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Abstract

Neuber’s and Galerkin’s solutions taking heat and the curl of a harmonic vector into
account are derived from the Navier equation with the temperature field by means of the vec-
tor calculus. The solutions have one more vector potentials than those in Neuber's and
Galerkin’s solutions. When heat and body forces are neglected, and the curl of a harmonic
vector is eliminated, the solutions are in agreement with Neuber’s and Galerkin’s solutions.
The process of that is described in detail. Muki’s and Love’s solutions in cylindrical coordi-
nates are extended to the case of the existence of heat and one body force, by making use of

one of the solutions.

1. Introduction

Three-dimensional solutions of elasticity in isotropic solids have been found by many
researchers to date. Among the various solutions, Boussinesq’s [1], Galerkin’s [2], Pap-
kovich’s [3] and Neuber’s [4] solutions are considered to be typical solutions. Although
Boussinesq’s solution is insufficient for general, three-dimensional problems of elasticity, it
is sufficient for axially symmetric problems in spherical coordinates. Other solutions can be
applied to some three-dimensional problems of elasticity in every coordinate system belong-
ing to orthogonal curvilinear coordinates, because they are expressed in the displacement
vector obtained from the direct integration of the Navier equation, by means of potential func-
tions called the displacement potentials. However, it takes place that they are not successfully
applicable to three-dimensional problems of elasticity because of too many or too few dis-
placement potentials according to any coordinate system. This is clear from the fact that the
number of boundary conditions in boundary-value problems of finite solids depending on the
use of rectangular Cartesian, cylindrical, spherical and so on coordinates differs from one
another.  From paying attention to this, Hata [5, 6] derived the generalized Neuber and gen-
eralized Galerkin solutions in which the curl of a harmonic vector is added to Neuber’s and
Galerkin’s solutions, as a general solution to boundary-value problems in rectangular Carte-
sian coordinates. However, the solutions do not take heat and body forces into account.

Mindlin [7] described the induction process of Galerkin’s solution in the existence of body
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forces and Papkovich’s solution in the absence of body forces from the Navier equation.

This paper is concerned with the induction of Neuber’s and Galerkin’s solutions by the
direct integration of the Navier equation taking heat into account. The solutions presented
are expressed in the form like the solutions given by Hata [5, 6], in which the curl of a har-
monic vector is separated from the Neuber potentials and the Galerkin vector. Therefore,
the vector potentials in the solutions are one more than those in Neuber’s and Galerkin’s
solutions. When heat and body forces are neglected, and the curl of a harmonic vector is
eliminated, the solutions are in agreement with Neuber’s and Galerkin’s solutions. The
solutions are simply derived by means of the vector calculus using formulae for a scalar field
and a vector field. By making use of one of the solutions, Muki’s [8] and love’s [9] solutions
to axially asymmetric and symmetric problems of elasticity in cylindrical coordinates, respec-

tively, are extended to the case of the existence of heat and one body force.

2. The extension of Neuber’s solution
If we let the displacement, body force and temperature fields be u, b and T, respectively, we
obtain the Navier equation taking heat into account in the form

2a (1+v)

Viu+ 1—12u grad divu — =55 g1 alT+—b——0 1)

where v, G and @ denote Poisson’s ratio, the shear modulus and the coefficient of linear thermal
expansion, respectively, and V* denotes the Laplacian operator in orthogonal curvilinear coordi-
nates.

From Helmholtz’s theorem, we can set

u =grad¢ +curl S (divS =0). 2)

By substituting expression (2) into equation (1) and making use of the following formulae for a
scalar field @ and a vector field 4 :

divgrad @ =V, divcurl 4 =0, (3a,b)

we obtain

b 2a(1+v)
“(grad ¢ +curl §) ol T 2 grad V' ¢ + -~ G~ 123, gadT=0. )
If we use the following formulae :
Vorad @ = grad V', V'divA=divV’4, V' curl 4 =curl V4 | (5a—c)

we can rewrite equation (4)-in the form

. 2(1—w) b 2 (1+v)
\Y l:ﬁ:—gradgﬁ +curlS}=—?+—1_2—vv~gde. (6)
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Now, setting

2(1—v)
1-2v

we will obtain Neuber’s solution taking the heat and the body forces into account. However, we

( v)

rad¢+(ur15 = ¢+G(l 25 )gradx. 7

separate the curl of a harmonic vector from @ and set the right-hand side of equation (7) as
2(0—v) 2(1—v) curl ¢ 1=p

i grad ¢ +curl § = T Pt—¢ =2y )g1a(lx @®)
3y applying V* to both sides of equation (8) and making use of formulae (5a,c), we obtain
. 2(1—v) } 201 —v) =2 vV’ curl & 1—-vy 2
v [ 1=, grad¢ + curl§S |= c Vv D+ ¢ T G2, V- grad ¥
20— v) s curl V¢ 1—y 2
=== 'y ad V™ .
@ D+ e +G(1—2v) gradV x. ()
If we set
V'g=0 10)
and rewrite equation (9), we obtain
. 2(1—v)
\Y 1—2y grad¢+curlS} :~—(—G——)V D+ ngadv X- (11)
From equations (6) and (11), we obtain the following equation :
2(1—vy) 2y b 2a(+v)
G V'P + (l 2 )gradV X=—"¢ 1t 1=3, gradT. (12)
By solving equation (12), we obtain
2 b 2 aF
v —— =
D 20— Vix 1y T (13a, b)

where E denotes Young’s modulus. By applying div to both sides of equation (8) and making use

of formulae (3a, b), we obtain

2 (1 - V 1—v 2
= v? ¢—-—dlv¢+—c(l_2y)v X, (14)
If we let the position vector in the orthogonal curvilinear coordinates be r and use the following for-
mula :
Viip-A)=r -V'A+2divA4, (15)

we obtain

(liv¢=% \VA (r-(D)—r-V:@]- (16)

By substituting equation (13a) into expression (16), we obtain

. ___i— 2 . I'~b .
div® = _V (r-®)+ 2(1_”} W)
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By substituting expression (17) into the right-hand side of equation (14), we obtain

20=v) o2 gy _ 1=y 2 r-bh } 1—y 2
55, P g {V(’ ¢)+2<1—u) T2 " X =

If we rewrite equation (18), we have

2= el g - D8 HL 12w ) _r b
-3y ¥ [?5 26 a6 T ‘p)}_ 2G (19)
Now, setting
X 1=23 =2y
¢—%— °5G (r @)= °C D, (20)
we obtain
V'—’ = r-: b .
D 50— 1) (21)
From equation (20), we have
1= 21J X
¢= (Qotr @)+ - 22)
By substitutmg equations (8) and (22) into expression (2), we obtain
-ad
u=grad ¢ + curl § = —%—) grad ¢ + curl § — ﬁli(zzs
_ 2(1—v) curl ¢ 1—y ! 1 1-2y X }
== D + c T G=2,) grad ¥ — 7=5, grad| 5 (Dot r-P)+ 2G
2(1— curl & 1 rad oo
= (G v) D + ¢~ ¢ grad(®ot+r-P)+ HRCL ZGX : 23)

From expression (23), we obtain a solution as the result :

2Gu=— grad(®o+r @) +4(1—v)P+2 curl ¢ +grad ¥ 24)
where
2 b b i i aE
A\ = L - 7 sy V" = h% 4+ = a—
Br=gh < g ¥ R=T gE A T TASG (25a—d)

Solution (24) with (25a-d) is a certain extension of Neuber’s solution [4].
Now, replacing ®oand @ in solution (24) with

Do=—20, @ =—A, (26a, b)

solution (24) with (25a-d) can be expressed as

2Gu = grad (Ao+r-A)—4(1—v)A+2curl & +grad X 27)
where )
p . 5 , , E
V do=— _I'b_ VA= b K vV e=0, V' x= < T. (28a—d)

2(1—v)’ 2(1—vy

1—v

Solution (27) with (28a-d) is a certain extension of Boussinesq’s solution [1].
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If we impose the following conditions on equations (25a-d) :
b=0,T=0, (29a, b)

we can exclude )Y from the solution because it is not independent of <I>o-. Then, solution (24) with
(25a-d) yields

2Gu =—grad (®o+r-@)+4(1—v)P+2curl & (30)
where
Vd=0, V=0, V'E#=0. (3la—c)

Solution (30) with (31a-c) is the generalized Neuber solution given by Hata [5]. By imposing con-
ditions (29a, b) on equations (28a-d), solution (27) with (28a-d) becomes

2Gu = grad (Aot+r-A)—4(1—v)A+2curl & (32)
where
VBAUZO, VEAZO, V'9=0. (33a—¢)

Solution (32) with (33a-c¢) is the generalized Boussinesq solution.
In the generalized Neuber solution (30) with (31a-c¢), we now set

., _culd ., r-cul®
¢—<D —Z(I_U) 5 q)u_(bo+72(l—p) (3421,]))
where
Vigp'=0, V&, =0. (35a, b)

Setting @ and ®o as expressions (34a, b) is based on the following relations under equation (33c¢) .
Vieurl &= curlV’8=0, V'(r-cul®)=0. (36a, b)
By substituting expressions (34a, b) into solution (30), we obtain

PR , recurl ¢ . I -curl B . _curl ¢ .
2Gu = —grad |Po'+ 21— +r-® 0—y) }4—4(1 u)[d) 2<1_U)]+2uulﬂ

=—grad (®J+r-@)+4(1—v) @', (37)

Since removing the prime affix in solution (37) does not spoil the generality of the solution, solution

(37) is expressed as

26u=—grad (®ot+r -P)+4(1—v) @ (38)
where
V'do=0, V'd=0. V (39, )

Solution (38) with (39a, b) is Neuber’s solution [4].

Now, replacing ®o and @ in solution (38) with
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G G

[} B, ———B, 40a, b
T T R (30, 1)
solution (38) with (39a, b) can be expressed as
1 L
=—————0f7 +r.B)+B
u 4(1_y)gmd(Bo r.B) 1)
where
V'B=0, V'B=0. (42a, b)

Solution (41) with (42a, b) is Papkovich’s solution [3].
We consider the generalized Boussinesq solution (32) with (33a-c) in rectangular Cartesian
coordinates (x, y, z) and let the basis vectors be e,, ey and e,. If we define the vectors in the

solution as

A=RXie;tAzeyt Ase,= (A1, Az A3), (43a)

F=01e,1t0:2e,+se,= (01, O, ¥3), (43h)

r=xe,tye,tze,= (% 2) (43¢)
and set

A=2A2=0, As=2As, h=0:=0, ¥:=9s, (44a—d)

solution (32) with (33a-c) is expressed as

2Gu =grad (Ao+zAs) —4(1—v) Ase, +2 curl(Ose,) (45)
where

ViAe=0, V'A:=0, V'9:=0 (46a—c)
with

v ¥ L ¥

ox? ay’ FY
Solution (45) with (46a-c) is Boussinesq’s solution [1]. If we divide solution (45) into three solu-

tions, we obtain

the first basic solution:  2Gu “=grad Ao, (47a)
the second basic solution : 2Gu @ =2 curl (9se,), 47hb)
the third basic solution:  2Gu ®=grad (z As) —4(1—v) Ase,. (A7¢)

3. The extension of Galerkin’s solution

If we use formula (3b) and set S as
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S =- l(lz—Tu) curl W, (48)

we will obtain Galerkin’s solution taking the heat and the body forces into account. However, we
separate a harmonic vector from curl W and set the right-hand side of expression (48) as

__2(0—=vy) . 1 l: B ; :I
S = =5 CLlI1W+—'2G 20 —grad (r-9) 49)
where
V' =10, (50)
Expression (49) is based on the following relation using formula (15) and equation (50) :
div [2'0— grad(r - 0)} =2div®-V'(r-8)=2div0-2div8=0. (51)
By applying curl to both sides of expression (49) and making use of the following formulae :
V'A = grad div A — curl curl 4, curl grad @ = 0, (52a, b)
we obtain
— 2 o]
curll § =— 2% curl curl W + C; l(l;ﬁ — 216 curl grad (r - &)
=— l(lz—Tu) (grad divW — V°W ) + % . (53)
By substituting expression (53) into equation (6), we obtain
., — 1— 5 2curl ¢
V[zl(l_—:) grad @ — 2(2‘6” (grad divW —V*W ) + %
2a(l+vy)
=— % + =32, grad T'. (54)

Rewriting equation (54) yields

——21(1_; i Ly grad (¢ - 22w W) sl grgry 2V il

=— -%— + % grad T. (55)
Now, setting

VV'W =— l_by (56)
and using relation (36a), equation (55) yields

% V* grad ( ¢ — %div W ): 2?(_;;;”) grad T. (57)

In equation (57), setting

12y X
¢— 5 W =55, (58)
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we obtain

W aFE
Vxy= Ty T. (13b)
From equation (58), we have
§ =1 div W + (59)

By substituting expressions (53) and (59) into expression (2), we obtain

u =122 grad divw - 2220 (grad div IV - VZW)-F e s
— % grad divW + 2l—e) (12—G v) VW ++ 2“512; L + gr;;(é){ . (60)
From expression (60), we obtain a solution as the result :
2Gu =—grad divW +2(1—v) V'W +2curl &+ grad X (61)
where
V"VZW:—%, v'é =0, Viy= la_E; T, 62a—c)

Solution (61) with (62a-c) is a certain extension of Galerkin’s solution [2]. If we impose conditions
(29a, b) on equations (62a-c), we can exclude ¥ from the solution because it is transfered to bihar-

monic function div W . Then, solution (61) with (62a-c) yields

26u =—grad divW +2(1—v) V'W +2curl ¢ (63)
where
V'V'W =0, V'O =0. (64a, b)

Solution (63) with (64a, b) is the generalized Galerkin solution given by Hata [6].

In the generalized Galerkin solution (63) with (64a, b), we now set

W = _OXxr +W "+grad ® (65)
2(1—v)
where
VVw=0, V=0, Vo=_—Lwl® (66a—c)

2(1—2v) (1—v)
Setting biharmonic vector W as expression (65) is based on equation (64b) and formulae (3b), (52a,

b) and
div(AXC)=C -curlA—A-curlC, curl r =0, divr =3, (67a—c)
curl (AXC)+grad(4-C)
=2(C -grad) A+ A divC —C div A+C Xcurl A+ A XcurlC (67d)
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and the following relation :
V(@ xr)=—V(rx®) =curl curl (r X&) —grad div(r X )
=curl [—grad(l' ) +2(%-grad) r + r div @ — & divr + & Xcurlr + r Xcurl® ]
—grad(®-curlr — r -curl®) = —2 curl 9, (68)

By applying V* to both sides of expression (65), we obtain

V2W=M+ VW '+ Vzgradq):—m—kVZW'-I-gradVZ(I). (69)
2(1—v) 2(1—v)
Furthermore, applying V" to both sides of expression (69) and using formulae (5a, ¢), we obtain
VV'W =— M—FWV!W? V¥ grad V' @
2(1—v)
2 curl V* P P
=—2((L+U)0+V‘V“W'+gradV'V'<D=0. (70)

Expression (70) indicates that W in expression (65) satisfies the condition of the biharmonic vector.
By applying div to both sides of expression (65) and making use of formula (3a), we obtain

1
2(1—v)

Since using formulae (67a, b) yields

diviW = div(OXr)+divW ' +V’D. (71)

div(®xr)=—div(r X¢)=—0-curl r +r-curl®=r -curl®, (72)
expression (71) becomes
dvw =Ll | opive. 3)
2(1—v)
By substituting expressions (69) and (73) into solution (63), we obtain

2Gu =—grad divW +2(1—v) V'W +2 curl®

= —grad [—; (iu—]lu? +divW '+ V"'CD}
+2(1—v) [— 2ol @ + VW '+grad V"'CI)} +2 curl®
2(1—v)
=—graddivlW '+2(1—v) V'W '+ (1—2v) grad {V"(D — LM}
¢ 2(1—2y)(1—v)
=—graddivW +2(1—vy) V'W". (74)

Since removing the prime affix in solution (74) does not spoil the generality of the solution, solution

(74) is expressed as
2Gu =—grad divW +2(1—y) V'W (75)

where
V'V'W =0. (76)
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Solution (75) with (76) is Galerkin’s solution [2] in which W is the biharmonic vector called the
Galerkin vector.
In Galerkin’s solution (75) with (76), we now set

2ivW—r - V'W=2®,, V'W=2D (77a, b)
where
Vibo=0, VD =0. (39a, b)

Expression (77a) is based on the following relation using formulae (5b) and (15) and equation (76):
\%A (2div W—r-V Wj =2divV’'W — (r VW +2divV? W]
=2divV’'W —2divV°'W=0. (78)

From expressions (77a,b), we have

2divW =20 o+r - V'W =2(do+r D) 79
and so
divW =&+ r -PD. (80)

By substituting expressions (77b) and (80) into Galerkin’s solution (75), we obtain

2Gu =—grad(®o+r -P)+4(1—v)D. (38)

Namely, Galerkin’s solution is formally changed to Neuber’s solution.

4. The application of solution (61) with (62a-c)

Now, we consider the application of solution (61) with (62a-c) to Muki’s [8] and Love’s [9] solu-
tions to axially asymmetric and symmetric problems of elasticity in cylindrical coordinates, respec-
tively. We let the basis vectors be e,, e, and e, in cylindrical coordinates (7,6, z ). If we

define the vectors in the solution as

u=ue,‘ugeytu,e,= u, up u,, (81a)

W =W,e,+Wye s +W,e, =W, Wy W,), (81h)

O=0,e,+0gest+T.e,=(0,, 0y O), (81c)

b=be,+bse s t+b.e,= b, by b,) (81d)
and set

W,=W,=0, W, :2_GQ>, G,=0,=0, 0,=2G6¢, X=2GX, (82a—e)

b,=by=0, b,=2Gb,, (83a,b)

equations (62a-c) yield
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VVie=——tt vig=o, Vy=1FLar (84a—c)
where
o 10 1 & &

or? rar+72 802+ 022
By making use of formula (52a), solution (61) is changed to

2Gu =—grad divW +2(1—v) V' W +2curl & +grad ¥

=(1—2v)graddivW —2(1— v )curl curl W +2curl & +grad x . (85)

Since, in solution (85), there is the following relations :

(acb 1 »d P )

grad div W =grad div(2G e ,) =2G e ert+— - 8082 s 52¢” (86a)
curl curl W =curl curl (2G Qe )
oo 1y (_iﬂ_a@ _i&)’@) }
_ZG[araze"+ r 0goz ¢° r or ot 1 097 )¢%) (86b)
10 0
2 curl=2curl (26 ¢ e) 4(;(7—8% a—feg), (860)
, 0 1 0 )
grad ¥ =grad(2G ¥ )IZG( a)f ert— a); egt—, L4 e/j, (86d)
we obtain a solution by substituting relations (86a-d) into solution (85), in the form
__ye 209 ox .
= Braz+ r 96 + or’ (57)
1 9P oY
A +y ag ’ (87h)
EPTRRRRs YRR i ) df ‘
u,=2(1—v) V'@ 2 T o (87¢)
where
9 9 ," ) 2 ’ +
VVie=——2 Vig=0, Viy'= 11 Y aT. (84a—0)

-V
Solution (87a-c) with (84a-c) is a certain extension of Muki’s solution [8] to the heat and one body
force.

Next, if we set

Wi=Wy=0, W,=®, =0, (88a—c)

br=0bs=0, b,=b, ) (89a, b)

and consider that ®, ¥ and 7 do not depend on #, equations (62a,c) yield

bz 2 aFE

ViVie=—12-, Vix=g2>T (90a, b)
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Since relations (86a, b, d) are changed to

W = o _oe  FD

grav divW =grav div(®Pe ,) = 30z ert e (91a)

KIS _ 2P _iﬂ_a@)

curl curl W =curl curl(®e ) = oz €7 ( Dy 3 Jer (91b)

0

grad X :T)ﬁ et %Zg—e 7 1c)
we obtain a solution by substituting relations (91a-c) and expression (88c) into solution (85), in the
form

2

2Gu=— 22+ 2L 92a)

2Guy =0, (92b)

26u2=2(1—u)Vf<D—aq,) +% (92¢)

0z? 0z

where

Vvie=—-b2 viy=—2E (90a, b)

1 T—p 2. 3 l=w = t

Solution (92a-¢) with (90a, b) is a certain extension of Love’s solution [9] to the heat and one body

force.

5. Conclusions

Neuber’s and Galerkin’s solutions taking heat and the curl of a harmonic vector into account
were derived from the Navier equation with the temperature field by means of the vector calculus.
The solution to the heat was in agreement with Goodier’s thermoelastic potential. ~Although Good-
ier’s thermoelastic potential has been derived differently from three-dimensional solutions of elas-
ticity thus far, it was unified into three-dimensional solutions of elasticity. Since the vector poten-
tials in the solutions presented are one more than those in Neuber’s and Galerkin’s solutions, the
solutions are suitable for boundary-value problems of finite solids, with many boundary conditions.
The process of transfering the curl of a harmonic vector in the solutions to the Neuber potentials or
the Galerkin vector was described in detail and yielded Neuber’s and Galerkin’s solutions as the
result. The solution of the curl of a harmonic vector corresponds to the second basic solution
given by Boussinesq when only the third component of a harmonic vector is picked out. There-
fore, the solution may be important to axially asymmetric problems of elasticity in cylindrical, spher-
ical and so on coordinates besides problems in rectangular Cartesian coordinates.

For the reasons mentioned above, the author may conclude that the induction process of Neu-
ber’s and Galerkin’s solutions taking the heat and the curl of a harmonic vector into account and

the formulation of the equivalence among their solutions and other solutions obtained already
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should be useful for the linear theory of elasticity.
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