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Abstract 

A blind deconvolution method is developed on conditions: a point spread function is band-
limited, both an object and a PSF are nonnegative, and output is a diffraction-limited object. 
These conditions enables the development of a practical blind deconvolution method cooperating 
with nonnegativity constraint. Computer simulations conducted to investigate the performance of 
the method.  
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Blind deconvolution (BD) is a problem of finding two unknown functions from their 

convolution1. As the two unknown functions, we can regard the intensity distribution of an object 

(object function) and a point spread function (PSF) in typical applications in Optics. A 

convolution image is then supposed to be observed through an optical system.  

As known well, there is a condition under which BD is possible 2: the supports of both an 

object and a PSF are exactly specified. This condition will be, however, seldom satisfied because 

the PSF of an optical system is usually band-limited and its extent is not finite. Thus, 

constraining a PSF with a finite support undesirably causes truncation at its edge. Moreover, 

even the support of an object is unknown in many cases when the object is to be unknown. In 

this Letter, we purpose to develop a practical BD method under three conditions: (a) a PSF is 

band-limited, (b) both an object and a PSF are nonnegative, and (c) an output from BD is not an 

object itself but its diffraction-limited version. We should emphasize to use no support constraint.  

 Condition (a) is indispensable to make BD practicable, as described above. We suppose 

that the spatial frequency spectrum of a PSF is zero beyond a cutoff frequency.  

Condition (b) is always satisfied when using an incoherent imaging system because both 

an object function and a PSF have nonnegative intensity distribution. Nonnegativity of functions 

sometime plays an important role in BD1,3,4. The reason is, however, not yet clear why 

nonnegativity constraint is effective. In this Letter, we implement nonnegativity constraint as the 

way described by Biraud4, which is followed by some authors5-7. We will illustrate the effect of 

such nonnegativity constraint.  

Condition (c) is closely related to (a). Since an observed image is band-limited according 

to condition (a), we must estimate values of spatial frequencies outside of a cutoff frequency if 

we attempt to obtain an object itself. This indicates that BD algorithm must include 
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superresolution effect. We think supreresolution to be a difficult problem and believe that 

avoiding it will be advantageous in developing a BD method. In other words, condition (c) 

makes our problem easier. It is the first time to clearly treat condition (c) in BD problems, to our 

knowledge. 

 Now, we state our BD problem. We observe an object o(x,y) through an incoherent 

optical system with a shift-invariant PSF p(x,y), and then obtain a convolution image: 

( ) ( ) ( ) ,,,, yxpyxoyxi ∗=      (1) 

where * denotes a convolution operation. Introducing an Airy Disk m(x,y) with the same cutoff 

frequency as the PSF, we take its convolution with i(x,y): 

( ) ( ) ( )
( ) ( ) ,,,

,,,
yxpyxd

yxmyxiyxg
∗=
∗=

     (2)  

where d(x,y) is the diffraction-limited object defined by 

( ) ( ) ( ) .,,, yxmyxoyxd ∗=     (3) 

The resultant image g(x,y) can be regarded as the convolution of d(x,y) and p(x,y). The BD 

problem considered here is then to obtain d(x,y) and p(x,y) from g(x,y). 

 We next introduce nonnegativity constraint into our BD problem. A PSF p(x,y) is 

supposed to be nonnegative, and d(x,y) is also nonnegative because it is a convolution of two 

nonnegative functions. Therefore, we represent p(x,y) and d(x,y) as the squares of real functions 

φ(x,y) and ψ(x,y) as 

( ) ( ){ 2,, yxyxd φ= }      (4) 

and 

( ) ( ){ } ,,, 2yxyxp ψ=       (5) 

respectively4-7. As a result, g(x,y) becomes 

 3



( ) ( ){ } ( ){ } .,,, 22 yxyxyxg ψφ ∗=     (6) 

Taking Fourier transform leads to  

( ) ( ) ( ){ } ( ) ( ){ } ,,,,,, vuvuvuvuvuG ΨΨΦΦ ∗∗=     (7) 

where (u,v) is spatial frequency coordinates and uppercase functions denote the Fourier 

transforms of corresponding lowercase ones. This equation indicates that G(u,v) is the product of 

two autoconvolutions of Φ(u,v) and of Ψ(u,v). We can translate our BD problem as to obtain 

Φ(u,v) and Ψ(u,v) from G(u,v). 

 Let us consider the effect of nonnegativity constraint in Eq. (6). If we do not use the 

nonnegativity constraint, a BD problem is then conventional, that is to say, to solve 

G(u,v)=D(u,v)P(u,v). For digital images, G(u,v), D(u,v) and P(u,v) are specified with the values 

of pixels inside an same cutoff frequency. Thus, the numbers of such pixels in their spectra, NG, 

ND and NP, are identical. In this case, BD problem means to solve a set of undetermined 

equations because the number of unknowns, (NG+ND), is always larger than that of equations, NP. 

The introduction of nonnegativity constraint drastically improves situation. Since an 

autoconvolution operation enlarges a cutoff frequency twice, the areas of Φ(u,v) and Ψ(u,v) are 

the quarter of those of D(u,v) and P(u,v), respectively (Fig. 1). As a result, the number of 

unknowns becomes (NG+ND)/4 that is less than NP. Nonnegativity constraint favorably manages 

to change a problem of solving undetermined equations to that of solving overdetermined ones. 

A standard approach to solving overdetermined equations is to use least square minimization. 

We also use conjugate gradient minimization as frequently used in BD methods1-7. 

 We now present our BD method. We define an error metric by  

( ) ( ) ( ){ } ( ) ({ )} .,,,,, 2∑∑ ∗∗−=
u v

vuvuvuvuvuGE ΨΨΦΦ   (8) 

 4



Minimizing this error metric with a conjugate gradient procedure7, we estimate Φ(u,v) and 

Ψ(u,v). Fourier-transforming them and successively taking squares, we can finally obtain 

estimates of d(x,y) and p(x,y). In the conjugate gradient minimization, the algorithm starts from 

initial estimates of Φ(u,v) and Ψ(u,v), and alternatively renews them so as to reduce the error 

metric (Fig. 2). The iteration is terminated when the error decreases no more.  

 A key factor in driving our method is how to determine initial estimates. An intuitive 

procedure is to generate random numbers inside a cutoff frequency on both real and imaginary 

parts of Φ(u,v) and Ψ(u,v), and then to force the real and imaginary parts to be even and odd, 

respectively. If we have some information on an object, a PSF or both, the following method will 

be advantageous: we first give initial estimates of d(x,y) and p(x,y) and then take squared roots of 

them to obtain φ(x,y) and ψ(x,y). Although we must give the signs of pixel values in φ(x,y) and 

ψ(x,y), we can not usually determine those. A rude but simple countermeasure is to set all the 

signs to be positive. Once we obtain φ(x,y) and ψ(x,y), we take their Fourier transforms and then 

force resultant functions to be zero outside of a cutoff frequency to obtain Φ(u,v) and Ψ(u,v). 

Such initial estimates will contain some information on d(x,y) and p(x,y). However, we should 

note that d(x,y) and p(x,y) inversely calculated from the initial estimates differ from those given. 

We will use the latter method in our simulation. 

 We have to comment about solutions obtained with our method. We expect to obtain the 

pair of D(u,v) and P(u,v) from the Fourier transform of Eq. (2): 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) .,,,

,,,,,
vuPvuMvuO

vuPvuDvuMvuIvuG
=

==
   (9) 

There are, however, possible combinations of functions: (i) D(u,v) and P(u,v), (ii) I(u,v) and 

M(u,v), (iii) O(u,v)Π(u,v) and P(u,v)M(u,v), and (iv) G(u,v) and Π(u,v), where Π(u,v) is a circle 
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function with the same cutoff frequency as P(u,v). The circle function is necessary because our 

algorithm restricts frequency region to be recovered inside a cutoff frequency. Combination (i) is 

the solution we want. Combination (ii), which is of an observed image itself and an Airy disk, is 

known as a trivial solution. Combinations (iii) and (iv) never appear as a solution of our BD 

problem, since they break nonnegativity constraint. The breakage of nonnegativity is because the 

Fourier transform of Π(u,v) contains negative pixel values. We can regard that explicit solutions 

with our method are only those of combinations (i) and (ii). 

 We now demonstrate our method with computer simulations. We used a two-point object 

with the intensity ratio of 0.6, which is shown in Fig. 3(a), and stellar speckle-like PSF. Figure 

3(b) shows their convolution image with noise of 25 dB. As initial estimates of d(x,y) and p(x,y), 

we adopt random-valued disks with the radius of 10 pixels. Image size is with 64x64 pixels. 

Figure 3(c) shows an image obtained with our method. We can clearly see two points in the 

image. Its mean square error to the original object (Fig. 3(a)) was 0.056. For comparison, we 

show an image obtained with the method by Ayers and Dainty in Fig. 3(d). Its MSE was 0.692. 

 Through the following simulation, we describe the dependency of solutions on initial 

estimates. We fixed the initial estimate of PSF to be a random-valued disk with the radius of 30 

pixels, and used two points with a variable intensity ratio as the initial estimate of an object. We 

conducted our BD method with changing the intensity ratio from 0.0 to 1.0 with the interval of 

0.1, and then measured the intensity ratio of resultant two points. 

 Figure 4 shows the result. In the graph, the horizontal axis is the intensity ratio of an 

initial estimate. The vertical axes show the intensity ratio of resultant two points (solid squares) 

and an error value E with which the algorithm converged (open circles). When the intensity ratio 

of an initial estimate was zero, both the resultant intensity ratio and the error value were zero. 
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This case corresponds to the trivial solution. In the two cases with initial intensity ratios of 0.1 

and 0.2, BD failed so that the resultant intensity ratios seriously deviated from the true value 0.6 

and the error values became larger than the others. For intensity ratios of initial estimates larger 

than 0.2, resultant intensity ratios were near to 0.6. In addition, error values were almost same. 

From these results, we judged that the algorithm converged near to the true solution.  

 In Fig. 4, we can see that a valley of error values around the trivial solution will be deep 

and narrow. On the other hand, a valley around the true solution will be relatively shallow but 

broad. In our simulations, the trivial solution occurred only from the initial estimate with the 

intensity ratio of 0.0. At least, we can say that the trivial solution seldom occurs from initial 

estimates other than itself. 

 In conclusion, we treated the fore-mentioned conditions (a), (b) and (c) in BD problems 

for the first time, to our knowledge, and then proposed a BD method. The method is practical in 

applications in Optics because of the adoption of the conditions. We also described that the 

introduction of nonnegativity constraint leads a BD problem of solving a set of overdetermined 

equations, which will be not unsolvable. We demonstrated the performance of our method 

through simulations. Our method can produce not only a true solution but also a trivial solution. 

However, we showed that a trivial solution would have less feasibility.  
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Figure captions 

 

Fig. 1.  Illustration of effectiveness on nonnegativity constraint.  

 

Fig. 2. Proposed method. 

 

Fig. 3. Demonstration with simulation: (a) object, (b) noisy convolution image, (c) image 

restored with the present method, and (d) image obtained with the Ayeres-Dainty method. 

 

Fig. 4. Dependence on initial estimate.  
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