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Preliminary. Let L be a Riesz space.
1
(a) L is called Archimedean whenever inf;u:O for every 0<ucL.

(b) A linear subspace I of L is called an ideal whenever |f1=<]g] and
gl imply fel

For every non-empty set X of L, we have the ideal I generated by X,
namely, [ is the least ideal including X and we will designate it by Iy. An
ideal which is generated by only one element of L is called a principal ideal.

(¢) An ideal I of L is called order dense in an ideal J of L whenever
every element f&J* is expressed as f=sup (z: f=zI").

(d) Let I be an ideal of L and IDA#¢. A is called an order basis when-
ever I, is order dense in I.

If A(CI)is an at most countable set and an order basis in I, then A is
called a countable order basis in I.

(e) An ideal Iin L is called quasi order dense in an ideal J in L whene-
ver for every 0<u&J there exists an element 0<v<1 such that 0<v<u.

(f) A non-empty subset A of anideal I in L is called a quasi order basis
of I whenever the ideal I, is quasi order dense in I. If A(CI) is an at most
countable set and a quasi order basis of I, then A is called a countable quasi
order basis of I.

It is clear that:

Proposition 1. If an ideal I in L is order dense in an ideal J in L, then
I is quasi order dense in J. If a non-empty subset A of an ideal I in L is a
countable order basis of I, then A is a countable quasi order basis of I.

(g) L is said to have the countable sup property whenever every non-empty
subset D of L having a supremum contains an at most countable subset having
the same supremum as D.

(h) L is said to have O-countable inf property whenever every non-empty
subset D of L having inf D=0 contains an at most countable subset having
the infimum 0.

It is obvious that :

Proposition 2. (g) is equivalent to (h).

(i) L is said to have the countable upper bounds property whenever every
non-empty subset D of L which is bounded above contains an at most countable
subset having the same set of upper bounds as D.
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It is clear that:

Proposition 3. (i) implies (g).

W. A. J. Luxembrug has brought many interesting relations on order pro-
perties in Archimedean Riesz spaces in [1], by way of example, he has shown
the following :

Theorem 4. If the Riesz space L is Archimedean, then the following pro-
perties (i), (i) and (i) are equivalent mutually.

(i) An ideal which is included by a principal ideal has a countable order
basts.

(i) L has the countable sup property.

(i) L has the countable upper bounds property.

Now, considering the above theorem in case of non-Archimdedan Riesz
space, we have the negative results.

1. The relations between a countable order basis
and the countable sup property in
non-Archimdedan Riesz spaces.

Let L be a Riesz space and that we do not assume that L is Archimedean.
We shall show that it does not necessarily follow that (i) implies (ii).

1-1. w-well ordered sets. Let .S be a infinite set whose cardinal number
is S>8,. By virtue of the well order theorem, we can fix the well order on
S This well ordered set is denoted by .S again. We put min.S=0 and an
interval [0, s]=(z€S: 0=x=s) for every s&S. We put A=(s&S: m>&o)
and min A=a if A#¢. We set the subset X in § as follows:

_ {S (A=9)
[0, d\(@) (A#9)

Such a well ordered set X is called a w-well ordered set and it has the

following properties :

Proposition 5. If the set X is a w-well ordered set, then X >R and every
at most countable subset Y of X has its upper bound.

Proof. Since the construction of .X, we have X >§&, and ﬁ]é&o for all
zeX. If we deny our conclusion for every at most countable subset Y of X,
then for every x& X, there exists some y <Y such that x=y and this fact yields
[0, 2] [0, %] and X= LEJY[O, xl= Lejy[O, y]. Since ¥ =& and [0,y] =R, for all y€Y,
we have X <&, Contradiction.

1-2. A Riesz space which is composed of all real functions on a w-well
ordered set. Let X be a w-well ordered set and let L be the totality of all
real functions on X. To every fEL, we put zy=min (z€X: f(x)#0). Taking
a positive cone P in L such that P=(feL: f=0 or f(xy)>0). Putting B=1#,
L becomes a linearly ordred Riesz space, namely, f=¢ means that g—fEL".
For such Riesz space L, we have the following property :
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Proposition 5. Every ideal in L is a principal ideal and L does not hold
the countable sup property.

Proof. Let I be an ideal in L. In case of I=(0), it is obvious that I is
a principal ideal. In case of I+(0), we put 53}3 (z)=x,. Therefore we can

find some function f;#0 in I such that z; =z, and we have |fy| (x)>0. Since
2=z, for all 0£fE€]L if 2>, then |f|<|fil and if zy=x,, then |f|<2|fy| for
some positive real number 2. Consequently, the ideal  coinsides with the principal
ideal I. by (b). Next, we shall prove that L does not hold the countable sup
property. We put D=(f&L: 0<f). It is obvious that inf sH—0wBor every
non-empty at most countable subset Dy of D, we put ¥Y=(x€X: feD,). Since
X is w-well ordered set and Y is an at. most countable subset of X, we can
find an upper bound z, of Y by the ))}oposition 5. Therefore, we take the

following function f; on X
:Jl (x=2)
Jolx) lo R

It is obvious that 0<f;= L and fo<f for all f€D,. Thus, L does not hold
the 0-countable inf property, namely, L does not hold the countable sup property
by the proposition 2.

1-3. A Riesz space which holds (ii) but not (i. We have the example
of Riesz space which has the property (ii) but not (iii) in [2]. This example is
in the following :

Let X be the linear space of all real functions on the real line R such that
£(8)#0 holds only at most countably many in R. We introduce a partially order-
ing in X by defining that f<¢ means that f(§)=g¢(¢) for all {€R. Let L be
a linear space of the product space RxX. We introduce a partially ordering
in L by defining that (e, f)=(p, g) means either a<{f or a=§, f=<g. We shall
show that this Riesz space L as above-mentioned example does not hold (i) below.
we put a system of real functions f;(2€R) such that

f1 =2

fz(f):lo (E+3) (AER).

Let A(CL) be the totality of all (0,£) (A€R). It is evident that 0=(0,
£)<(1,0) for all 2&R. Hence I,CIy, (which is the ideal generated by (1, 0)),
namely, the ideal I, is included by the principal idenal Iy. If I,=(a, ¢), then
(@, @) < (0, /o) 4+ + 1 (0, f,) for some positive real numbers g4, -, #t, and
some real numbers A, --:, 2. Thus, a=0 and M,=(EER: ¢ (§)#0)C(4, ", 4n)-
We take every at most countable subset B of I, If B=(a,¢), then a=0 and
¢ (£)#0 holds only finitely many in R. therefore, Mz( U)(S ER: ¢ (§)#0) is at most

0,0)€B
countable. Hence, we can take a real number 2zEM and 0< (0, ) € Ls. If we

can find an element (a, ¢) (=(0, ¢)EIz such that (0,/;)=(a, ¢) (=(0, ¢)) >0, then

(a, 0)=0. Contradiction.
Hence, we conclude that I is not quasi order dence in Iy
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Consequently, by proposition 1, the ideal I, which is included by the principal
ideal I, does not have any countable order basis.

2. The relations between a countable order basis and
the countable upper bounds property in
non-Archimedean Riesz spaces

Already, we have shown the example of the Riesz space which holds (i)
but not (ii) in 1-2. This Riesz space as this example holds (i) but not (iii), because
(iii) implies (ii). (cf. [1]). There is not saying that (iii) implies (i) or not in the
non-Archimedean Riesz spaces.
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