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Comparison of Ultrasonic Pole Figures Based

upon Ultrasonic Nondestructive Evaluation

Method with Pole Figures Based upon Finite
Element Polycrystal Model*

Shihua TANG** and Michiaki KOBAYASHI**

The ultrasonic wave velocities in a polycrystalline aggregate are sensitively
influenced by texture changes due to plastic deformation, and their relationship was
systematically analyzed by Sayers [J. Phys. D: Appl. Phys. 15 (1982)]. According to
Sayers’s proposed model, it is possible to construct ultrasonic pole figures via the
crystallite orientation distribution function (CODF), which can be derived by using
ultrasonic wave velocity changes. In the previous paper, the theoretical modeling to
simulate ultrasonic wave velocities propagating in solid materials under plastic defor-
mation has been proposed by the authors and proved to be in good agreement with
experimental results. In the present paper, the proposed theoretical modeling is
applied to construct the ultrasonic pole figures based upon Sayers’s model under
various loading conditions of uniaxial tension, pure torsion, equi-biaxial tension-
compression, biaxial compression and biaxial tension, respectively. To examine the
accuracy and reliability of the ultrasonic pole figures simulated by the proposed
theoretical modeling, the ultrasonic pole figures are compared with those analyzed by
the finite element polycrystal model (FEPM). The results show a remarkable qualita-

tive similarity among the two methods.
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1. Introduction

Many alloys of common metals such as aluminum
and steel are polycrystalline aggregates of single
crystals having preferred orientation (texture). When
a polycrystalline metal is plastically deformed, the
crystallites are deformed and rotated due to the crys-
tal slip and partially aligned to a certain crystallo-
graphic orientation determined by preferred orienta-
tion or texture depending on the plastic flow geometry
and magnitude. Generally, the degree and type of
texture is most conveniently discussed in terms of the
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crystallite orientation distribution function (CODF),
which gives the probability of a given crystallite in the
sample having a specified orientation with respect to
the sample axes. Roe™® and Bunge® gave indepen-
dent, but equivalent methods to obtain CODF based on
an expansion of CODF w(&, ¢, ¢) in a series of gener-
alized spherical harmonic functions. The quantitative
description of the ultrasonic wave velocities re-
presented by the crystallite orientation distribution
function (CODF) has been derived by Sayers“® by
adopting Voigt’s averaging method to calculate the
polycrystalline elastic constants averaged over a poly-
crystalline aggregate of cubic crystals. More recent-
ly, a variety of such techniques has been reported in
several review articles and papers by Hirao et al.®,
Clark et al.®® and Fukuoka et al.””, where Hirao and
Clark presented nondestructive evaluation methods
for predicting the anisotropy of the plastic strain ratio
(Lankford value or » value), and Fukuoka gave a
detailed description of the foundation and application
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of acoustoelasticity. All of them have made a gener-
ous contribution to the research work of nondes-
tructive evaluation of texture with ultrasonic waves.

In the authors’ previous study, the theoretical
modeling of an ultrasonic nondestructive method to
evaluate plastically deformed states has been
proposed and developed®-"?, Ultrasonic wave veloc-
ity changes under uniaxial tension test and combined
stress states were studied both theoretically and
experimentally?-1®_ The good agreement between
numerical and experimental results suggested the
accuracy of the proposed theoretical modeling. Suc-
cessively, this method was applied to examine
Sayers’s model by comparing the simulated results
with the experimental data of the longitudinal and
transverse wave velocities in both annealed and unan-
nealed aluminum alloy"*, where an attempt to use
Sayers’s model to predict texture changes under plas-
tic deformation was also made.

As one in a series of the authors’ study on the
ultrasonic nondestructive material evaluation method,
in this work we apply this method to characterize the
texture of 6061 aluminum alloy specimens under vari-
ous loading conditions of uniaxial tension, pure tor-
sion, equi-biaxial tension-compression, biaxial com-
pression and biaxial tension. The basis of this investi-
gation lies in the relationships between the orientation
distribution coefficients and the elastic constants, the
latter of which can be determined by ultrasonic wave
velocity simulated by the proposed theoretical model-
ing. To examine the accuracy and reliability of the
predicted ultrasonic pole figures, the simulated results
are compared with the pole figures analyzed by the
finite element polycrystal model (FEPM) proposed by
Takahashi®®.

2. Theoretical Outline

2.1 Plane wave velocities under plastic deforma-
tion based upon the proposed theoretical
modeling

In order to avoid verbosity and render the whole
work self-contained, velocities of the plane waves
propagating in a principal direction under plastic
deformation are given here directly. The detailed
derivation of longitudinal and transverse waves is
referred to from previous articles®-19,

Let the coordinate axis xs coincide with one of the
principal directions of the stresses o0i; and strains €;; at
the predeformed state, and the plane wave propagate
in the xs-direction ; then the longitudinal wave veloc-
ity V2 and the transverse wave velocities Vi and Vra
can be obtained as

2
00 Vi2=A+2G+ A;ég;) gu+ gt gss)
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in which g¢; is inherent anisotropy, po is the mass
density of the undeformed state, o: and &f are princi-
pal stress and principal plastic strain, and ¢ and 6. are
the angles between the x1-axis and the direction of the
principal stress and the principal strain, respectively.

In Eq.(2), I', I" and I'* are

Fono [ A=2G - 2 c
s {2(3/1+2G)+G(2x2+xa)}(ol+az+oa)

(2.a, b)

+(3-62)ont Glet),

P=(%— sza)(m— ), I'" = G([ef] —[£)),

where the detailed expression of Af; and the third-
order elastic moduli 1~ can be found in previous
papers®-19,
2.2 Ultrasonic wave velocities and ultrasonic
pole figures in a textured material
2.2.1 Crystallite orientation distribution func-
tion The quantitative description of the velocities
of ultrasonic wave propagating in the sample requires
knowledge of the orientation distribution of crystal-
lites in the sample. Let o-xix223 be an orthogonal set
of reference axes fixed in the sample with 21 and 22 on
the plate surface, and xs along the wave propagating
direction. Let o- X1 X>Xs be an orthogonal set of axes
for a crystallite given by the <100, <010> and <001>
crystallographic directions. The orientation of a
given crystallite with respect to the sample coordinate
system may then be defined uniquely by the three
Euler angles @, ¢ and ¢, as shown in Fig.1. The
crystal coordinate X; is obtained from the sample
coordinate x: by
(i) a rotation of ¢ about oxs
Xi=2x1¢0S ¢+ x28in ¢, xo=— 21 Sin ¢
+22C08 ¢, X5=23; (31)
(ii) a rotation of @ about ox:
X{'=ux{ cos §—xisin 0, Xo' =x3, Xa"=uxi sin 0
+xicos 6 ; (4)
(iii) a rotation of ¢ about 0X;
Xi=X{ cos ¢+ X7 sin ¢, Xo=— X{"sin ¢
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Fig. 1 Coordinate systems of sample and crystals

+ X7 cos ¢, Xoa=X7. (5)
Combination of Egs.(3), (4) and (5) gives

X cosp sing Ofcosd 0 —siné
Xo|=|—sin¢ cos¢ 0 0 1 0
X 0 0 1){sin@ 0 cos@
cos¢ sin¢g 0fx
X|—sin¢ cos¢ 0|l x| (6)
0 0 11| a3
It can be rewritten as
Xi:Rijxj or xi:Rji J» ( 7 )

where R;; is called transformation matrix, and its
components are listed in Table 1.

The orientation distribution of crystallites can be
represented by the crystallite orientation distribution
function (CODF) w(&, ¢, ) where £=cos 6. It is
convenient to expand CODF as a series. Clearly

w(E, ¢, =35 B 2 WanPl(&)

X exp(— img)exp(— ing), (8)
where A{£) are the generalized associated Legendre
function, and Wumn are the orientation distribution
coefficients (ODCs), respectively.

2.2.2 Ultrasonic wave velocities in a textured
material The relationships between the elastic
constants and ODCs based upon the Voigt averaging
methods developed by Sayers®, and the explicit
expressions of ultrasonic wave velocities in
anisotropic polycrystalline aggregates in terms of
ODCs are reviewed here briefly. .

To simplify the problems, it is assumed that the
densities of all crystallites in the sample are equal
such that the calculation of the ultrasonic wave veloc-
ities involves an average over only the single crystal
elastic constants. It is also assumed that the polycrys-

Four index tensor indices 77 11 22 33
Two index matrix indices m 1 2 3

Table 1 Components of transformation matrix R

x5 5 %
X cosBcosy cosg —siny sing —cosfcosy sing —siny cosg 5 sinfcosy
X, cos@siny cosg + cosy sin g —cos@siny sing + cosy cosd sinfsiny
X —sin@cosg sin@sing cosf

talline aggregate has orthorhombic symmetry, and
possesses three orthogonal mirror planes given by the
planes xi1xz, X223 and xsx1, such as a rolled plate. We
take as; as the direction cosines of the crystal frame
with respect to the sample frame, then the elastic
constants Ci: in the sample frame can be expressed
in terms of those in the crystal frame Cix: by

Chir= apiaqianasiCini, (9)
where ai; take the same values as Ry, as listed in
Table 1.

We adopt the approach of Voigt for averaging the
elastic constants and integrate Eq.(9) over Euler
angles to yield the clear expressions of Cix as

(Cip=Cu—2C,~2C.3,
(Ciy=Cu—2C,~2C.5
(Ciy=Cu—EC,~2C.3
(Ci>=Cut+Cu+ Cdy
(Cisy=Cut5Co+Cibs

(10)
{CLS = c44+%cu+ Cus

{Ci»=Cr2 ‘f‘éCu‘f' Cu64
KCiv= C12+%Cu &+ Cu85

gt cm%cu +Cubs

Cu=C11— CIZ—ZCM

It is pointed out here that it is always convenient to
take advantage of the symmetries to represent the
fourth-rank tensor Ciw: (or Ciix) as a symmetric 6X
6 matrix. To convert Ciw (or Chx) into a two-
dimensional matrix, we adopt the convention of
Nye"® and replace the six distinct pairs 7/ with a
single integer m as

23,32 31,13 12,52
4 5 6.

The angular brackets in Eq.(10) indicate an average over all the crystallites in the sample, i.e., an average over
the crystalline orientation distribution function w(&, ¢, ¢). The symbols 6, &, -+, d in Eq.(10) take the follow-

ing forms :
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(11)
Let the coordinate axes of the sample coincide
with the directions of principal stresses. For a plane
wave propagating in the direction of the xs axis at the
predeformed state, the longitudinal wave velocity Vi€

and the transverse wave velocities V&, V& are

V= /<sz3>’ Ve /<sz5>’ Ve /<i:4>’

(12)
where po is the density of the sample. If the velocities
Vioand Vroin the natural state are expressed in terms
of Lamé constants A and G as Vie’=(1+2G)/pe and
Vio*=G/p, respectively, then the explicit formulas for
wave velocities propagating in a textured material
can be obtainable by combining Egs.(10)~(12).

Clearly
Vifior 164/ 27
va —1+ 35(A+ZG) Cquo,
VTl 81/—75 Qf _5_
Vro_1 2 C Wao— /2 Wao)f. (19)

Vrz 8\/_71' f
Voo 17350 Cu<m00+ Wm)

As shown in Eq.(13), substitution of the orientation
distribution coefficients Wiw and Wiz into Eq.(13)
yields longitudinal and transverse wave velocities in
textured materials, that is, the ultrasonic wave veloc-
ities are dependent upon the ODCs in textured mate-
rials. Therefore, it is possible to predict the texture
behaviors from ultrasonic wave velocities conversely.

2.2.3 Ultrasonic pole figures Let ¢ specify the
normal to a given crystallographic plane, and x and 7
denote polar and azimuthal angles between # and axes
of sample coordinate system o-xix»xs, as shown in
Fig. 2. Roe® gave the relationship between the ODCs
and the normalized pole intensity ¢(¢, 7)(¢=cos ),
that is,

a(¢, n)= +2{Sz mZO PI(&) Wino cos mv}

(14)
where P/(¢) is the normalized associated Legendre
function. S; is determined as follows according to
different pole figures :
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Fig. 2 Orientation of plane normal ¢ with respect to the
sample coordinate system o-x12:xs

<100> pole figure Si=2x, Se=27, -+

110> pole figure Si=— /2, Se=—137/4, -

111> pole figure Si=—4n/3, Se=327/9, -+

(15)

In the present work, only transverse waves are used to
determine Wiew and Wiz for calculation of the normal-
ized pole density ¢(¢, ) in the <111 pole figure,
consequently Eq.(14) is simplified to

a(¢, 77)=E——{—<35§4 30£%+3) Wioo

— 7578 —8E241) Waso cos(277)}. (16)

Here, the texture is usually discussed in terms of the
ultrasonic pole figure, which is a stereographic projec-
tion of the normalized pole density onto a convenient
plane. The stereographic projection method will be
introduced in the next section.

3. Texture Prediction via Ultrasonic Pole Figures

3.1 Transverse wave velocity changes

In this section, the proposed theoretical modeling
of an ultrasonic nondestructive evaluation method is
applied to simulate the transverse wave velocity
changes under various loading conditions of uniaxial
tension (61: 02: 3s=1: 0: 0), pure torsion (simple
shear), equi-biaxial tension-compression (pure shear ;
01: 02: 0s=1: —1:0), biaxial compression (:: 0 :
03=—1: —1: 0) and biaxial tension (ci: 02: gz=1:
1: 0). The transverse wave velocities simulated by
Eq.(2) are presented with solid lines in Figs.3(a)
~(c), respectively. Here, we take aluminum 6061~
T6 as a study object and the internal state variables
used for numerical simulations are those determined
by ultrasonic wave velocity measurements with 5
MHz central frequency under uniaxial tension test'®,
We also suppose ultrasonic waves propagating along
the xs-direction. Two modes of transverse wave
velocities V71 and Vrz in Fig. 3(a)~(c) denote the
velocities polarized along the principal directions of
stress, respectively, and caused only by plastic defor-
mation without the acoustoelastic effect.
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Fig. 3 Velocity changes of transverse waves under uniax-
ial tension, pure torsion, biaxial tension-compres-
sion, biaxial compression and biaxial tension in
the plastic deformation range

It can be seen from Fig.3(a), (b) that velocity
changes polarized along the parallel ( V71) and perpen-
dicular (Vr2) directions to a principal direction of
stress are different from each other with the develop-
ment of plastic deformation under uniaxial tension,
pure torsion and equi-biaxial tension-compression.
However, velocity changes of Vri and Vr: mutually
are overlap under biaxial compression, as so under
biaxial tension, as shown in Fig.3(c). Transverse
wave velocity changes under simple and pure shear
states illustrated in Fig.3(b) show nearly the same
tendencies with the development of plastic deforma-
tion. '
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Fig. 4 Orientation distribution coefficient changes under
uniaxial tension in the plastic deformation range

3.2 Ultrasonic pole figures

Here in order to avoid verbosity, the uniaxial
tension test will be taken as an example to explain
how the ultrasonic pole figure is constructed.

First, based upon the numerical results of trans-
verse wave velocities simulated by the proposed theo-
retical modeling under the uniaxial tension test shown
in Fig.3(a), the orientation distribution coefficients
Wieo and Wiz are calculated via Eq.(13) as shown in
Fig. 4. Here, the hollow and solid circles represent
Wioo and Wiz, respectively. Next, the normalized pole
intensity ¢(&, 7) is calculated from the determined
ODCs Wi and Wiz at one certain plastic deformation
point (for example, at equivalent plastic strain &°=
4.989%). Thus, the {111} ultrasonic pole figure can be
constructed by projecting the calculated normalized

. pole density onto the projection plane for the <111

crystallographic direction, as shown in Fig.5(a).

In the same way, {111} ultrasonic pole figures
under the other loading conditions of pure torsion,
equi-biaxial tension-compression, biaxial compres-
sion and biaxial tension can also be constructed, as
shown in Figs.5(b)~(e), respectively. It should be
pointed out here that the longitudinal wave velocity
change due to the plastic deformation under pure
torsion (simple shear state) is deduced to be zero via
theoretical consideration®®, therefore it can be drawn
from Eq.(13) that the orientation distribution
coefficient Wi is also zero. However, velocity
changes of a longitudinal wave under equi-biaxial
tension-compression (pure shear state) are apparently
not equal to zero™ " so Wi is also not equal to zero
according to Eq.(13). This property of Win under
simple and pure shear states is responsible for the
difference of the ultrasonic pole figures near the cen-
tral area among both states. However, such a
remarkable difference of ultrasonic pole figures under
simple and pure shear states is not observed in the
outside area except for the 45 degree rotational dis-
crepancy caused by the different loading conditions.
This similarity is reflected by the similar transverse
wave velocity changes among both states shown in
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(a) Uniaxial tension: &7=4.98%

—= Ty

Tavy f 7o

S5

-

Tyx

(b) Pure torsion: £°=3.0%
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(c) Equi-biaxial tension-compression :
&7=4.93%

(d) Biaxial tension: g°=1.0%

(e) Biaxial compression: &°=1.0%

Fig. 5 {111} ultrasonic pole figures of an aluminum alloy
based upon ultrasonic nondestructive evaluation
method
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Fig.3(b).

Figure 5 indicates that texture developments
under the plastic deformation can be theoretically
analyzed by the simulated results of ultrasonic wave
velocities. The successful trial on the prediction of
texture development by ultrasonic pole figures implies
the possibility of practical applications of the
proposed theoretical modeling. For example in alumi-
num can production, ultrasonic waves can be used as
a process control monitor, namely texture measure-
ment after hot rolling. This appears to be quite
promising.

Sayers’s theory is based on the following assump-
tions : the velocities of ultrasonic waves traveling in
the (macroscopic) orthotropic continuum are
influenced by (1) single crystal moduli and (2)
preferred orientation of the crystallites. Other effects,
such as grain boundaries, impurities, dislocations, and
inhomogeneities are not taken into account in the
modeling. Therefore, the accuracy and reliability of
the theoretically analyzed results should be compared
accordingly with diffraction data of neutrons that
penetrate through the metal samples as the ultrasonic
waves do. However, the comparison with the neutron
diffraction pole figure is not made in the present work,
because the neutron equipment is usually available
only at some central facilities. The comparison with
X-ray diffraction data is also not made here, as X-
rays sense only a surface layer on the order of 10 pm
thickness. Therefore, an alternative method, i.e.,
finite element polycrystal model (FEPM) is employed
to examine the theoretically analyzed ultrasonic pole
figures, because FEPM is already considered as a
well-developed technology for the analysis of micro-
structural behaviors due to plastic deformation.

4. Comparison of Ultrasonic Pole Figures with
Pole Figures Analyzed by Finite Element Poly-
crystal Model

In this section, the finite element polycrystal
model (FEPM) proposed by Takahashi’®, where each
crystal is regarded as an element and its orientation is
given randomly in the case of initial isotropy, is
applied to calculate crystal orientations (Euler angles)
of face centered cubic (FCC) aggregates under plastic
deformation. These calculated Euler angles (4, ¢, ¢)
are then used to construct {111} pole figures via the
stereographic projection method.

4.1 Stereographic projection method

In order to be able to discuss specific directions
and planes within a crystal, it is very useful to have
some sort of a map on which we can show these
directions and planes of crystals. The stereographic
projection provides us with such a map and it is widely
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Fig. 6 Schematic diagram of stereographic projection
method

used in metallurgical literature. Although extensive
information on this subject is available as reported by
several authors, for example by John®® it is still
worthwhile to introduce briefly how stereographic
projection is obtained.

As is shown in Fig. 6, a sample reference frame is
defined first. A reference sphere of unit radius, center-
ed at the origin of the sample reference frame, is then
defined. The stereographic projection plane is defined
as the tangent plane which comes in contact with the
reference sphere at point N in the sample reference
frame. In this system, a crystallographic direction,
for example, [100], is represented by its pole P at
which the direction intersects the reference sphere.
The pole P is, then, represented by its stereographic
projection @, which is the intersection of the projec-
tion plane with the line OP, where OP is the line from
the point of projection O to the pole P.

As discussed in the preceding section, the micro-
scopic coordinate X; has a relationship with the
macroscopic coordinate x: by Eq.(6) or (7). How-
ever, it turns out to be more useful and convenient to
specify the orientation of a crystal plane by Miller
indices for stereographic projection. Now consider a
crystal plane denoted by Miller indices (/u, /, hs).
The cosine directions (Oi, Os, Os) of a unit normal
vector O in this crystal plane can be expressed in
terms of Miller indices as

hi ;
QiR (=1, 2, 3).
Gt 3) (17)

As shown in Fig. 6, the vector ¢ with respect to the
sample coordinate system is related to the unit normal
vector O with respect to the crystallite coordinate
system, according to Eq.(7), by
Oi:RjiOi (Z, j:1, 2, 3) (18)

Let the orientation of ¢ with respect to the sample
coordinate system o-x12223 be specified by polar angle
@ and azimuthal angle 8 as shown in Fig. 6, then its
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components can be obtained as

o1=sin @ cos B, o;=sin @ sin B, o3=cos a. (19)
By denoting its stereographic projection as &, we can
easily obtain its coordinates as

EzZsinacosB: 200 _2sinasinf
1+cos a 1+0s" " 1+4cos a
= 200
Tiea) (20)

This indicates that if we know Euler angles (4, ¢, ¢),
the unit normal vector O of any crystal plane can be
represented by its stereographic projection.
4.2 {111} pole figures analyzed by finite-element
polycrystal model

Finite-element analysis is carried out with N=
9xX9X9 elements possessing random crystal orienta-
tions before deformation. With regard to the present
purpose, Euler angle changes under various loading
conditions of uniaxial tension, pure torsion, equi-biax-
ial tension-compression, biaxial compression, and
biaxial tension are calculated by FEPM. {111} Pole
figures are then constructed, in the manner described
above, and they are shown in Fig. 7.

Figure 7 shows the texture developments due to
the plastic deformation (at the equivalent plastic
strains 5%, 25% and 50%) under various loading
conditions. As it is well known that each crystal in
FCC metals such as aluminum possesses four slip
planes, the slip system having maximum slip amount
among the four slip planes is called primary slip
system ; the slip systems on the other three planes are
called secondary slip systems. Hence, in pole figures,
as shown in Fig. 7, the primary slip system in each
crystal is colored red and three secondary slip systems
are distinguished by colors of blue, green and black
according to the order of slip amount.

From Fig.7 we can see that crystals having a
randomly distributed orientation at the initial
isotropic state show a preferred orientation according
to the development of plastic deformation (25% and
509%). This implies that under the development of
plastic deformation, the individual grains will rotate
and slide with respect to each other under the applied
forces, and the polycrystalline aggregate will be
changed from that of initial isotropy to one of strong
anisotropy. Here it is also pointed out that the tex-
ture developments under pure torsion (simple shear
state) and equi-biaxial tension-compression (pure
shear state) are highly similar to each other, that is,
both show a sharp tendency in terms of the develop-
ment of plastic deformation, as shown in Figs. 7(b),
(c). The discrepancy between the two pole figures
lies in the fact that total spin @12 is assumed to be zero
under the pure shear state, however, it is clearly not
zero under the simple shear state, as expressed by
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Eq.(25) reported by Takahashi et al.*?, or in an other
related article reported by Kobayashi et al."”. Except
for this discrepancy, stress and strain states are the
same among simple and pure shear states.
4.3 Comparison and discussion

By comparing Fig.5 with Fig. 7, a good qualita-
tive agreement between ultrasonic pole figures and
FEPM pole figures of a primary system (denoted by
red) is observed. This means that texture develop-
ment of a primary slip system under plastic deforma-
tion can be theoretically predicted using Wio and Wiz
determined by ultrasonic transverse wave velocities.
However, by comparison of the pole figures analyzed
by FEPM with the ultrasonic pole figures, the ultra-
sonic pole figures based upon only transverse waves
presented in the present paper fail to describe the finer
structures. This is mainly caused by consideration of
only two lower order ODCs to construct ultrasonic
pole figures as shown in Eq.(13). In fact, providing
that higher order ODCs such as Wi are determined
from Rayleigh surface wave velocity, it is capable of
constructing ultrasonic pole figures with a finer struc-
ture®, as possible by FEPM. However, regardless
of such deficiencies, this research work suggested the
possibility of applying our proposed theoretical model-
ing of an ultrasonic nondestructive evaluation method
to the texture characterization, and also the possibil-
ity of clearing the physical meaning of the ultrasonic
pole figure by comparing the ultrasonic pole figures
with those analyzed by FEPM.

5. Conclusions

In the present paper, as one in a series of the
authors’ studies on the ultrasonic nondestructive eval-
uation method, we attempted to apply the proposed
theoretical modeling to texture characterization via
ultrasonic pole figures under various loading condi-
tions of uniaxial tension, pure torsion, equi-biaxial
tension-compression, biaxial compression and biaxial
tension. These predicted results were then compared
with pole figures analyzed by the finite element poly-
crystal model. Good qualitative agreement between
the two results suggested the accuracy and reliability
of our proposed theoretical modeling.

As a result we can conclude that texture changes
caused by primary slip system can be theoretically
predicted by numerical simulations of transverse
wave velocities. This suggests the possibility of using
the proposed theoretical modeling as a process control
monitor in the manufacturing industry, for example,
texture measurement of a rolled alloy sheet. This
appears to be quite promising.
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