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Abstract

An optimum operation scheduling method is reported using quadratic programming. In this
report, the optimum operation is considered as that which economically satisfies all line capacities
and environmental constraint. This method is developed in order to extend another method
whose schedule satisfies many of the constraints of a faulty state in an electric power system.
The limit of NO; pollution is considered as a typical environmental constraint.

Kuhn-Tucker conditions are shown for this problem. Except for the NO, pollution con-
straint, the Kuhn-Tucker conditions are solved using quadratic programming. The kinds of
artificial variables introduced, which are necessary for an initial feasible solution, are kept to
a minimum so that the calculation can be done compactly. The cost function of the quadratic
programming is constituted by the quadratic equations which are selected from Kuhn-Tucker
conditions. The cost function is modified to a linear equation.

The results of the model system simulations are compared with the quadratic programming
method and LaGrange’s multipliers method. Investigating them, the following is shown: La-
Grange’s method is very fast for calculating time, but it is weak if there are many and severe
constraint. The quadratic method can estimate the optimum operation strictly even when the

constraints are many and severe.

1. Introduction

An optimum operation scheduling method was reported in a previous paper?
which used LaGrange’s multipliers method. The previous method can apply only
when there are less constraints than generating units.

In this report, a new scheduling method is shown which uses quadratic
programming. It can schedule for many constraints, even if they exceed the
number of generating units.

Since the NO, emission constraint is a quadratic one, it is excepted from the
optimization of quadratic programming. That is, the LaGrange’s multiplier cor-
responding to emission is assumed previously and suitably. The quadratic pro-
gramming is solved, then emission is checked. The above multiplier is modified
by trial and error, and the quadratic programming is solved repeatedly.

Investigating the sign of the constant term of constraint equations, artificial
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variables are introduced which are needed for an initial feasible solution. The
cost function of quadratic programming becomes essentially a quadratic equation.
Using a derived function of itself, this cost function is modified linearly. The
coefficient of modified function is estimated repeatedly and effectively.

Finally, the proposed method is applied to a model power system which is
the same as that used for a previous paper. By comparing the results of both
methods, the appropriateness of the proposed method is shown.

2. Formulation of The Problem

It is assumed that the power system has M thermal generating units, 18
power lines and N nodes. NO, pollution from the thermal units is regarded
as one of the typical environmental constraints. When this problem is formulated,
it will become as follows.

Minmize
M
o (1)
Subject to
M
Ps = Zlqm (21)
In < On < O (3)
= Il § il é IL ( 4 )
M
ZUasY (5)

Where, fn, Gms Gm 0w and ¥, are fuel cost, output power, lower limit of ¢,
upper limit of ¢, and NO, emission for the m-th thermal unit, respectively. f
and 7, are estimated from following egs. (6) and (7). Ps is the system load, and
it is the total of each node load. I, and i, are the line capacity and power flow
of the I-th power line. Y is the upper limit of NO, emission.

ﬁn:am'f_bm'gm'{'cm'g?n (6)
Yn=dn*fm (7)

Where, dp, bn, cn and d, are the characteristic constants of the m-th thermal
unit.

3. LaGrangean Function and Power Flow Estimation

Since the constraints of the lower limit ¢ are intended to be treated espec-
cially, the LaGrangean function becomes eq. (8) from egs. (1)~(5) excepting (.

6= WilfM'*_Z'(Ps— mlegm>+ Wil{vm'(gm—@n)}— i' {VM%-L'(IL"'il)}

=1
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Where, 2, v, and p are LaGrange’s multipliers respectively. On the other
side, the power flow becomes as follows when the DC method is used.

il—Z(eln Pl )+ Z(elm'qm> (9>

m=1

Where, ¢, is the element of the sensitivity matrix, and is estimated from
eq. (10). P, is the node load of the n-th node.

(Bj_n Bl?r%)/-rl (10)

Where, B],{ and By, are the elements of the inverse matrix of the susceptance

matrix. 1z, is a reactance of the /-th power line which is connected from the j-
th node to the k-th node.

4. The kuhn-Tucker Conditions of Our Problem

The kuhn-Tucker conditions of eq. (8) become as follows.

0 dm L )
2 (1+/Ud) f —A+vn— Z(V.wz'f’zm)+IZ;;(VM+L+1'C’1m)20 (11)

0
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=1 (17)
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m=1

M

e (Lyn—Y)=0 (21)

5. Expression for Quadratic Programming

To use quadratic programming, this section is considered excepting egs. (20)
and (21). This means that the quadratic problem is solved with one value of s.
And the optimum value of g which satisfies eqs. (11)~(21) is estimated by re-
peated trial and error.

Another proper method? is known to treat the upper limit of the variable
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0w, but this constraint is handled simply and similarly to other constraints, be-
cause unit number M is generally sufficiently less than line number L. Even if
this special method is used for the upper limit ¢, of this problem, the number
of equations of quadratic programming can be decreased a little.

To consider the lower limit ¢,, a new variable ¢z, is introduced which is

estimated to satisfy eq. (22).
gZm = gm_gyﬁ (22)
5.1 Expression for Constraint Equations

Using eq. (22), the following can be formulated from egs. (11), (13), (14), (16)
and (17) respectively.

L

3
2ecme(1 +ﬂ'dm) 2 JTm— AtV — 2 (Vargre€im) + lZ:l(”M+L+l Cim) — S,

=1

— _(bm+2‘cm'gm_>'(1+ﬂ'dm) (23)
;‘L‘_Ilgxm"i_Arm:PS— i[:_(],,, (24)
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gxm+Sl.M+m = (771;— Qm (25)

M N M

3 (et 9%m) — Shyri+ Ary = —L— 2 (e1n*Pla)— 2 (eim*Gm) (26)

m=1 n=1 m=1
N M

M
Zl(elm'gxm)+SI2M+L+I_ATM+L+1 =1,— ) (ewn*Plo)— 2 (eim*gn) (27)

n=1 m=1

Where, SI,. is a slack variable for the inequality constraint and Ary, is an
artificial variable for an initial feasible solution.

(Zms A Yms Y and vyiry should be selected as the non-base of initial
feasible solution. The reason is the negative right side of eq. (23), because p=0¥
and (bn+2+cp+gn) is equal to the incremental fuel cost at ¢, and it is positive.
The right sides of egs. (24) and (25) are always positive. In eq. (26), when the
right side is positive, Sk should be selected as non-base and Ary,, as base, or
vice versa. [Eq. (27) should be treated similarly to select the base and non-base.
The rest of the variables become base, and they are Si., Arn and Slyym.

5.2 Expression for Cost Function

The cost function is constituted by artificial variables and the rest of the
Kuhn-Tucker conditions, which are eqgs. (12), (15), (18) and (19). Then, the next
cost function F can be obtained, and is transformed as follows :

M M L L
F= Z:l gxm-Slm+ le)m°SlM+m+ IZJVMH'SZMH’F lZ;”M+L+l'Sle+L+l

M+2L 1 (2 oF M oF M oF
At Z Arp = Q{Z JZm* ag;m =iz me:lSlm.bSl: I mZ:le'"aym

m=1 m=1
M oF Z oF z oF
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v
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=1 M+L+1 =1 OM+4L+1
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Where, the values of 6F/0gx,, 0F/0Sl., 0F/0vy, 0F/0Sly,im, 0F/0viy.,, 0F/
0S8l 0F/0vyry sy and 0F/0Sky, 1., of eq. (28) are estimated by the substitution
of the former stage values of the corresponding variables in repeated linear
programming calculations. That is, the optimum operation can be obtained by
minimizing eq. (28) in the region of egs. (23)~(27).

6. The Calculation Results of a Model Power System

The proposed method was applied to the same model power system as used
in the previous paper, which used LaGrange’s multipliers method.

Firstly, the optimum operation was estimated with the various emission con-
straints and the first line capacity, as in the previous paper. The results are
shown in Fig. 1. This corresponds completely with the results of the previous
method. Then it can be confirmed that both methods are proper.

Secondly, keeping the emission constraint as 210 [kg], the optimum operation
was estimated with the various capacities for the first and fourth lines, also as
in the previous paper. The results are shown in Fig. 2. The cases of ;=0
and 1.10 are little different, so both curves correspond. To compare the results
of both methods, the results of the previous method are shown by a dotted line.
The case of I,=co corresponds completely in both methods, but when the con-
straints of line capacity become severer then the estimating error of the previous
method becomes large. The maximum error for the operating cost is about
5.6 [%] which is at [;=0.85 and I,=0.3 [P. U.]. From Fig. 2, it is known that
when the constraints are lax the previous method estimates the true optimum
operation, and that the quadratic programming method can estimate the optimum
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operation even if the constraints become severe and many.

Thirdly, keeping at Y=210 and I,=1.10, the optimum operation was esti-
mated with various capacities for the fourth and 7-th lines which is also as in
the previous case using LaGrange’s multipliers method. Together with the pre-
vious results, these results are shown in Fig. 3. Also in these results, the pre-
vious method has an estimating error when the constraints are severe, but the
case of I,=0.25 is thought to be an exception. The maximum error for the
operating cost is 2.2 [%] at [,=0.40 and I;=co in this case. Since this maximum
error is thought to be small, it can be seen that the previous method does not
always result in a large error, even if the constraints are severe and/or many.

The computing time is considered for both methods. These optimum opera-
tions were estimated by PASOPIA 16 whose CPU is 8088 and clock signal
is 6 MHz. The average computing time for every case of Fig. 2 and Fig. 3 in
the previous method was 56.6 seconds, and this quadratic method was 26 minutes
33.8 seconds. That is, the previous LaGrange’s is very fast although it is weak
when there are severe and many constraints. The quadratic programming me-
thod is always strict. When the number of constraints is greater than the
number of generating units, then the quadratic programming method can be
used but LaGrange’s method can not.

Finally, the optimum operation was estimated with 4 lines capacity. The
results are shown in Fig. 4. It could be shown concretely that the quadratic
programming method can estimate the optimum operation even if many lines have

capacity.
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7. Conclusion

To develop a schedulling method which can be used in a fault state, an
economic load dispatch method which satisfies many line capacities and the NO,
pollution limit was reported using the quadratic programming method. Although
the previously reported method using LaGrange’s multipliers can apply only to
a lesser number of constraints than the number of generating units, this proposed
method was shown to be able to apply to any number of constraints.

The cost function of quadratic programming was constituted by quadratic
equations in the Kuhn-Tucker conditions of this problem. It was shown to be
possible to modify this cost function to a linear function by using a derived func-
tion of itself.

The simulations of the proposed method were done using a model power
system. The results were compared with the previous results. From investiga-
tions of this comparison, the following was shown: The method using La-
Grange’s multipliers can estimate in 1/30 of the calculating time of the quadratic
method, but there is an estimating error for severe and many constraints. The
proposed method using quadratic programming can estimate the optimum opera-
tion strictly even when the constraints are severe and many. The optimum
operations with a greater number of constraints than generating units were
estimated concretely by the proposed method.
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President of Kitami Institute of Technology. We wish to express our sincere
thanks to him.
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