the two elec-
trons, labeled 1 and 2. Finally, the transformation matrix U is
computed from the operator

U = �T −
1

4c2� · p�Vn + JLL�� · p	−1�T −
1

2c2TUS−1F	 .

�15�

The matrix F in Eq. �15� yields the energy dependence of U.
Since the transformation matrix U includes the Fock matrix
F and JLL, U must be determined iteratively, starting from
the initial conditions of U, F=0 and JLL=0.

B. Magnetic perturbation expansion

Since the metric operator S includes HA, the magnetic
perturbation expansion of the total electronic energy E of the
system becomes rather cumbersome. This problem is stated
in the present subsection. The nuclear magnetic shielding
tensor component ���

M �� ,��x ,y ,z� is equal to the second-
order perturbation coefficient E��

�1,1� which yields the elec-
tronic energy bilinear in B0� and �M�. The formulation for
E��

�1,1� is given in the Appendix. The Eq. �A18� for E��
�1,1� is

mathematically equivalent to Eq. �38� in the paper by Dodds
et al.14 when perturbation-independent basis functions are
used. However, Eq. �38� by Dodds et al. is rather compli-
cated and not transparent. We use Eq. �A18� for E��

�1,1�.
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The perturbation calculation of E��
�1,1� needs the following

one-electron operators of H�
�1,0�, H�

�0,1�, H��
�1,1�, S�

�1,0�, S�
�0,1�, and

S��
�1,1�. From Eq. �10�, the metric perturbation term is equal to

U†HAU /2c2. Therefore, the calculation of a shielding tensor
component needs only the perturbation expansions for HA

and H. The one-electron Hamiltonian H of the system is
given by

H = TU + U†T − U†TU + Vn +
1

4c2U†� · �Vn� · �U

+ HAU + U†HA − U†HAU . �16�

The perturbation expansions for HA and H are presented in
our previous paper.1

III. RESULTS AND DISCUSSION

The present calculation uses experimental atomic
distances18 and a pointlike nuclear model. The common
gauge origin R0 is placed on the halogen nuclei. We perform
the shielding tensor calculation for HX �X=F,Cl,Br, I�, sys-
tems at the three levels of approximation, i.e., NESC-ZORA,
NESC-SORA, and NESC-SORA+JLL including the metric
perturbation. The NESC-ZORA calculation neglects
�1/4c2�U†� ·�JLL� ·�U term in the F matrix and
−�1/4c2�� ·pJLL� ·p and −�1/2c2�TUS−1F terms in the U
matrix. The NESC-SORA calculation keeps
−�1/2c2�TUS−1F term in the transformation matrix U. The
NESC-SORA+JLL calculation uses Eq. �9� for the F matrix
and Eq. �15� for the U matrix without neglect. In the present
calculation, the magnetic interaction term in the metric op-
erator S, i.e., �1/2c2�U†HAU is considered for comparison
with our previous results neglecting the above magnetic term
in the S matrix. The results obtained with and without inclu-
sion of the metric perturbation are shown Table I. Moreover,
the DHF values9,19 are presented as the benchmark and our
previous IOTC results11 are shown for comparison. The re-
sults including the metric perturbation are listed in Table I as
the ZORA-Met, SORA-Met, and SORA+JLL-Met. The basis
sets used in the present calculations are �12s10p2d� for H,
�15s15p10d4f� for F, �17s17p12d8f� for Cl,
�21s21p12d8f2g� for Br, and �25s25p18d10f3g� for I. The
Gaussian exponents of the basis functions are described in
Ref. 1.

Table I shows that the inclusion of the metric perturba-
tion considerably improves the NESC-SORA results for the
isotropic shielding constants of halogen nuclei. When the
magnetic interaction in the metric is considered, the NESC-
SORA-Met result for �iso �iodine� is much closer to the fully
relativistic four-component DHF value than that of the
NESC-ZORA-Met. The NESC-ZORA-Met result for �iso

�iodine� becomes too low. The isotropic shielding constant of
iodine, �iso �I�, is lowered by about 300 ppm by the inclusion
of the metric perturbation. The reduction of �iso is due to the
paramagnetic contribution while the diamagnetic contribu-
tion is slightly raised by inclusion of the magnetic interaction
in the metric. As a whole, the metric perturbation reduces the
isotropic magnetic shielding constants of halogen nuclei. To
the contrary, the inclusion of the metric perturbation hardly

or does not affect the anisotropy of the halogen shielding
tensors and the proton magnetic shieldings. It is concluded
that both the NESC-SORA-Met and NESC-SORA+JLL-Met
approaches can reproduce the halogen shieldings of the fully
relativistic DHF as a rule. The effects of the two-electron
spin-orbit interaction, i.e., SO2 term are not so large in the
halogen shieldings. However, as for the proton shieldings,
the results of the NESC-SORA+JLL-Met are better than
those of the NESC-SORA-Met. The inclusion of the two-
electron SO interaction improves the proton shielding re-
sults. The small difference in the proton shieldings between
the NESC-SORA+JLL-Met and DHF results may be reduced
to the difference between the used basis set functions and the
neglect of other c−2 order relativistic two-electron contribu-
tions to the F matrix than �1/4c2�U†� ·�JLL� ·�U. Unex-
pectedly, the inclusion of the two-electron SO interaction in
the SORA+JLL-Met calculation worsens a little the results
for �iso �I� and 
� �I�. This may be due to the neglect of the
other relativistic two-electron interactions coming from JLS,
JSL, and JSS terms. A fortuitous error cancellation may exist
in the NESC-SORA-Met calculation. Finally, the comparison
with the IOTC results shows that the qualities of the
NESC-SORA+JLL-Met and IOTC calculations are compa-
rable for the halogen and proton shieldings as a whole. For
halogen nuclei, the IOTC method is a little better while for
proton shieldings, the NESC-SORA+JLL-Met method is a
little better. The IOTC method treats the two-electron inter-
actions nonrelativistically. A fortuitous error cancellation
may exist in the IOTC calculation of halogen shieldings.

IV. CONCLUSION

In order to consider the effects of the perturbation term
contained in the metric operator S, we used the self-
consistent perturbation theory for the case in which the over-
lap integrals are perturbation dependent. The calculation in-
cluding the metric perturbation was performed for the
nuclear magnetic shielding tensors in HX �X=F,Cl,Br, I�
systems for comparison with our previously reported results
neglecting the magnetic interaction term in the metric opera-
tor. The calculation results showed that the metric perturba-
tion considerably lowers the isotropic shielding constants of
halogen nuclei and the NESC-SORA results are so much
improved. As a result of inclusion of the metric perturbation,
the NESC-SORA results become much closer to the fully
relativistic DHF results than those of the NESC-ZORA. It
was shown that the metric perturbation strongly affects the
isotropic shielding constants of halogen nuclei while the an-
isotropy of the halogen shielding tensors and the proton mag-
netic shieldings are hardly or not affected.
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TABLE I. Calculated nuclear magnetic shielding tensor components �in ppm� In HX �X=F,Cl,Br, I� systems.

Molecule Nucleus Property ZORAa SORAb SORA+JLL
c ZORA-Metd SORA-Mete SORA+JLL-Metf DHFg IOTCh

HF F ���para� −92.4 −92.5 −93.9 −94.0 −94.6 −91.4
���dia� 480.4 480.4 480.7 480.7 480.9 475.4
���total� 388.0 387.9 387.5 386.8 386.7 386.3 384.9 384.0
�
�para� 7.5 7.4 6.0 5.9 5.4 8.4
�
�dia� 479.6 479.6 479.8 479.8 480.0 474.6
�
�total� 487.1 487.0 486.7 485.8 485.7 485.4 485.6 483.0
�iso�total�i 421.0 421.0 420.6 419.8 419.7 419.3 418.4 417.0

��total�j 99.0 99.0 99.2 99.0 99.0 99.2 100.7 99.0

H ���para� 18.89 18.89 18.89 18.89 18.85 18.92
���dia� 1.34 1.34 1.34 1.34 1.35 0.01
���total� 20.24 20.24 20.20 20.24 20.24 20.20 20.10 18.93
�
�para� 0.00 0.00 −0.01 −0.01 0.00 0.01
�
�dia� 44.04 44.04 44.04 44.04 44.07 42.89
�
�total� 44.04 44.04 44.07 44.04 44.04 44.07 43.90 42.89
�iso�total�i 28.17 28.17 28.15 28.17 28.17 28.16 28.03 26.92

��total�j 23.80 23.80 23.88 23.80 23.80 23.88 23.80 23.96

HCl Cl ���para� −237.4 −237.4 −247.7 −247.8 −250.6 −232.0
���dia� 1136.3 1136.2 1138.0 1137.9 1139.1 1124.6
���total� 898.9 898.8 897.1 890.3 890.2 888.5 888.5 892.6
�
�para� 52.1 52.1 41.8 41.8 39.4 56.4
�
�dia� 1133.5 1133.4 1135.2 1135.1 1136.3 1121.8
�
�total� 1185.6 1185.5 1184.3 1177.1 1176.9 1175.7 1176.7 1178.3
�iso�total�i 994.4 994.3 992.8 985.9 985.7 984.3 984.5 987.8

��total�j 286.7 286.7 287.2 286.7 286.7 287.2 288.2 285.7

H ���para� 22.49 22.49 22.49 22.49 22.32 22.51
���dia� 1.89 1.89 1.89 1.89 1.90 1.05
���total� 24.38 24.38 24.22 24.38 24.38 24.22 24.07 23.56
�
�para� −0.01 −0.01 −0.01 −0.01 0.00 0.01
�
�dia� 45.36 45.37 45.37 45.37 45.42 44.40
�
�total� 45.35 45.36 45.42 45.35 45.35 45.42 45.39 44.41
�iso�total�i 31.37 31.37 31.29 31.37 31.37 31.29 31.18 30.51

��total�j 20.97 20.97 21.20 20.97 20.97 21.20 21.32 20.85

HBr Br ���para� −192.0 −176.1 −281.8 −271.3 −288.7 −171.2
���dia� 2987.6 2983.5 3005.4 3001.7 3010.2 2929.6
���total� 2795.6 2807.3 2796.7 2723.5 2730.4 2721.5 2738.1 2758.3
�
�para� 458.8 474.7 368.5 379.9 365.0 472.1
�
�dia� 2984.6 2980.4 3002.3 2998.7 3007.1 2927.9
�
�total� 3443.4 3455.1 3447.4 3370.9 3378.5 3372.1 3402.1 3400.0
�iso�total�i 3011.5 3023.3 3013.6 2939.3 2946.4 2938.3 2959.4 2972.2

��total�j 647.8 647.8 650.8 647.3 648.1 650.6 664.0 641.7

H ���para� 30.12 30.12 30.12 30.12 29.53 30.04
���dia� −0.01 −0.01 −0.01 −0.01 0.00 −0.79
���total� 30.12 30.12 29.53 30.11 30.11 29.53 29.82 29.26
�
�para� −0.45 −0.45 −0.45 −0.45 −0.37 −0.38
�
�dia� 48.50 48.50 48.50 48.50 48.65 48.23
�
�total� 48.05 48.05 48.28 48.05 48.05 48.28 47.93 47.85
�iso�total�i 36.10 36.10 35.78 36.09 36.09 35.78 35.86 35.46

��total�j 17.93 17.93 18.74 17.94 17.94 18.75 18.11 18.59

HI I ���para� 578.8 879.8 267.5 509.2 449.6 708.0
���dia� 5001.2 4967.9 5067.8 5037.9 5063.6 4870.7
���total� 5580.0 5847.8 5810.5 5335.3 5547.2 5513.2 5571.9 5578.7
�
�para� 1615.7 1917.1 1306.8 1547.0 1507.1 1691.0
�
�dia� 4997.9 4964.6 5064.4 5034.6 5060.2 4868.7
�
�total� 6613.6 6881.7 6863.1 6371.3 6581.6 6567.3 6597.1 6559.7
�iso�total�i 5924.5 6192.4 6161.4 5680.6 5892.0 5864.6 5913.7 5905.7

��total�j 1033.5 1033.9 1052.4 1036.0 1034.4 1054.2 1025.2 981.0

H ���para� 50.94 50.95 50.94 50.95 49.44 50.00
���dia� −1.76 −1.80 −1.76 −1.80 −1.79 −1.61
���total� 49.18 49.15 47.65 49.18 49.15 47.65 46.92 48.39
�
�para� −4.32 −4.32 −4.32 −4.32 −3.88 −3.95
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APPENDIX: SELF-CONSISTENT THEORY INCLUDING
THE METRIC PERTURBATION

A self-consistent perturbation theory for perturbation-
dependent overlap integrals has already been derived by
Dodds et al.14 However, we present a simpler formula for
calculating the second-order perturbation energy for the case
of perturbation-dependent metric operator. The total elec-
tronic energy E is given by

E = Tr�H +
1

2
G�� , �A1�

where � is the density matrix, H is the one-electron Hamil-
tonian matrix, and G is a matrix defined by

G�� = �
��

g��,�����, �A2�

g��,�� = 
	�	��	�	�� − 
	�	��	�	��

= �	�	��	�	�� − �	�	��	�	�� . �A3�

The one-electron Hamiltonian operator H is given in the text.
The density matrix � is related to the expansion coefficients
of the occupied large two-component spinors �Li by the
equation

��� = �
i

occ

a�ia�i
* . �A4�

We use from now the suffixes i, j, k for occupied orbit-
als, u, v, w for virtual orbitals, and p, q, r for occupied or
virtual unspecified orbitals. There are two kinds of perturba-
tions, i.e., � ���x ,y ,z� component of the external magnetic
flux density, B0�, and the � ���x ,y .z� component of the
nuclear magnetic moment, �M�. The perturbation term of the
mth order with respect to B0 and the nth order with respect to
�M is denoted as �m ,n�. Our aim is to derive the total elec-
tronic energy change E��

�1,1�B0��M� which is bilinear in B0�

and �M�. The orbital coefficient a�i is expanded as

a�i = a�i
�0� + �

�

a�i�
�1.0�B0� + �

�

a�i�
�0,1��M� + �

��

a�i��
�1,1�B0��M�

+ ¯ , �A5�

where a�i
�0�=a�i

�0,0�. ��� is expanded similarly. From the defi-
nition of the density matrix, element of ��

�1,0� is written as

����
�1,0� = �

i

occ

�a�i�
�1,0�a�i

�0�* + a�i
�0�a�i�

�1,0�*� . �A6�

We assume that the first-order orbital �Li�
�1,0� is expanded in

terms of the zeroth-order orbitals �Lp
�0� using the orbital pro-

jection coefficients dpi�
�1,0�.

a�i�
�1,0� = �

p

dpi�
�1,0�a�p

�0�. �A7�

The orbital projection coefficients dpi�
�1,0� are divided into the

two parts of the occupied orbital coefficients dji�
�1,0� and the

virtual orbital coefficients dui�
�1,0�. The coefficients dji�

�1,0� can be
determined from the orbital normalization condition. We
have

dji�
�1,0� = − 1

2Sji�
�1,0�. �A8�

The coefficients dui�
�1,0� can be determined from the first-order

perturbed SCF equation for �Li. We obtain

dui�
�1,0� = ��i

�0� − �u
�0��−1�Fui�

�1,0� − �i
�0�Sui�

�1,0�� . �A9�

Equations �A6�–�A9� yield the formula for ��
�1,0�. The similar

formula is obtained for ��
�0,1�.

The total electronic energy E is expanded into the series
similar to Eq. �A5�,

E = E�0� + �
�

E�
�1,0�B0� + �

�

E�
�0,1��M� + �

��

E��
�1,1�B0��M�

+ ¯ . �A10�

Using Eq. �A1�, the second-order perturbation energy bilin-
ear in B0� and �M� is given by

TABLE I. �Continued.�

Molecule Nucleus Property ZORAa SORAb SORA+JLL
c ZORA-Metd SORA-Mete SORA+JLL-Metf DHFg IOTCh

�
�dia� 50.30 50.28 50.30 50.28 50.54 50.16
�
�total� 45.98 45.95 46.66 45.98 45.95 46.66 47.31 46.21
�iso�total�i 48.11 48.08 47.32k 48.11 48.08 47.32 47.05 47.66

��total�j −3.19 −3.20 −1.00 −3.19 −3.20 −0.99 0.39 −2.18

aNESC-ZORA results taken from Ref. 1.
bNESC-SORA results taken from Ref. 1.
cNESC-SORA+JLL results taken from Ref. 12.
dPresent NESC-ZORA results including the magnetic interaction term in the metric operator.
ePresent NESC-SORA results including the magnetic interaction term in the metric operator.
fPresent NESC-SORA+JLL results including the magnetic interaction term in the metric operator.
gDirac-Hartree-Fock results taken from Refs. 9 and 19.
hInfinite-order two-component calculation results taken from Ref. 11.
i�iso= �1/3��2��+�
�.
j
�=�
 −��.
kThe value of 46.99 in Ref. 12 should be corrected to 47.32.
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E��
�1,1� = Tr�H�0����

�1,1� + H�
�1,0���

�0,1� + H�
�0,1���

�1,0� + H��
�1,1���0�

+ 1
2G�0����

�1,1� + 1
2G�

�1,0���
�0,1� + 1

2G�
�0,1���

�1,0�

+ 1
2G��

�1,1���0�� . �A11�

Using a symmetry of the two-electron interaction integrals

g��,�� = g��,�� �A12�

and the relation

F = H + G , �A13�

E��
�1,1� is written with a simpler formula

E��
�1,1� = Tr�F�0����

�1,1� + F�
�1,0���

�0,1� + H�
�0,1���

�1,0�

+ H��
�1,1���0�� . �A14�

The second-order orbitals �Li��
�1,1� is likewise expanded in

terms of the zeroth-order orbitals �Lp
�0�. We obtain

Tr�F�0����
�1,1�� = �

i

�i
�0��dii��

�1,1� + dii��
�1,1�*�

+ �
i

�
p

�p
�0��dpi�

�1,0�dpi�
�0,1�* + dpi�

�1,0�*dpi�
�0,1�� .

�A15�

It is known that knowledge of all the orbital perturbations up
to the nth order is sufficient to determine all the electronic
energy perturbations up to the order �2n+1�.15,16 Further-
more, Dalgalno’s interchange theorem16,17 makes it possible
to express E��

�1,1� by using d�
�1,0� or d�

�0,1� alone. According to
the �2n+1� rule, d�1,1� terms are eliminated and we obtain

Tr�F�0����
�1,1�� = �

i

���i
�0�Sii�

�1,0� − Fii�
�1,0��Sii�

�0,1� − �i
�0�Sii��

�1,0��

− �
i

�
p

�dpi�
�0,1�*Fpi�

�1,0� + dpi�
�0,1�Fpi�

�1,0�*

+ �i
�0��dpi�

�1.0�*Spi�
�0,1� + dpi�

�1,0�Spi�
�0,1�*�� . �A16�

The second contribution for E��
�1,1� in Eq. �A14� is

Tr�F�
�1,0���

�0,1�� = �
i

�
p

�dpi�
�0,1�*Fpi�

�1,0� + dpi�
�0,1�Fpi�

�1,0�*� .

�A17�

Equation �A14� gives us the final formula for E��
�1,1�,

E��
�1,1� = �

i

���i
�0�Sii�

�1,0� − Fii�
�1,0��Sii�

�0,1� − �i
�0�Sii��

�1,1� + Hii��
�1,1��

+ �
i

�
p

�Hpi�
�0,1�*dpi�

�1,0� + Hpi�
�0,1�dpi�

�1,0�*

− �i
�0��Spi�

�0,1�*dpi�
�1,0� + Spi�

�0,1�dpi�
�1,0�*�� . �A18�
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