On the Stress Field in Orthogonal Curvilinear Coordinates

[. OKUMURA*

Abstract

Stress and strain tensors, the equilibrium equation in terms of the stress tensor and transfor-
mation laws for the tensors, in orthogonal curvilinear coordinates, are presented. The components
of the tensors are defined as covariant components of second-order tensors, which are identical to
stress and strain components. The invariants of stress and strain, and the principal stresses and
strains in the orthogonal curvilinear coordinates are obtained from characteristic polynomials and
eigenvalues of the tensors. The transformation expressions of stress and strain components
among cylindrical, spherical and rectangular Cartesian coordinates are obtained from the transfor-

mation laws.

1. Introduction

Studies on two- and three-dimensional elasticity have a long history and have recently devel-
oped into studies on the nonlinear theory of elasticity. The linear theory of elasticity seems to be
substantially established at the present time, as has been summarized by Gurtin?. The linear theo-
ry of elasticity in the future will turn to the construction of a simplified theory of the stress field in
curvilinear coordinates and anisotropic solids.

Although theories of displacement and stress fields in curvilinear coordinates have long been
studied in continuum mechanics, they may be simplified in orthogonal curvilinear coordinates
which are a special case of curvilinear coordinates. The usual theories have left the indefiniteness
that components of stress and strain tensors in orthogonal curvilinear coordinates do not directly
correspond to stress and strain components, unlike components of the Cartesian tensors. This
may be caused by the restriction that the equilibrium equation, in terms of the stress tensor in
orthogonal curvilinear coordinates, must be formally identical to that in rectangular Cartesian coor-
dinates. If the restriction is excluded, it may be possible to determine new stress and strain ten-
sors in orthogonal curvilinear coordinates and to construct a unified theory of the stress field in
orthogonal curvilinear coordinates. The possibility for the new stress and strain tensors is clear
from observing that the stress-strain relations expressed by components of stress and strain are
identical to those in every coordinate system belonging to orthogonal curvilinear coordinates. Fur-
thermore, the transformation expressions of stress and strain components between orthogonal
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curvilinear coordinate systems demonstrate implicitly the existence of the new stress and strain ten-
SOrs.

This paper is concerned with stress and strain tensors, the equilibrium equation in terms of the
stress tensor and transformation laws for the stress and strain tensors, in orthogonal curvilinear
coordinates. The components of the stress and strain tensors are defined as covariant components
of second-order tensors, which are identical to stress and strain components. The equilibrium
equation expressed by the stress tensor differs from that expressed by the Cartesian tensor, but the
stress-strain relations are identical to those expressed by the Cartesian tensors. When orthogonal
curvilinear coordinates are specified to rectangular Cartesian coordinates, the equilibrium equation
expressed by the stress tensor in orthogonal curvilinear coordinates yields that in rectangular
Cartesian coordinates. Furthermore, the invariants of stress and strain, and the principal stresses
and strains in orthogonal curvilinear coordinates are obtained from characteristic polynomials and
eigenvalues of the stress and strain tensors. The transformation expressions of stress and strain
components among cylindrical, spherical and rectangular Cartesian coordinates are obtained from
the transformation laws for the stress and strain tensors. The scalar representation of the equilib-
rium equations and the strain-displacement relations in orthogonal curvilinear coordinates depend
on Saada?, and mathematical formulae and the transformation laws for the stress and strain tensors
depend on Iwahori®.

2. Basic equations in orthogonal curvilinear coordinates

(1) Mathematical formulae?®

We determine orthogonal curvilinear coordinates ( a, 3,y ) as shown in Fig.1 and let the basis
vectors be eq, g and e, in the orthogonal curvilinear coordinates and ex, ey and e; in rectangular
Cartesian coordinates (x,y,z).

Y-curve

B=const.
a=const.

Ca

B-curve

a-curve

Fig. 1. Orthogonal curvilinear coordinates.
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We consider that the two sets of coordinates correspond one to one and that there are the following

relationships between them :
x=fi(a,B,7), y=fi(a,B,7), z= fi(a, B,7) (la—c)

a=¢(x, 12, B=9,(x,1.2), v =@(x, 7,2 (2a—c)
If we let the first fundamental quantities in the orthogonal curvilinear coordinates be g,, g, and g,

they are expressed as

(e @ T o) ]
S EREEE

and the orthogonal conditions in the orthogonal curvilinear coordinates are

o"xﬁx :9y0y dz az -0 axo"x+:7yay dz Jdz 0 (4a, b)

— , —_—=
&a i Jdadpf Jda 6/3 dpdy dpdy JIBIy
dx dx ay dy 9z 9z

+ 2292 _9
9y da 9y 9a  dy da #e)

The transformation laws for the basis vectors between both coordinates are as follows :

1(dx a dz 1(d a

3 =—[—e‘, +—yev +—ez) g =—(—xex +—yey +£iez) (5a, b)
g \da da = da ap ap - Ip
12 J

e, = [ xex+—yey+£ez) (¢)
8 \dy ay dy

or

1 dx 1 dx 1 ax

x = = a x x Y s =_La—y a 1 ay la—y‘e?' (68’ b)
g da &M g Iy 8 Ja &M & JY
1 0z 1 r?z 1 0z

e, =——e, +——e; +——e, 60)

gda ’ g ')ﬁ 8 Iy

If we denote a scalar field by f and define a vector field as
A=A,e, + Age, + Ae, @

we obtain the gradient of f, the divergence of A4, the rotation of A4 and the Laplacian operator in the

form
gradf“il% o glz jg +é‘%e, (8a)
awa-—L [ 2 (A + () + - (s )] @)
ota= Ll Lo )- aiy(ng,)]e,, + L ) Zea )b

1 J
Sz el
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- Yl anl j.(&i) 2 (gsgl 2 )+L(&i) @®d)
88,8 | da\ g da) B\ g, dB) dy\ g, dy
(2) Displacement vector, strain and stress tensors
If we let the displacement vector be %, it is defined as
u=ue, +use;+ue =ue, +ue, +ue, ©)

where u; (i=a, 8,y ) and u, (k=zx, y, z) denote displacement components in the orthogonal curvi-
linear and rectangular Cartesian coordinates, respectively. The transformation law for the dis-
placement components between both coordinates is as follows :

1 a a
u, =—(u,r od +uy—y+u E) U =— L ( ﬂx dy ﬂ) (10a, b)
g\ " da da da dﬂ “ aﬂ ap
o l(u a7x+u dy+ azJ 100)
=T Ux . IC
&\ Tay Tay oy
or
e dx dx U, o'?x U d Uy a u, g
iy Up ox . A y y 9y (11a, b)
g; do g, df g, 67 & da gz aﬂ g; dy
_Us dz Ug dz u, 9z
Lo g poc Y (11¢)
gl da g, df g, ‘97
If we let the strain tensor be E, it is defined as
Erm Enﬂ say
=|Ea Em Epy (12)
&ya Eyp €y
where
Ep =Epy s Euy =€ s Epy = Egp (13a—c¢)
and €,,, €5and €, denote normal strain components, and €s,+ €,, and € ,denote shearing
strain components. They are expressed by the displacement components %, in the form?
aJ u u du
b= ta Mo 08 M O 1O, W dg, u, Jg (l4a.b)

& da g8 B g8 Jy & IB g8 dy gg da

1 du, U, 9g; Ug g,

£y S et e o el e, l4¢

" g Iy 88 Jda  g,g, Ip (ac
lgzé()g3é’(u,) lgsé[ll,) gla(“)

L Epy S| | =] =2 (14d, e)

" 2[& dy\g/) & dB\g)| ™ 2|g da\g,) g ay\g,

e,,,,=1[&"( ] £ "("”) (149
2| g, 3B\ g g da\g,

If we let the stress tensor be T, it is defined as

orm Gaﬂ aay

T=|0, 04 o0, (15)

Oyq Oy UY)’



On the Stress Field in Orthogonal Curvilinear Coordinates 55

where
Oy =0p,, O, =0,, Op =0, (16a—c)

and g,,, 0,5 and g, denote normal stress components, and 05, 0,,and o,, denote shearing

stress components.  If we use the stress tensor defined in Eq. (15), we obtain the stress vectors as

Ty B0, + T8, YO 0, Tl =08, Oy, +0,8 (17a,b)

1, =0,.€, +0e, +0, e, 17¢)
If we use the above stress vectors, we can express the stress tensor as

T=n,t,+nyt, +nt, 18)

wheren,, n, and n, denote the basis vectors.

(3) Stress-strain relations
The relationships between the stress tensor T and the strain tensor E, i. e., the stress-strain
relations are
T=2G(E+ L le) ,E= —I—(T——V—I@) (19a, b)
1-2v 2G I+v
where ¢ and ® denote the volumetric dilatation and the stress invariant, respectively, which are

expressed as
e=THE)=¢,, + €45 +¢, , O=Tr(T)=0,, +0,+0, (20a, b)

and G, v and I denote the shear modulus, Poisson’s ratio and the unit tensor, respectively. Equa-
tions (19a, b) are also written in the components of the stress and strain tensors as

v 1 v o
O,I = ZG(EU + Eeéy) 5 E"= E(O’” - m‘@(s”) (l, J=a, ﬁ! Y) (Zlav b)

where ¢ denotes the Kronecker delta. By making use of Eqs. (21a, b), the stress-strain relations
in the orthogonal curvilinear coordinates are concretely written in the form

v v v
Ope = ZG(EM + — e) > Opp = ZG(E,,,, +me) » O = 2G(£w + T 2% e) (22a—c)
04, =2Ge,,, 0, =2GE¢,,,0,, =2Ge,, (22d—1)
6o~ 157®) =35 1) & =36(" i)
oty Ll igl e mt e S, e m—]a —c
=56\ \% TTay ) TG\ % T ) B TG\ 9 Ty (232—0)
—.?.fl_ _ oyn _ onﬂ
=26 "2 % " 3G @3d—1)

(4) Equilibrium equations
By making use of the components ¢ (1, j= a, 3, y) of the stress tensor in Eq.(15), the equi-
librium equations in the orthogonal curvilinear coordinates are expressed in the form?
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a g g
—(Cyaglgz)+oaﬂgsa_[;+oayg2 '

g +
ﬂaglg.\) r

J
E(onaglgfi) i+

d

75
98,

—0, 8y e +88,8:b,=0

: ( ﬂﬁg2g1) aﬁ(aﬂﬂgng) :}, (Uvﬂglgz)+aﬂvgl c;g}v/ Tpa83 ag2

ag
=0 & ‘(ﬁ + glgzngﬁ =0

%(%gzg;) M(o,,,g.gx) i,(" 88)+ m&% LYY e

B

8,
oﬂﬂgl +g|g233b =0

gy

(24a)

(24b)

(24¢0)

where b, blg and by denote body forces per unit volume. If we multiply Eqs. (24a-c) by the basis

vectors e, ez and e, and sum the results , we obtain

[g2g3 Ooa€s +O 48, +0, €, )]+%[g,g_,(oﬁﬂe,l +0ye, + 0, e, )]

+E[g,g2 O,.€, +0,€e, +owey)]+g,g2g_,b+F=0

where

IE g, agl g, g, g, g,
F_(auﬂgJ +0,8 — ar O 83 a_ayng e, + Upagaz"'aﬂyglw

B da

t9g3 g, g,

-0, 8 —2- + +0,8 —=2~0,,8 ——
g| t?ﬂ 0,83 6’[3) ( 0,,8 — 9 w& B aa &2 dy

and b denotes the body force vector, which is expressed as
b=b.e, +bse, +b,e,
By substituting Eqs. (17a-¢) into Eq. (25), we obtain

1
£18,8;

[ % (2:t,) +

glg.‘lﬁ)+£(glg21y ):I"' b+ = =0

=
ap 818,83

By substituting Eq. (18) into Eq. (28) and making use of Eq. (8b), we obtain

divT + b+ ¥ =0
818,8;

The vector F'in Eq. (26) is changed to the following expression:

F=—(0,,88 8adg +0,g¢g gradg, +0, 8,8, gradg,)+o,, p
1
&8s gz 818, dg3 [ gl gl)
+ O +O' + + 0 —_—1e
a g 9B “ 83 ‘7)' w8 B i ay) "
g, ‘?ng ( g3 (7g3)
+ 0,8, =2 +0, g —=% +
( pa83 Ja oy 81 3y 0182 —— Ja 9,58 B

_(ln e, 8,8, grad g, +1,-e,8,8;grad g, + t, -eg,8 gradg3)+g2gl(oanea + 0,8,

883 (?gl

@5)

(26)

@7

(28)

29)

)
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-gradge_ + g,gJ(o,,nea +oge, +oge, )~grad g€, + 818, (U,,.e.. +oge, +o,e, ) -grad g,e,
= 8,81, (gradge, —e, grad g,) + g,8,1, -(grad g,¢, —e, grad gz)
+88:1, -(grad g:e, —e, grad g,)
= 2,8:(n,-T)-(grad ge, —e, grad g,) + g,gl(nﬁ -T) : (grad g,¢, —e, grad gz)
+2,8, (ny -T) . (grad g.e, —e, grad gl) (30)

By substituting Eq. (30) into Eq. (29), the equilibrium equation in terms of the stress tensor is
obtained in the form

divT +b+ i(nn -T) . (grad ge, —e, grad g,)+ L(nﬂ ~T)-(grad g,e, — e, grad gz)
g

& 2
+ gi(n’ -T)-(grad g.e, —e, grad g3) =0 @D
3

where the three dyadics in Eq. (31) become the three alternate tensors, which are expressed as

o - 19& _19s
g, 9B g 9y
1 dg,
gradge, —e gradg =| —— 0 0 (32a)
g 9B
g dy
o J19&
g da
19
grad g,e, —e, grad g, = %85 0 _19s (32b)
, 8 da g dy
0 198 0
g 9y
0 0 198
g Jda
gradg.e, —e, gradg, = 0 0 198 (32¢)
g 9B
_ 198 _ 198
g da g, B
If we replace a, 3 and y in Egs. (3a-c) with x, y and 2, respectively, we obtain
8§ =8=8=1 33)

By substituting Eq. (33) into Eq. (31), we obtain the equilibrium equation in the rectangular Carte-
sian coordinates in the form

divT+b=0 (34)

where T and b are the stress tensor and the body force vector in the rectangular Cartesian coordi-
nates, respectively, in which @, 8 and y in Egs. (15) and (27) are replaced with x,y and z . In the
case of the rectangular Cartesian coordinates, the stress tensor T becomes the Cartesian tensor.

(5) Transformation of stress and strain tensors®

We consider the rectangular Cartesian coordinates ( x, y , z ) and the orthogonal curvilinear



58

1. OKUMURA*

coordinates (a, 3,y ) having the same origin.
both coordinates be o;; and ¢ and the basis vectors be e and €i, the components 0, and g are

expressed as

o, = T(e, ,€; )’ ail T T(

ei,ej)

(j=o.By=xyz=123)

If we let the components of the stress tensors in

(35a, b)

Then, we investigate the relationship between o, and g;.  If we set

3
~ _ j _
e "Zple" € =
J
J=1

3
Z q'e,

=

and substitute them into Egs. (35a, b), we obtain

Oy = T(;q,-k‘?k ,ZI:‘I;F/) = ;qi‘qiau » 0, = T(Zp,”e,‘,Zp_;e,) =2 p/pioy
» k ! k.l

(36a, b)

(37a,b)

Namely, the transformation laws for the components of the stress tensors are as follows :

3 3
L k 1~ ~ _ k1
O; = Zqi 9,0us Oy = zpl PiOu

k=1

k=1

If we use the following matrices :

P=(p/), @=(¢/) 7,=(o,).

we can express Eqs. (38a, b) as

T,=0'T0, T, =P'T,P

Since, from Egs. (5a-¢) and (6a-c), P=(p!) and Q= (¢}) become

Pll pzl
P=(p/)=|p! P}
n P
q|| q:i
2=(g/)=|q ¢}
7 9

P
Py
3

Ps

q;
93
q;

(1 dx
g, da
19y
g, da
1 9z
& da

—i dx
g, da
X dx
g, 9B
i&x
L & Y

1o
g, B
1oy
g, 9B
Vs
8 9B

1y
& da
19y
8 B
19y
g, dy

1 ox]
g, 9y
19y
& dy
Vo

g3 9Y |

1 oz ]
g, da
1oz
8, 9P
1oz
gJ (?Y_J

the following equation is held from Eqs. (3a-¢) and (da-c) :

OP =P P=]

(38a, b)

(39a—d)

(40a, b)

(41a)

) (41b)

42)

where I denotes the unit matrix. Equation (42) indicates that P is the orthogonal matrix, and yields

Q=PT=P_'

43)

By making use of Egs. (41b) and (43), Eqgs. (38a, b) and (40a, b) are expressed as
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3 3
g; = Zp;pljau’ 6::'/ = Zp,-kp;()',,, (44ab)
k=1 k=1
T,=PT,P", T,=P'T,P (45a, b)

Equations (44a, b) or (45a, b) are the transformation laws for the stress tensors between the rectan-
gular Cartesian and orthogonal curvilinear coordinates. ~ Since, from Eqs. (45a, b), the relationship
of the characteristic polynomial det (A I—T5) of the matrix T, to the characteristic polynomial det
(A I-"Ty) of the matrix To is

det (A 1-T,) = detPdet (A I -T,)det P~ = det [P(A I—T[,)P"]=det (A I-T,) (46)

the following equation is held :

A’ 7 onn iy Orxﬁ - Gny A’ L qrx = ny - ox:
-0, A-0y -0, |=|-0, A-0, -0, (47)
-0, -0, A-o, -0, =04 A=0,

Equation (47) gives the characteristic polynomials of the stress tensors T and T whose three roots
are called eigenvalues. If we expand both sides of Eq. (47) into algebraic equations, we obtain

3_ 2 2 2 2 ~
A (O’M +04 +0, ))L + (a,,,,o +0,0,, +0,,04 =04 —0,, 0y )}L —det g,

a3 ol 2 2
=A'- (Ux, +0, +0, )/\ + (oy),ozz +0,0, +0,0, -0, —0} - o,y)/\ —deto, 43)

By comparing the coefficients of A%, A%, A and 1 on the left-hand side of Eq. (48) with those on the
right-hand side, the following stress invariants are obtained :

Dy F Oy + 0, Bl 4 O, + T, (49a)
2 2 2 S 2
040,y +0,,0,, + 0,04y —0p, = Oy —o,,,, =0,0,+0,0, +0,0, -0, -0, —0,, (49b)

2
00aOpp0,, +20,40, Uﬂy—o"oﬁy—oﬁ,,o —owan,,

=0,0,0, +20,0,0, -0,0.,~0,0. —0,0., (49¢)

x>y Tz xx yy T

If we set both sides of Eq. (48) to
3 2 2 2 2
A= (UM +0, +0, )/\ + (o,,,,aﬂ +0,0,,+0,,04 —0p —0,, —0,y )/\ = 00000,

2 2 r
o 200/‘ 0yaOpy + TaaTpy + 0pp 0y, + 0y, G,,,, =9 (50)

we obtain the principal stresses o,, ¢,and o, in the orthogonal curvilinear coordinates, which are
three roots of A. If we let the components of the strain tensors in the rectangular Cartesian and

orthogonal curvilinear coordinates be €, and €, the transformation laws for the strain tensors are

i
identical to those for the stress tensors. Therefore, from Eqs. (44a, b) and (45a, b), we obtain

3 3
&= Q. PiPlEs &= Pley (51a,b)
k=1 k=1
E,=PEP”’, E,=P'EP (52a, b)

If we replace the components of the stress tensors in Eqs. (49a-c¢) with those of the strain tensors,
we can obtain the strain invariants. If we replace the components of the stress tensor in Eq. (50)
with those of the strain tensor, we can obtain the principal strains €,, €, and ¢,.

If we determine the direction cosines between the orthogonal curvilinear and rectangular
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Table 1.  Direction cosines.
x y z
a I mi n1
B Iz m2 n2
Y I3 ms n3

we obtain the following relationships :

ll l2 l]
P=\m m, m|
noon, n

P =

m,
m,
A

my  ny

(53a, b)

If we substitute Egs. (53a, b) into (45a, b) and arrange the results properly, we can obtain the trans-

formation laws for the components of the stress tensors in another form

Uﬂrl UXX OXX oﬂd
Fpp w Oy Opp
Il %= 4 %=L ] (54, b)
Uﬁy a}'z 0}’2 UﬁY
O, o, o, o 28
Uﬂﬂ axy ny Uaﬁ
where
(2 m 2m;n, 2n,l, 2Lm,
Ik m? n; 2myn, 2n,l, 2l,m,
s Loom  n 2myn, 2n,l, 20ym, (552)
LIy mymy nyny, myng +mn, nli+ndy, Lmg +1Lm,
Liy mymy nny mny +mng ngd +ndy Lmy +1m,
LWL mmy mny myny +myn, nyl, +n,l, Limy +1m, |
& B 2 21,1, 21, 21,1,
ml om: ml 2mym; 2mym, 2m,m,
M - n o onl onl 2n,n, 2nyn, 2nn, (55b)
MR, myn, MRy myng +npn, MR+ mng mn, +myn,
mly ml, mly  nmli+nl,  nl+nly, nl +nl
Lmy Lmy  Limy  Lmy+1Lm,  Lm +1Lmy  Lm, +1,m, |

We also obtain the transformation laws for the components of the strain tensors from Eqs. (52a, b)

in another form

£,

aa

Epp

aff

(56a, b)
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3. Specified coordinate systems of orthogonal curvilinear coordinates

(1) Cylindrical coordinates
We replace a, 3 and y in the orthogonal curvilinear coordinates with », 6 and z, respective-
ly, and determine cylindrical coordinates (7, @,z ) as shown in Fig.2.

Y
<

A I

i

x

Fig 2. Cylindrical coordinates.

From Fig. 2, the 1‘elati0n§.hips between the rectangular Cartesian and cylindrical coordinates are
determined as

x=rcosf, y=rsinf, z=z (57a—c)
By substituting Egs. (57a-¢) into Egs. (3a-¢), we obtain

g=1 g=r, g=1 (58a—c)
If we let the basis vectors in the cylindrical coordinates be e,, e, and e,and substitute Eqs. (57a-c)
and (58a-¢) into Eqs. (5a-c) or (6a-c), we obtain the transformation laws for the basis vectors
between the cylindrical and rectangular Cartesian coordinates in the form

e, e, cosf sinf 0ffe,
e,p=P'Je, r=|-sinf cosd Ofe, (59a)
e, e, 0 0 1le,

or
e, e, cos@ —sinf Offe,
e, r=Pie,r=|sinf cos6 0fe, (59b)
e, e, 0 0 1|le,

The stress and strain tensors in the cylindrical coordinates are obtained by replacing «, 3 and y
in Eqs. (15) and (12) with 7, 6 and z, respectively. Furthermore, the equilibrium equations are
obtained by substituting Eqs. (58a-c) into (31) and making use of the divergence and gradient in

the cylindrical coordinates. The results are
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d =

le /8 +1 90y, . Jdo,, + 9 = O +b, =0, d0,, +lda,,,, " do,, " 20,, by 50 (60a, b)
ar r d6 0z r or . ...r 40 dz r
d 1d

g, ] Tg, +3Uu +&+b -0 : 60¢)

ar r d0 dz r ¥

where by, bs and b. denote the components of the body force vector b.  If we replace a , 8 and y
in Table 1 with», 6 and 2, respectively and use Eq. (59a), we obtain

L, m n cosf sinf 0
P'=(l, m, n,|=|-sin6 cos® 0 (61)
Iy my n, 0 0 1

By substituting the direction cosines in Eq. (61) into Eqs. (55a, b) and making use of Eqs. (54a, b),
the transformation expressions of the components of the stress tensors between the cylindrical and
rectangular Cartesian coordinates are obtained in the form

0, =0,c0s’6 +0,sin’ 6 +20,, cosh sinf (62a)
O =0, 5in’ 0 + 0, cos’ @ 20, sinb cosd (62h)
0. =0,, 0, =0,¢c0s0 —0,sinf, 0, =0,sind +0,, cosd 62c—e)
O, = (o_w - o,,)cose sinf + o, (cos2 6 —sin’ 6) (62f)
or
0, =0,cos’ 0 +0,sin’0 —20,,cosh sind (63a)
0, =0,sin’60 +0,,cos’ 8 +20,,sin6 cosd (63b)
0.,=0,, 0, =0,c080 +0,sinf, o, =-0,sin6 + o, cosO (63c—e)
g, = (c,, - om)cose sinf + cr,‘,(cos2 0 - sin’ 6) (63f)

If we replace the stress components in Egs. (62a-f) and (63a-f) with the strain components, we can
obtain the transformation expressions of the components of the strain tensors between the cylindri-
cal and rectangular Cartesian coordinates.
(2) Spherical coordinates

We replace @, £ and y in the orthogonal curvilinear coordinates with p, ¢ and @, respec-
tively, and determine spherical coordinates ( p, ¢, 0) as shown in Fig. 3.
From Fig. 3, the relationships between the rectangular Cartesian and spherical coordinates are

determined as

x=p sing cosf, y=p sing sinf, z=p cos¢ (64a—c)
By substituting Eqgs. (64a-c) into Egs. (3a-c), we obtain

&=1,8=p, g=psing (65a—c)

If we let the basis vectors in the spherical coordinates be ey, es and e, and substitute Eqs. (64a-c)
and (65a-c) into Eqs. (5a-c) or (6a-c), we obtain the transformation laws for the basis vectors

between the spherical and rectangular Cartesian coordinates in the form
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z
3
P
U
P
2
>y
6 x
Y
x
Fig 3. Spherical coordinates.
e, e, sing cosf sing sinf cos¢ |[e,
e, r=P" e, r=|cos¢ cosf cos¢ sinf —sing|Je, (66a)
e, e, —sinf cosf 0 |le,
or
e, e, sing cosf cos¢ cosf —sinf|[e,
e r=P{e,r=|sing sin@ cos¢ sinf cosh [e
y ’ ¢ 4’. s (66b)
e, e, cos¢ —sing 0 e,

The stress and strain tensors in the spherical coordinates are obtained by replacing @ , £ and y in
Eqgs. (15) and (12) with p, ¢and &, respectively. Furthermore, the equilibrium equations are
obtained by substituting Eqs. (65a-c) into (31) and making use of the divergence and gradient in
the spherical coordinates. The results are

7] a
do,, +l Y 1 Tgp +i(20 ~ 04— Ogy +0, cot¢)+bﬂ =0 (67a)
ip p d¢ psing a6 p* 5
a a do,
9ot (199 , 1 7% +l[3(7p¢ +(oy —(rso)cot¢]+b, =0 (67b)
ap p d¢ psing 6 p
J 7]
I, 19%0 1 99 +l(3<1p9 +20, cot¢)+bo =0 (67¢)
dp p d¢ psing 40 p

where by, bg and by denote the components of the body force vector b.  If we replace a, 2 and y
in Table 1 with o, ¢ and @, respectively and use Eq. (66a), we obtain
I, m n sing cos@ sing sinf cos¢
P =|l, m, n,|=|cos¢cos® cos¢sind —sing (63)
I, my ny —sinf cosf 0
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By substituting the direction cosines in Eq. (68) into Egs. (55a, b) and making use of Eqs. (54a, b),
the transformation expressions of the components of the stress tensors between the spherical and

rectangular Cartesian coordinates are obtained in the form

_ 2 . 2 . . 1 2
O, = (0“ cos” 6 +0,,sin” 6 +20,, cosfsin 6)sm ¢+0,cos ¢

+ 2(0” sinf + o, cosH) singcos¢ (69a)

Oy = (Uu cos’ 6+, sin’ 6 +20,, cosBsin 0) cos’ ¢+ 0o, sin’ ¢
- 2(0), sinf + o, cos 6) cos¢sing (69b)
Uge =0, sin” 0+ 0, cos’ § - 20, sinfcosd (69¢)
O = (0”, -0, )cose sinfcosg +0,, (cos2 6 —sin’ 6)cos¢ - (oy: cosf —a,, sine) sing (69d)
O, = (O'_W -0, )cosﬂ sinfsing + o, (cos2 6 —sin’ 0) sing + (O'yz cosf — o, sin 6)cos¢ (69¢)

O,y = (U" cos’ 6 + a, sinf6-o,, + 20,,sin6 cos6)sin¢cos¢
+ (oﬂ sinf + o, cos f))(cos2 ¢ —sin’ ¢) (69f)
or

O, = ((rpp sin’ ¢ + g, cos’ ¢ +20,, sin¢cos¢)c052 6 +0,,sin’ @

- 2(0“, cos¢ + 0, sin ¢) cosfsinf (70a)
g, = ((rpp sin’ ¢ + 0, cos’ ¢ + 20, sin:jbcosqp)sin2 0+ 0, cos’ 0

- 2((1” cos¢ + 0y, sin¢)cose sinf (70b)
0,. =0,,¢08" $+0,,sin’ § —20,, cosgsing (70¢)
o, = ((Ip = )cos¢ singsinf +o,, (cos2 ¢ —sin’ ¢) sinf — (0,9 sing — g, cos¢)cos(9 (70d)
o, = (app -0, )cos¢ singcosf + 0, (cos2 ¢ —sin’ ¢) cosf + ((r“, sin¢ — 0, cos ¢) sinf (70e)

- I | 2 . .
g, = (upp SIn" ¢ + 0,y cos” @ — Ty +20,, sm¢cos¢)cos(9 sinf

+ (o,o cos$ + 0, sinq}))(cos2 6 —sin’ 0) (70D

If we replace the stress components in Eqs. (69a-f) and (70a-f) with the strain components, we can
obtain the transformation expressions of the components of the strain tensors between the spheri-
cal and rectangular Cartesian coordinates.

If we substitute Eq. (59b) into Eq. (66a), we obtain the transformation laws for the basis vectors

between the spherical and cylindrical coordinates in the form

e, e, sing 0 cosg |[e,
e,r=P e, 0 =|cosp 0 —single, (71)
é, e, 0 1 0 e,

By replacing @, fand y with p, ¢ and @, andx,y and z with , 6 and z in Table 1, respectively
and making use of Eq. (71), we obtain

I, m n sing 0 cos¢
P'=|l, my n,|=|cos¢ 0 —sing (72)
Iy my ny 0 1 0
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By substituting the direction cosines in Eq. (72) into Eq. (55a) and making use of Eq. (54a) in which
a, B and y are replaced with p, ¢ and 6, and x,y and z with 7, 6 and z, respectively, the trans-
formation expressions of the components of the stress tensors between the spherical and cylindrical
coordinates are obtained in the form

o, =0, sin? ¢ + 0, cos” ¢ +20,, singcosd , 0,y = 0, cos’ p+0,, sin’ ¢ — 20, cos¢sing (73a, b)
Ugg = Ugg » Ugg = 0,4 COSP— T, SING , T, = 0,5 SINP + 0, COSP (73c—e)

0, =(0, -0,)singcosg + 0, (cos2 ¢ —sin’ ¢) (730

The transformation expressions of the components of the stress tensors in Egs. (73a-f) can be also
obtained from Eqs. (44b) or (45b). Therefore, the transformation laws for the stress tensors in
Eqs. (44a, b), (45a, b) or (54a, b) can be used for those between arbitrary coordinate systems
belonging to the orthogonal curvilinear coordinates.

4. Conclusions

The strain and stress tensors in orthogonal curvilinear coordinates were proposed. They
were defined as the covariant components of the second-order tensors, which are identical to the
stress and strain components. The tensors yielded the same stress-strain relations as those in the
Cartesian tensors. However, the equilibrium equation in terms of the stress tensor was expressed
in the form in which the three dyadics were added to that in terms of the usual tensor. By making
use of the transformation laws for the tensors, the stress and strain invariants, and the principal
stresses and strains were defined as the characteristic polynomials and the eigenvalues of the ten-
sors. Furthermore, the transformation expressions of the stress components among rectangular
Cartesian, cylindrical and spherical coordinates, which are useful for three-dimensional problems of
elasticity, were obtained from the transformation laws for the stress tensors. The stress field in the
orthogonal curvilinear coordinates which are a special case of curvilinear coordinates is not so
minutely stated in books on solid mechanics. However, the stress and strain tensors presented in
this paper systematized considerably the stress field in the orthogonal curvilinear coordinates.

For the reasons mentioned above, the author may conclude that the basic equations of elastici-
ty in this paper should be useful for the linear theory of elasticity.
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