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1. Introduction and preliminaries

The purpose of this paper is to demenstrate a generalization of e-countable
sup property established by W. A. J. Luxemburg [1] in the theory of Riesz
spaces. For a proper understanding of the kind of result we are interested in
we shall begin by recalling the various formulae and concepts which are involved.
For terminology and notation not explained below we refer to books [2] and

[3].

In what follows R will always denote a Riesz space. The simple formulae

are inserted without proofs.

(1) sup a,=—inf (—a),

2€4 €4
inf a,=—sup (—a,) .
A€4 2€4

(2) a>0 implies sup @ a;=asup @, and inf @ ¢;=ainf a,.
€41 €4 2e4

(3) sup (@+a)=sup a;+a,
264

2e4

inf (a,+a)=inf a,+a.
€1 2e4

(4) sup (a,+b,)=sup a;+sup b,.
264 rer

a€a,rer

inf (a;+0b,)=inf a,+inf b, .
2€4

aed,rel’ rel’
i

(5) sup a,=sup (sup @),

l@A,TGrl 264 TG['X
inf q,=inf (inf a,).
e, 7€l €4 1er,

€4

(6) sup (sup (a;, b)=sup (sup a;,b),
264 €l

2€4

(7) a+b=sup (a, b)+inf (a, b).

Proof. Since (1) and (3)

inf (inf (a, b))=inf (inf a, b).
264

sup (a, b)—(a+b)=sup (—b, —a)= —inf (a, b) .

Thus a+b=sup (a, b)+inf (a, b) .
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(8) sup (inf(a,; b)=inf (sup-a, b),

€4 2e4

inf (sup (a;, b)) =sup (inf a,, b) .
€4

€4

Proof. Putting sup a;=a, we have
2€1
(a;, b)<inf (a, b) for all 2& 4.
), if inf (a,, b)) <c for all 24, then

inf

(7

c>inf (a; b)=(a;+b)—sup (a, b)
>(a,+b)—sup (a, b) for all 2&4.

Thus c—b+sup (a, b)>a, for all 2&4.
Therefore

c—b+sup (a,b)>a and c>a+b—sup (a, b)=inf (a, b).

Since

Hence we have

sup (inf (a, b))=inf (sup a, b).
264

2€4

The latter formula is proved similarly.

(9) sup (sup (a by))=sup (sup a sup b)),

a€d,rel’
inf (inf (a, b,)=inf (lnf a,, 1nf b,) .
2€4, 7€l 2€4

(10) sup (inf (a, b,))=inf (sup a;, sup b, ,

aed,rel’

inf (sup (a; b,)=sup (mf ay 1nf b, .

A€M, 7€l 2€4

Proof. Putting a=sup a, and b=sup b,, we have
2€4 T€r

inf (a, b,)<inf (a, b) for all 24, yerl".
Let ¢ be an upper bound of inf (a, b,) (A4, yEI'). From (8), it follows

that inf (a, b,)<c for all yeI". Thus inf (a, b)<c.

Therefore sup (a; b,)=inf (a, b). The latter formula is proved similarly.
2€4,rer

(11) a=a*—a .
Proof. Since (1) and (7) it follows that
a=a+0=sup (a, 0)+inf (a, 0)=sup (a, 0)—sup (—a, 0)
=a*—a .
(12) |a|=sup (a, —a).
Proof. |a|=a"+a =sup(a, 0)+sup (—a, 0)=sup (a, —a,0).

Since sup (a, —a)>a and sup (a, —a)> —a, it follows that 2 sup (a, —a)>0
and sup (a, —a)>0. Therefore |a| =sup (a, —a, 0)=sup (a, —a).

Lemma 1, If X is a linear subspace of R, then the following conditison
are mutually equivalent.
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(1) X>=a implies at=X.
(i) X>=a implies a X.
(i) X>a, b implies sup (a, b)cX.
(iv) X>a, b implies inf (a, b)=X.

(v) X>a implies |aeX.

Proof. (1)=(i). If aeX, then —a=X. Hence (—a)t=a X.

()=(@i). If a, b€X, then a—beX. Hence (a—b)~=sup (b—a, 0)eX, we
have sup (b—a, 0)+a=sup (b, a)=X.

(ii)=(v). If @, beX, then —a, —b=X and sup (—a, —b)= —inf (q, b)cX
by (1). Thus inf (a, b)eX.

(iv)=>(v). If aeX, then —a=X and —inf (¢, —a)=sup (—a, a)=|a|=X by
(12). o

(v)=>(i). We assume that X=a implies |a|=X. |a|=sup (a, —a)=X by (12)
and sup (@, —a)+a=sup (24, 0)=2sup (a, 0)=2a* =X by (2), (3) and (12). Hence,
ac=X implies at =X.

(a) A linear subspace I of R is called an ideal whenever al and |b|<|dq]
implies b&l. The smallest ideal containing one element a is called a principal
ideal and we denote it by I,.

(b) An indeal B of R is called a bnad whenever 0<q,eB (A=) and a=
sup a; implies a=B.

Lemma 2. Let 1 be an ideal of R. There exists the smallest band By
containing 1 and

Blz{a—b: a=sup a; for some 0<aq,1 (A€ 4) and

2€4

b=sup b, for some 0<b 1 (7EF)}.

1€l

Proof. Evidently B; is a linear subspace of R by (2) and (4). Before we
prove that B; is an ideal, we shall prove the following (i) and (ii).
(i) a&By; implies |a| €B;.
(ii) 0<a&B; implies a=sup a; for some 0<a, 1 (AE ).
A€4
Proof of (i). We put a=b—c, b=sup b, for some 0<b,cl (2 4) and c=
€1

sup ¢, for some 0<c,&l (yI'). Since a*<b, we have
rer

at=inf (a*, b)=sup(inf (b,, a*) by (8).

2€4
Since I is an ideal of R, it follows that inf (b, a") <l (A€ 4).
Consequently, a*€B; and |a|=B; by Lemma 1.
Proof of (ii). We put 0<a=b—c, b=sup b, for some 0<b,&l (1€4) and

264

c=sup ¢, for some 0<c¢,€l (y&I'). Since a<b, we have
7€r

a=inf (a, b)=inf (a, sup b,)=sup (inf (a, b)) by (8).
p{} 2€4

Since I is an ideal, it follows that 0<inf (q, )1 (2 4).
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Putting a,=inf (a, b)) €1 (A€ 1), we have that (ii) is formed.
If a=B; and |b|<|a|, then |a|EB; by (i). Since (ii) we have

la| =sup a, for some 0<a,€l 2€4).
€4

Consequently
|b] =inf (|al, [b])=inf (sup a, |b])
=sup (inf (a;, [8])) by (8).

2€4

Since I is an ideal, it follows that
0<inf (a, |b])El (2€4) and |b|EB;.

Consequently b* €B;, b~ B; and b=0b"—b"EB:. Thus B; is an ideal.
Finally we shall show that By is a band. If a=sup a, for some 0<a,eB;
2€4

(A1), then we have a,=sup b, for some 0<b, €l (24, y€I"). Since (5), it

2er;
follows that
a=sup (sup b,)= sup b, =B.

€4 rer, 2€4,7€T;

Thus By is a band. It is clear that By is the smallest band containing I
and the proof is completed.

() An ideal I of R is called order dense in an ideal J of R whenever the
smallest band B; containing I satisfies that JCB;.

(d) An ideal I of R is called quasi order dense in an ideal J of R whenever
for every 0<a&] there exists an element 0<<b&I such that 0<b=<a.

(e) If I is an ideal in R and if a, (A€4) is a system of elements of I, then
a, (A1) is called a (quasi) order basis whenever the ideal generated by a, (1€ /)
is (quasi) order dense in I

2. The main theorem

(f) A Riesz space R is said to have (a, b)-countable sup property whenever
for every system 0<a, (2€4) with sup ¢,=a and 0<b<a with I,=I,_,, there
€4

exists @, (L,EA, n=1, 2, -+-) such that
sup (inf (a,, b)=0.
Theorem 3. Let R be a Riesz space. If every ideal of R contained in
some principal ideal has a countable quasi order basis, then R has the (a, b)-

countable sup property for all 0<b<a with 1,=1,_;.
Proof. Suppose that a, bER, 0<b<a, I,=1,_, and

a=sup a, for some 0<a@;,ER (2€4).

€4

We put ¢;=(a,—b)* (A€ /) and let I be the ideal generated by ¢, (A€ ).
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sup ¢;=a—b by (3) and (6).
€4

So, I is order dense in I,_, (=I,). From this hypothesis, I has a countable
quasi order basis, i.e., there exist countably many elements xz,&l (n=1,2, )
such that the ideal generated by them is quasi order dense in I. Since we can
say that

EA SeniiCyy, sk O’kn,‘.fzknk

for some positive integer 7, and some positive numbers ayy, ---, ag,, and some
k1 ***» An, €4, then we can find countably many elements ¢, (A€4,n=1,2, )
such that the ideal J generated by them is quasi order dense in I. So, J is
quasi order dense in I, (=1, ;). :
c;nZ(aln—b)Jrn:l, 2, e,
clearly inf (a,, 6)<b for all n=1,2,--.. Assuming that
inf (a,, b)<c for all n=1,2, -,
then b—c<b—inf (a,, b)=b+sup (—a,,, —b)=sup (b—a,,, 0)=(a,,—b)for all n=
1512, a0
Assuming that (b—c)* >0, then (b—c)*&I,. Since J is quasi order dense
in I,, there is an element x&] such that 0<x<(b—c)*.
Such an element x is experssed

0<zZac; + -+ + an, Cia,
for some positive integer 7, and some positive numbers aj, -+, ay,.
On the other hand, 0<x<(b—)* <(a,,—b)~ for all n=1,2, ---.
So, inf (z,c,)=0 (k=1,2, ---, ny).
Consequently
z=inf (x, 0y c;, + - +aq, ¢y, )=0.

Contradiction.

Thus, (b—c)*=0 and b<c. Therefore sup (inf (q,,b)=5 and the proof
is comleted. ;

(g) A Riesz space R is said to have the ¢-countable sup property whenever
for every directed system {a,} with 0<a,} a and 0<e<1 there exists a sequence
{a;,} C©{a;} such that a,, 7 and

sup (inf (@, ca))=ca.

Concerning the e-countable sup property, W. A. J. Luxemburg proved the
following theorem in [1].

Theorem 4. Let R be a Riesz space. If every ideal of R contained in
some principal ideal has a countable quasi order basis, then R has the e-countable
sup property for all 0<e<1.
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The above theorem is implied by Theorem 3., because of 0<ea<a and
I(l—e)a:Ia-

(h) Riesz space R is called Archimedean whenever inf (1/n)a=0 for all
0<acR. b |

(i) If a Riesz space has the 1-countable sup property, R is said to have the
countable sup property.

If the Riesz space is Archimedean, then the countable sup property can be
expressed in terms of the e-countable sup property as follows.

Lemma 5. If R is Archimedean, then R has the countable sup property
if and only if R has the e-countable sup property for all 0<e<l.

For proof of Lemma 5., we refer the reader to Lemma 5. in [1].

If a countable subset A satisfies the following property : for every 0<u&R
there exists an element 0< a= A such that 0<a<u, then A is a countable quasi
order basis in R and furthermore every ideal in R has a countable quasi order
basis.

We denote the class of all continuous real valued functions on [0,1] by
the symbol C[0,1]. For f,g=C[0,1] we define f<g whenever f(x)<¢(x) for
all 0<x<1. So, C[0,1] is Archimedean Riesz space. Let ACC [0, 1] be the
totality of all functions as follows

(0 0<x<r)
A
7.2_27.1 (x—my) (m<x<r)
a(x)= .
'rz_irs (x—ry) (ra<ax<rs)
0 (rs<x<1)

for all rational numbers 0<r <7, <ry<l.

Clearly A is a countable subset of C[0,1] and furthermore for every 0<
feC[0,1] there exists some a=A such that 0<a<f. Hence we have the
following corollary by Theorem 4. and Lemma 5.

Corollary 6. C|[0,1] holds the countable sup property.
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