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A relativistic calculation of nuclear magnetic shielding tensor including two-electron spin-orbit
interactions is performed. In order to reduce the computational load in evaluating the two-electron
relativistic integrals, the charge density is approximated by a linear combination of the squares of
s-type spatial basis functions. Including the two-electron spin-orbit interaction effect is found to
improve the calculation results. © 2006 American Institute of Physics. �DOI: 10.1063/1.2361292�

I. INTRODUCTION

An electron in a heavy atom can be considered an ob-
server of relativistic phenomena. Especially, it is known that
nuclear magnetic resonance �NMR� chemical shielding ten-
sor is a sensitive probe for detecting relativistic effects.1–7

Since the relativistic electronic structures of molecules are
expressed by the four-component Dirac equation, it is natural
to use four-component wave functions for theoretical calcu-
lations of NMR chemical shielding tensors. Although ab ini-
tio four-component relativistic calculations of NMR chemi-
cal shieldings have been performed,8–11 the two-component
theory is still important and effective. The main difficulties
in four-component calculations of NMR chemical shieldings
are the severe requirements on the small-component wave
function calculation and the necessity of performing negative
continuum state calculation for evaluation of the diamagnetic
component.12–14

We have recently presented a relativistic theory for cal-
culating nuclear magnetic shielding15 based on the regular
approximation to the method of normalized elimination of
the small component �NESC�.16–18 The NESC method was
first proposed by Dyall16,17 as the exact two-component
method which yields the positive-energy solutions of the
Dirac equation. The NESC method has essentially variational
stability. Dyall considered in Ref. 17 an approximation to the
NESC method, but it did not produce variationally stable
solutions. Filatov and Cremer18 applied the regular approxi-
mation to the exact NESC theory by Dyall and obtained
numerical stability in a quasivariational scheme. We intro-
duced magnetic interactions in the regular approximation to
the NESC theory and used it to the calculation of nuclear
magnetic shielding in HX �X=F,Cl,Br, I� systems for com-
parison with previously reported values.10,11,19,20 We used
two levels of approximation, the zeroth-order regular ap-
proximation �NESC-ZORA� and the second-order regular
approximation �NESC-SORA�, in our calculation of the
nuclear magnetic shielding. We found that the NESC-SORA
results are slightly farther from the benchmark results ob-

tained by using the four-component fully relativistic Dirac-
Hartree-Fock �DHF� calculation than those of NESC-ZORA.
This finding was unexpected.

In our previous NESC calculations we ignored the two-
electron relativistic contributions. It is likely that the most
important neglected contribution was the two-electron spin-
orbit �SO� effect. This effect attenuates the one-electron SO
effect of the bare nuclear charges, and hence neglecting the
two-electron SO effect will lead to an overestimation of the
SO effect in the nuclear magnetic shielding.21 In the present
paper, we evaluate the two-electron SO effect on nuclear
magnetic shielding in hydrogen halide molecules. In the fol-
lowing section, we survey the theory.

II. THEORY

The Dirac equation for a one-electron system under an
external magnetic flux density B0 and a nuclear magnetic
moment �M locating at the Mth nuclear position RM is given
in a.u. ��=1, e=1, me=1, 4��0=1, and c=137.035 989 5�
by

HD�Di = �i�Di, i = 1,2, . . . , �1�

HD = c� · � + �� − 1�c2 + Vn�r� , �2�

� = p + A = p + A0 + AM , �3�

A0 = 1
2B0 � r0, r0 = r − R0, �4�

AM = c−2rM
−3�M � rM, rM = r − RM . �5�

Here, � and � are the usual 4�4 Dirac vector and scalar
matrices, Vn�r� is the bare nuclear potential, and R0 is the
position of the common gauge origin. The nucleus M at the
position RM is the target nucleus of the nuclear magnetic
shielding calculations. In order to derive the two-component
equation, the ith four-component wave function �Di is writ-
ten using the large two-component spinor �Li and the small
two-component spinor �Si. In the NESC scheme, �Si is
connected with �Li via a general nonunitary transformation
operator U,a�Electronic mail: fukui@gaea.chem.kitami-it.ac.jp
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��Si� =
� · �

2c
U��Li� . �6�

The transformation operator U can be self-consistently
determined for many-electron systems, as presented in our
previous paper,15

U = �T −
1

4c2� · ��Vn + JLL�� · � + HA�−1

��T −
1

4c2� · �KLS −
1

2c2 �T + HA�US−1F + HA� ,

�7�

where

T = 1
2 p2 �8�

and

HA = 1
2 �� · ��2 − T . �9�

S is the metric operator that provides the proper orthonormal
relation between large-component wave functions, that is,

	�Di��Dj� = 	�Li�S��Lj� = �ij . �10�

S is written as

S = 1 +
1

2c2U†�T + HA�U . �11�

F is the two-component Fock operator, written as

F = TU + U†T − U†TU + Vn

+
1

4c2U†� · ��Vn + JLL�� · �U + JLL − KLL

+
1

4c2JSS −
1

4c2KSL� · �U

−
1

4c2U†� · �KLS + HAU + U†HA − U†HAU . �12�

The two-electron operators JLL, JSS, KLL, KLS, and KSL are
defined as follows:

JLL = 

j

occ � �Lj
† �2�

1

r12
�Lj�2�d	2, �13�

JSS = 

j

occ � �
�2��Lj�2��† 1

r12
�
�2��Lj�2��d	2, �14�

KLL = 

j

occ � �Lj
† �2�

1

r12
P̂12�Lj�2�d	2, �15�

KLS = 

j

occ � �Lj
† �2�

1

r12
P̂12�
�2��Lj�2��d	2, �16�

KSL = 

j

occ � �
�2��Lj�2��† 1

r12
P̂12�Lj�2�d	2. �17�

Here, 
=� ·�U and P̂12 is the operator interchanging the
two electrons, labeled 1 and 2. �d	2 represents two-
component integration with respect to electron 2. The large
two-component wave functions �Li �i=1,2 , . . . � are deter-
mined self-consistently as the solutions of the eigenvalue
equations

F�Li = �iS�Li, i = 1,2, . . . . �18�

According to conventional molecular orbital theory, the
large-component wave function �Li can be expanded in the
spin-included basis functions, �1 ,�2 , . . . ,�m. We write �Li

�i=1,2 , . . . ,m� as

�Li = 

�=1

m

a�i��; i = 1,2, . . . ,m . �19�

To satisfy Eq. �18�, the coefficient a�i is determined by the
equation

FA = SAE , �20�

where A is the matrix of the coefficients a�i ��=1,2 , . . . ,m;
i=1,2 , . . . ,m� and E is a diagonal matrix that includes the
eigenvalues �i as diagonal elements.

III. RESULTS AND DISCUSSION

In our previous paper, we simplified the matrices U, F,
and S as follows.

�i� All c−2 order two-electron operators, i.e., JLL, JSS, KSL,
and KLS terms multiplied by 1/4c2, were neglected
from U and F. However, the nonrelativistic two-
electron part in F, i.e., JLL−KLL, was retained in Eqs.
�7� and �12�.

�ii� HA and all magnetic operators arising from � ·� were
neglected from U because they contribute to F and S
in the order of c−4.

�iii� The HA term in S was neglected for simplicity though
it contributes to S in the order of c−2.

According to these simplifications U is considerably simpli-
fied to

U = �T −
1

4c2� · pVn� · p�−1�T −
1

2c2TUS−1F� , �21�

where F is the Fock operator simplified due to �i�.
We introduce in the present work �1/4c2�� ·pJLL� ·p in

U and �1/4c2�U†� ·�JLL� ·�U in F, both of which were
neglected in our previous calculation. However, it is still
necessary to avoid a significant computational load in evalu-
ating the matrices which include the operator JLL. Hence we
approximate the charge density 
 j

occ�Li
† �Li in Eq. �13�

by a linear combination of the squares of the real
and spin-independent s-type spatial basis functions, �gk

s�2

�k=1,2 , . . . �.
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The charge density 
 is written as


 = 

j

occ

�Lj
† �Lj = 
���†� + 
���†� + 
���†� + 
���†� .

�22�

In our scheme, 
��+
�� is approximated as


�� + 
�� 
 

k

Dk�gk
s�2. �23�

Then,

JLL = 

k

Dk� gk
s�2�

1

r12
gk

s�2�dr2. �24�

The coefficients Dk are determined by the least square
method. As an example, in our calculation of the HI mol-

ecule, the large-component wave function �Lj �j=1,2 , . . . �
was made up of a linear combination of 814 spin-included
basis functions �� while 
��+
�� was approximated by the
linear combination of the squares of only 37 s-type spatial
basis functions �gk

s�2. The approximation of Eq. �23� there-
fore reduces the computational load considerably. The matrix
elements of

	���� · pJLL� · p����

and

	���U†� · �JLL� · �U����

can be evaluated using Eq. �24� and the resolution of the
identity �RI�.18 Furthermore, the integrals

TABLE I. Calculated nuclear magnetic shielding tensor components �in ppm� in HX �X=F, Cl, Br, I� systems.

Molecule Nucleus Property NRa SORAb SORA+JLL
c DHFd

HF F �� 378.5 387.9 387.5 384.9
�� 478.8 487.0 486.7 485.6

�isoe 412.0 421.0 420.6 418.4
��f 100.3 99.0 99.2 100.7

H �� 18.63 20.24 20.20 20.10
�� 42.91 44.04 44.07 43.90

�isoe 26.72 28.17 28.15 28.03
��f 24.28 23.80 23.88 23.80

HCl Cl �� 857.4 898.8 897.1 888.5
�� 1144.6 1185.5 1184.3 1176.7

�isoe 953.1 994.3 992.8 984.5
��f 287.2 286.7 287.2 288.2

H �� 22.81 24.38 24.22 24.07
�� 44.54 45.36 45.42 45.39

�isoe 30.05 31.37 31.29 31.18
��f 21.73 20.97 21.20 21.32

HBr Br �� 2375.0 2807.3 2796.7 2738.1
�� 3097.6 3455.1 3447.4 3402.1

�isoe 2615.9 3023.3 3013.6 2959.4
��f 722.6 647.8 650.8 664.0

H �� 20.31 30.12 29.53 29.82
�� 48.50 48.05 48.28 47.93

�isoe 29.70 36.10 35.78 35.86
��f 28.20 17.93 18.74 18.11

HI I �� 3880.9 5847.8 5810.5 5571.9
�� 5332.9 6881.7 6863.1 6597.1

�isoe 4364.9 6192.4 6161.4 5913.7
��f 1451.9 1033.9 1052.4 1025.2

H �� 19.28 49.15 47.65 46.92
�� 50.74 45.95 46.66 47.31

�isoe 29.76 48.08 46.99 47.05
��f 31.49 −3.20 −1.00 0.39

aNonrelativistic results taken from Ref. 19.
bNESC-SORA results taken from Ref. 15.
cPresent NESC-SORA results including the operator � ·�JLL� ·� /4c2.
dDirac-Hartree-Fock calculation results taken from Ref. 11.
e�iso= 1

3 �2�� +���.
f��=�� −��.
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	���� · pJLL� · p����

are easily computed using integration by parts.
We have confirmed the reliability of the approximation

of Eq. �23�, finding that the errors due to the approximation
of Eq. �23� are less than 0.1% for both 	���JLL���� and
	���ptJLLpu���� �t ,u�x ,y ,z�.

The results of calculations of nuclear magnetic shielding
tensor components �in ppm� for HX �X=F,Cl,Br, I� systems
are presented in Table I. In the table, �iso is �2��+��� /3 and
�� is defined as �� −��. The results of the present calcula-
tions, including the operator � ·�JLL� ·�, are shown in the
SORA+JLL column. The table compares the present SORA
+JLL values with nonrelativistic �NR� values,19 NESC-
SORA values,15 and DHF values.11 The present SORA+JLL,
previous NESC-SORA, and NR calculations use experimen-
tal atomic distances22 and a pointlike nuclear model. The
basis set functions used for SORA+JLL are the same as for
the previous SORA calculations. The common gauge origin
R0 is placed on the halogen nuclei.

Table I shows that the SORA+JLL results are closer to
the benchmark results of DHF than those of SORA. The
proton shielding results are especially improved, due to the
fact that relativistic effects on the proton shielding in HX
systems are mainly due to the spin-orbit interaction.23 For the
halogen shielding, however, considerable differences still re-
main between the SORA+JLL and DHF results. The ex-
change terms of KLS and KSL are neglected in the present
SORA+JLL calculation as they seem to be much smaller than
the JLL terms. The neglected JSS term may have a larger
effect on the shielding than the exchange terms, but it cannot
be evaluated simply. Another possible source of error in the
shielding calculation is the neglect of the �1/2c2�U†HAU
term in the metric operator S in Eq. �11�.
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