Axi-Symmetric Solutions to States of Plane Stress and Generalized
Plane Stress in Transversely Isotropic, Thick Annular
Plates and Their Application to Bending

I. OKUMURA* and M. AITA*

Abstract

Axi-symmetric solutions to a state of plane stress and to a state of generalized plane
stress in transversely isotropic, thick annular plates are obtained. The two solutions are
deduced from the generalized Elliott solution which has five independent potential functions.
Expressions for components of displacement and stress are explicitly presented. Axi-sym-
metric bending of the plate subjected to a uniformly distributed annular load is analyzed by
one method of solution in that a homogeneous solution consisting of the two solutions and a
particular solution deduced from a part of the generalized Elliott solution are used to satisfy
boundary and loading conditions. The effect of anisotropy on the stresses is investigated

through a comparison with the stresses in an isotropic material.

1. Introduction

The latest studies on two-dimensional or three-dimensional elasticity problems have
turned to those of anisotropic solids. There are two reasons for this trend. The first is that
studies on isotropic solids have been virtually accomplished in theory. The second is that
the elucidation of the mechanical properties of anisotropic solids has grown in importance
due to the recent increase in the use of composite materials. Although there are various
classes of anisotropy, Elliott [1] and Lodge [2] have found distinguished solutions to trans-
versely isotropic solids. In a recent paper [3], one of the authors proposed the generalized
Elliott solution as a solution to make up for the deficiency in Elliott’s solution.

Although the three-dimensional elasticity solutions stated above are expected to be theo-
retically applicable to analyses of the stretching and bending of transversely isotropic thick
plates, they are not practically applicable to analyses of moderately thick plates which are
usually called thick plates. This is because, except for special boundary conditions, the use
of the solutions entails some difficulty with numerical calculations and cannot yield numerical
results with rapid convergences. The difficulty of the numerical calculations in the applica-
tion of the solutions provides a stronger motive for finding a simplified and extensively practi-
cable theory of moderately thick plates than the analytical complexity of the three-dimen-
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sional elasticity solutions does. Several studies on the stretching and bending of anisotropic
thick plates have lately appeared, because studies on isotropic thick plates have passed their
peak. The bending of orthotropic, thick rectangular plates was studied by Sonoda and
Horikawa [4] and Fan and Ye [5]. The bending of transversely isotopic, thick rectangular
plates was studied by Reissner [6], Voyiadjis and Baluch [7] and Wang [8], and the stretching
was studied by Clark and Reissner [9] and Wang [10]. However, a number of those studies
are concerned with formal theories of thick rectangular plates and some of Navier-type rec-
tangular plates which are practically analyzed. Studies on transversely isotropic, thick circu-
lar or annular plates seem to be few except for Okumura’s work [11]. Okumura extended
the theory of isotropic, thick rectangular plates by Love [12] to one of transversely isotropic,
thick circular plates and obtained exact elasticity solutions to states of plane stress and gen-
eralized plane stress.

This paper is concerned with axi-symmetric solutions to states of plane stress and gener-
alized plane stress in transversely isotropic, thick annular plates and their application to an
analysis of the axi-symmetric bending. Although the two solutions in Love’s theory were
derived through the use of stress functions, they are deduced from the generalized Elliott
solution in this paper because it is very difficult to derive the solutions to transversely
isotropic solids directly from the equations of equilibrium and compatibility. Therefore, in
this paper, four independent potential functions included in the generalized Elliott solution
restricted to axi-symmetric problems are determined, and the relationships among arbitrary
constants included in the potential functions are determined from certain conditions that the
stress components in the solutions must satisfy. The determination of the potential func-
tions is very important to the derivation of the solutions and is a point to require deliberation.
As an application of the two solutions, the axi-symmetric bending of the plate subjected to a
uniformly distributed annular load is analyzed by one method of solution in that a homoge-
neous solution consisting of the two solutions and a particular solution deduced from a part of
the generalized Elliott solution are used for satisfying boundary conditions at the edges and

loading conditions at the top and bottom faces, respectively.

2. The generalized Elliott solution

Using cylindrical coordinates 7, 8, z such that the z-axis is taken parallel to the axis of elastic
symmetry, the generalized Elliott solution [3] is expressed in terms of displacement components,

i.e., uy, up and u; as
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is the elastic constant of transversely isotropic solids and is five in number [13], and v: and
v, are the roots of
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The generalized Hooke’s law of the transversely isotropic solids in the axi-symmetric prob-
lems is
O, =€, HC €y +C3E.s  Oyy =CpE, +C €y TCRE,

O.. =Cp3€,, +Cp3épy +C3€,., O, =2¢4¢,

®)
where g7 and e;; are components of stress and strain, respectively. The strain components are
expressed in the displacement components as
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3. Solution to a state of plane stress

We set the origin of the cylindrical coordinates on the extension of the middle plane of a thick

annular plate. The desired solution to a state of plane stress is a solution that satisfies the follow-
ing conditions :

02:=0, 0,=0 for arbitary domains.

(10)
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We set the potential functions satisfying the first and third equations of (2) in the form
2 2 2 2
Z r 2
=D,Inr+ D, ———), =F‘(————) (08Y)
Por = ( 2 v e 2 v,
where D, to F§ are arbitrary constants. Expressions for the displacement components are
obtained by substituting the potential functions (11) into (6). Furthermore, expressions for the

stress components are obtained from (8) with the aid of (9) and the expressions for the displace-

ment components. The expressions are
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Imposing the first condition of (10) on o2 in (12), we obtain the following relationship between
the arbitrary constants :
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By substituting relationships (14) and (15) into (12), we obtain the solution to the state of plane
stress as the result :
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4. Solution to a state of generalized plane stress

We denote the thickness of a thick annular plate by # and set the origin of the cylindrical coor-
dinates on the extension of the middle plane of the plate. The desired solution to a state of gener-
alized plane stress is a solution that satisfies the following conditions :

0,=0, 0,=0 at z=1hf2. (18)

We set the potential functions satisfying the second and fourth equations of (2) in the form
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where A to C§ are arbitrary constants. Expressions for the displacement components are obtained
by substituting the potential functions (19) into (6). Furthermore, expressions for the stress com-

ponents are obtained from (8) and (9). The expressions are
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In the first place, if we impose the first condition of (18) on o in (20), we obtain
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Thus, relationships (22) and (25) among the arbitrary constants satisfied the conditions of general-
ized plane stress, i.e., (18). If we substitute relationships (14) and (22) to (25) into (20) and use
the following notation :
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we obtain the solution to the state of generalized plane stress as the result :
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5. Application of the present solutions to the axi-symmetric
bending of a transversely isotropic, thick annular plate

In this article, we will consider an application of the two solutions (16) and (27) to the axi-sym-
metric bending of a transversely isotropic, thick annular plate. Since the stress component ¢, in
the solutions is identically zero, the solutions cannot satisfy some of the loading conditions at the

top face of the plate. However, they can be used for a homogeneous solution satisfying the bound-
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ary conditions at the edges. Therefore, a particular solution satisfying the loading conditions is
needed and will be deduced from a part of the generalized Elliott solution. We consider a plate
with thickness k, inner radius a, outer radius b and width d=b—a, subjected to a uniformly distrib-

uted annular load over the top face, as shown in Fig. 1.

o
NEAEYES

Fig. 1 Coordinate system of thick annular plate

5.1 Particular solution

If we solve the second and fourth equations of (2) by the method of separation of variables, we
obtain
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where AY to M? are arbitrary constants to be determined from the loading conditions and as=As

s=1

29)

Ja. Expressions for the displacement components are obtained by substituting the potential func-
tions (29) into (6). Furthermore, expressions for the stress components are obtained from (8) and
9). For example, the expressions for the stress components o, and o, are
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We consider the plate whose top face is subjected to the uniformly distributed annular load and

whose bottom face is free from surface tractions. The loading conditions for that case become
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By substituting relationships (34) into o2 in (30), we obtain
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In the second place, imposing the second and fourth conditions of (32) on a2 in (41) with the
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Thus, all the arbitrary constants included in the particular solution were exactly determined by (46)
(48) and (38). Therefore, the particular solution can be expressed in the closed form.
ple, the expression for the stress component o, is
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Since boundary conditions at the edges cannot be prescribed by the stress component, stress
resultants and stress couples are needed. They are defined as
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)

h)2
T,=[,,00dz Q= J' o.dz, M, = j zo,dz, Mﬁz_[_h/zzawdz. G1)



36 I. OKUMURA* and M. AITA*

By substituting solutions (16), (27) and (50) into (51), we obtain the expressions for the stress

resultants and the stress couples.

5.2 System of linear algebraic equations-
We consider the two circular edges of the plate simply supported. The boundary conditions
for that case become

T,=0, (4)._,=0, M, =0 atr=aandr=b. (52)

From the first condition of (52), we obtain a system of linear algebraic equations with Dy and Fy in

the form

D <Ny
a_;)(cn —c12)+ E){cll R 4P _Ys[vl(cn +Clz)_2cnk1]} = ‘\/V—l%(cn _CIZ)ZA_;CI(A\')mI’

o L (53)
D, V, A
;io—(cn ~cp)+ Fo{cn RSP _Ys["l(cn +c|2)—2cl3kl]} = f'K_l%(Cll _CIZ)FI A_}CI(KA,\')mI

where

’ 1
m =i, :_2 +;._[Y3 —YI(CI cothf, — 1)] 54)
(I

From the second and third conditions of (52), we obtain a system of linear algebraic equations with

AP, A, Co® and C,? in the form
29+ 220002 (g0 1vvy) Ly (14 k) = ] - o CO? (vyrs ~149yv,) =0
0 5 o 2Ye ViV +2k2 [Yc + 2) V4] Lo a (VzYo VW)=Y,
), @ B m0 ] K’
A" + A, lm<+7C0 b(vzy(,—1+v,v4)+£[y6(1+k2)—v4]
2
+k2C((’2){b2(an —1)(vy76 —1+v,v4)+2hT[y6(l+k2)—v4]lm(} =0,
2
A7) =() 0)
a_z(cn "clz)+co {Y«s[vz(cn +c12)_2cl3k2]_(cll +C|2)}+Co (Cn _CIZ)
h? 124° =0
x |:VZYG —l+—1_6a—2()/6 _V4)} =h_fvl(cll _CIZ)ZﬁCI(A\)mZ’

s=1 I
(2)

A -
_I‘:z_(cn _Clz)*'co(l){y(,[vz(cn +c12)—2c|3k2]—(c,, +c|2)}

(55)

hZ
+ng)<2{y6[v2(c” +c,2)—2c13V2]—(c,, +c12)} Ink +(c;, ‘Clz)l:"z}’s —1+W(y6 —V,‘)}>

0

12a° v, i
== ?‘(c”—cu)é}b—iC,(KA\_)m2

where

m, = J, %(Cz —tanhCz)'*%{Y;(Cl _tanhCI)_YI[(Clz +2)tanhC| -2, ]} (56)
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and A,” and C,"” are new arbitrary constants and are expressed in

A"+ 4P ma=2", ¢ +2¢P na=2. 7

The systems of (53) and (55) can be numerically or exactly solved. In order to facilitate numerical

calculations, it is convenient to replace the arbitrary constants previously used with the following

ones :
4 Fo_ 70 X A(Z) -
C;aDz_o =D, 64; L= R, C44qa° =4 CMan =4,
cuaC . cuaCP® =@ t - =
44 0 =CO’ 44 0 =C0 X —"'=t“..
q q q

Once the arbitrary constants are determined, the values of the displacements, the stresses, the

stress resultants and the stress couples can be completely determined.

5.3 Numerical results

Numerical calculations were made for transversely isotropic and isotropic, thick annular plates
with b/a=6.0, ¢c/a=3.0,1/a=1.0 and various thickness-width ratios e=h/d. Graphite epoxy and E
glass epoxy, as examples of transversely isotropic materials, and an isotropic material with Poisson’s
ratio v =0.3 were treated. The values of the elastic constants of these materials, as determined by
Chen and Cheng [14,15], are given in Table 1. The roots of the transcendental equation (42) were
calculated by the Regula-Falsi method. Numerical results were obtained by taking the first 70
terms for in the series. For the graphite epoxy, the variations of internal forces and stresses with
the 7-direction or the z-direction are shown in Figs. 2-8, respectively. Figure 2 shows the varia-
tions of shearing force @, and bending moments M, and M, with the »-direction for e=h/d=1/4.
The variation of @, is rapid for 3.0<7/a<4.0 in the loaded area. Figure 3 shows the variation of
7, with the r-direction fore=1/4. The small values remain at »/a=1.0 and /a=6.0, because the
boundary -conditions were prescribed by T, and M, instead of o, on the basis of Saint-Venant’s
principle. Figure 4 shows the variation of ¢4, with the r-direction for e=1/4. The large values
are vielded at #/a=1.0 due to stress concentration. Figures 5 and 6 show the variations of ¢, and
49 With the z-direction at 7/a=3.5, respectively. The variations for e=1/4 differ widely from lin-
ear variations. Figure 7 shows the variation of ¢, with the z-direction at »/a=3.0. The variation
for e=1/6 nearly follows the parabolic law, but that for e=1/4 hardly follows the parabolic one.
Figure 8 shows the remaining stresses @, at 7=a and r=b=6a for e=1/4. The value at r/a=1.0
is somewhat large due to stress concentration. Figures 3 and 8 demonstrate that the valid domain
in the present method is 1.3z <7 < 0.99b in case of b/a=6.0. Comparisons of the values of o at
r/a=35, o4y and o, at r/a=1.0 among the graphite epoxy, the E glass epoxy and the isotropic
material for e=1/4 are given in Table 2. The value of o, at z=0.5k for the graphite epoxy is 6.2%

less than that in the isotropic material.
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Table 1. Elastic constants ¢jj (in units of 10Gpa)
57 (511 €12 €13 €33 Caq
Graphite-epoxy 0.82 0.26 0.32 8.68 041
E glass-epoxy 1.51 0.61 0.52 4.68 047
Isotropy 35 > L5 3.5 1.0
e =148
qa
My 1.6
w0
Mg Lo,
@’ g, \(( o 30
_xr =0.4h
Im\\\ Ly //’ \2\
L ~My ’ =0. 2h
98 \ B // \< I 1.0 ,/ — )C-\ o
0.6 \ >\ \ // /‘ 2=( \\
\// ) \\ ! %
0.4 ” N "y \\ 2=-0. 2h L1
0.2|—A N \ N : ¥ i
\ \ h -2.0 \~<=‘0-4" a
0
0.2 e 2.0 3.0 4.0 5
Y ] . : .0 6.0
L//ﬁ/‘ —>r/a
-0.4 N —
-0.6
450 Z5 it 4 £ G Fig. 3 Variations of o, in graphite epoxy
—>r/a
(e=h/d=1/4)
Fig. 2 Variations of internal forces in graphite epoxy
(e=h/d=1/4)
0.5
5.
%0 £/ 1A
q s L
4.0
2=0.4h /
3.0 \ 0.3 / /\e=1/6
2.0 —)\ 0.2 N |
\(—z=0 2h ~2=0 / N~-e=1/4
1.0 ] 0.1 HA
—
0 >< Pl = -10.0-8.0-6.0-4.0 -2.0_0
_— L —— 2.0 4.0 6.0 8. :
ol . ] 8.0 10.0
/\2= 0. 21 4 = —-%x/q
ial ; /
/ a=-0. 4h % -0.2
-3.0 / /
0.3
-4.0 1/
0.4
0% 2.0 3.0 1.0 5.0 6.0 / L 0.5
—1r/a

Fig. 4 Variations of g, in graphite epoxy

(e=h/d=1/4)

Fig. 5 Variations of o,, in graphite epoxy

(r/a=3.5,e=h/d)
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X a T r IR
Kore ", aen d 'y A
L s g
/ 4 X |,/ | \(/-r/a=1.0
0.3 / 0.3 <_ 0.3
A/ \| |
0.2 0.2 0.2
\-e=1/4 \ ,
0.1 0.1 0.1
" I
-3.0 -z.a-z.oaV\_f o " \ -0.3 -0.2 -0.1 ¢
1.0 2.0 3.0 0.4 0.8 1.0 0.1 0.20.3
1
-0.1 -0.1 -0.1 l
/ > -0g9/q / — > 0,,/q
/ / -0.2 -bie -0.2
|
0.3 0.3 / -0.3
/ / 0.4 -0.4 G/ -a}
/ i i |
0.5 -0.5 ‘ -0,5 N
Fig. 6 Variations of g4, in graphite Fig. 7 Variations of ¢, in graphite ~ Fig. 8 Remaining stress ,, at 7=a and
epoxy (r/a=3.5,e=h/d) epoxy (r/a=3.0,e=h/d) r=>b in graphite epoxy

(b=6a,e=h/d=1/4)

Table 2. Comparison of stress values at =3.5¢ or r=a fore=1/4

onl/q 096/q O2r/q
z=0.5hn z2=0.2h z=0.5h z2=0.2h z=0 z2=0.2h
Graphite-epoxy —3.76 -1.34 5.50 2.01 —2.05 —-172
E glass-epoxy ~395 —132 5.42 1.91 —1.98 ~167
Isotropy —4.01 —-1.29 5.36 1.92 —2.02 —1.70

6. Conclusions

From the generalized Elliott solution, axi-symmetric solutions to a state of plane stress and to a
state of generalized plane stress in transversely isotropic, thick annular plates were deduced and
were applied to axi-symmetric bending. The two solutions are exact elasticity solutions satisfying
all the equations of equilibrium and compatibility, with no assumptions. Since the solutions are
explicitly presented by components of displacement and stress, they may be simply applied to
boundary-value problems. It has been confirmed that the solutions are coincident with the solu-
tions in Love’s theory when the elastic constants of transversely isotropic solids are replaced with
those of isotropic solids.  One method of solution for the problem of bending was proposed. The
method is constituted by a homogeneous solution consisting of the two solutions and by a particular
solution deduced from a part of the generalized Elliott solution. The particular solution makes
three-dimensional supplements for the distribution of transverse shearing stress and for the influ-
ence of the transverse normal strain. In the present method, the loading conditions at the top and
bottom faces of a thick plate are rigorously satisfied, whereas the boundary conditions at the edges

are approximately satisfied by Saint-Venant’s principle. The most important points of the theory
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of moderately thick plates are simplicity and an extensive applicability. When attention is paid to

these points, the two solutions and the method of solution presented in this paper should be useful

for the problems of stretching and bending of transversely isotropic, thick annular plates.

10
11
12
13
14

15

References

Elliott, H. A. : Three-dimensional stress distributions in hexagonal aeolotropic crystals. Proc. Cambridge Phil.
Soc. 44 (1948) 522-533

Lodge, A. S. : The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic
solids. Quart. J. Mech. Appl. Math. 8 (1955) 211-225

Okumura, I A. : Generalization of Elliott’s solution to transversely isotropic solids and its application. Struct.
Eng./Earthquake Eng. 4 (1987) 401st-411s

Sonoda, K. : Horikawa, T. : Displacement functions for an orthotropic elastic body and their applications to thick
plate problems. Theor. Appl. Mech. 29 (1981) 117~ 126

Fan, J. ; Ye, J. : A series solution of the exact equation for thick orthotropic plates. Int. J. Solids Struct. 26 (1990)
773-778

Reissner, E. : A twelfth order theory of transverse bending of transversely isotropic plates. Z. angew. Math. Mech.
63 (1983) 285-289 .

Voyiadiis, G. Z. ; Baluch, M. H. : Refined theory for thick composite plates. Proc. ASCE, J. Eng. Mech. 114 (1988)
671-687

Wang, F.-Y. : Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic
body-1. Int. J. Solids Struct. 26 (1990) 455-470

Clark. R. A. : Reissner, E. : A tenth-order theory of stretching of transversely isotropic sheets. J. Appl. Math.
Phys. (ZAMP) 35 (1984) 883-889

Wang, F.-Y. : Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic
body-1L. Int. J. Solids Struct. 28 (1991) 161-177

Okumura, L. A. : Solutions to stretching and bending of transversely isotropic, circular thick plates and their appli-
cation. Struct. Eng./Earthquake Eng. 5 (1988) 293s-302s

Love. A .E. H. : A treatise on the mathematical theory of elasticity. 4th ed., New York : Dover pub. 1944

Saada. A. S. : Elasticity : theory and applications. New York : Pergamon Press Inc. 1974

Chen, C. H. ; Cheng, S. : Mechanical properties of anisotropic fiber-reinforced composites. Trans. ASME, J. Appl.
Mech. 37 (1970) 186-189

Chen, C. H. : Cheng, S. : Mechanical properties of fiber reinforced composites. J. Comp. Mater. 1 (1967) 30-41



	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16

