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Abstract

The stress waves, propagating in a rectangular beam reinforced by equi-distantly spaced
fibers in the longitudinal direction, are investigated as an eigenvalue problem of the dynamic
finite prism method by means of finite Fourier integration transforms.

The discussions are focussed on the dispersion of a harmonic flexural wave and the com-

parison of the wave velocity curves with and without reinforcement is shown in figures.

Introduction

In analyzing a structural element to be fabricated from a fiber-reinforced
composite, one of the principal difficulties lies in constructing a suitable mathe-
matical model describing the mechanical behavior of the composite. The cus-
tomary approach consists in replacing the composite by a homogeneous medium
whose material constants are determined in terms of the material constants and
the goemetry of each constituent of the composite.

The authors, going in another way, attempt to handle the problem with the
aid of finite prism method and finite Fourier integration transforms to keep the
discreteness of the matter. It is, however, assumed that fiber reinforcement are
equi-distantly spaced and their inertia effect is to be neglected.

For many steady-state and transient dynamic problems of structural mechan-
ics, it is helpful and sometimes required to know the dispersive characteristics
of free harmonic flexural waves, i.e., the dependence of the phase and group
velocity on the wave length.

Many reseachers have so far studied on the stress wave problem in a rectan-
gular prism ; Rayleigh?, Timoshenko?, Volterra?, Mindlin®, Engstrém®, Tanaka®,
and such. The present paper adds a data of the wave velocity curves concerning
a reinforced rectanglar beam.

Nomenclature
¢: phase velocity

cp= \/ﬁ%“_ (primary wave velocity)
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€y = \/% (secondary wave velocity)

[: wave length
p: density of material
ps: density of reinforcement
tts: Lame’s constant of fiber reinforcement
y,v,: Poisson’s ratio
A 43 :  width and depth of the element in the ¥ and z direction,
respectively
A,: section area of reinforcement
E,: elastic modulus of reinforcement

a=1+4(—-1)
b=1—(—1)F
Dk =1-— ng

1)) = 2(1—cos ]—n>
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A, = section area of prism element

Formulation of Mathematical Models

Firstly, let us assume the harmonic wave as

u=UcosZ—ln (x—ct) (1)
. 2rm

v = Vsin e (x—ct) (2)
. 2m

w = WsmT (x—ct) (3)

in which the displacements take linear distribution over the section, namely
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Fig. 1. A Prism Element. Fig. 2. Fiber-reinforced Beam.
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where U,, V4, W, are the displacements at the vertex A in the z, ¥, z directions
respectively. 7=vy/4 and {=2/4.
Putting %, v, w into the equation of equilibrium
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Oy Tazy Taz W u
0 0*

Tay Oy Tyz oy =nflagg [ (5)
0

Tz Tyz Oz LW Lw

and applying the Galerkin’s method with the base functions same as the dis-
placement distribution over the cross section, we can get necessary stiffness matrix
and mass matrix between the vertex forces and the displacements. After so
doing, the equiilbrium of forces of node can be expressed by the difference equa-
tions as follows? : (y, z: interger in the ¥, 2 direction)

LeFIDED (o ity ams 6 Bty 1 a6 £y i +36,)

2 A
+ !6123 AZ (Azuy._l,z-1+6uy_1,z)+ lézz AZ(AZtu‘Irz_1+6uy’z_l)

hy) D2
o (/1—*]_.2) > 4 (Ai Vy,z— 1+67)y z)+% Az(Aiwy—l,z‘}'swy,z)
+E,Ayiiy = ”Ms L Lodl] g+ 6 L]y A6 L0t 43644
+p_,Asu§,"z

(6)
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where

Lf(x—1) = flx—1)—2 f(2)+f(x—1) and
ﬁf(x—l):f(aﬂ—l)—f(x—l).

Solution

Decomposing the stress wave into a symmetrical case and antisymmetrical
case with respect to both middle planes of the depth and the width, we have
only to treat the one fourth of the nodal lines. The surfaces =0 and =0,
being free from stress, we may write the boundary conditions :

Tyugry @)+ Tyt (@ = 0 (for 2=0), (9)
Y(,J,,(,)H) (z)+ Y(y,%_l) (x) =0 (for 2=0), (10)
Ziy ey @)+ Zy oy (@) = 0 (for 2=0), (1)
T o @+T o (@) =0 (for y=0), 12)
Y(Z';)H) (x)—f—Y(z’:_l) ()= 0 (for y=0), (13)
X(z,zo+l) (x)—i—Z(z':_l)(:c) =0 (for y=0), (14)
Too(z) = 0 (for y=2=0), (15)
Yoo () = 0 (for y=2=0), (16)
Zoo(2) = 0 (for y=2=0). (17)

in which 7, Y and Z are vertex forces of the prism element in the z, ¥ and =z
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In like manner we have the boundary condition for the other surfaces.

Performing the finite Fourier integration transforms to the Egs. (6), (7) and
(8), we have

L'U: M'U00+N'UOS (18)
where
’_Lll L12 LIS S] Sk [Uyz] Nll
L = L22 ng U: Rj Sk [Vyz] N1 == N21
\Sym L33 ’ Sj Rlc [W‘Ilz] ’ N31 ’
"le Nla N14 N15 SJ‘ [UyOJ
Sk [Uk]
N = Ny Nig Ny N Uy = RI; [V:o]
LN32 N38 N34 N35 ’ Rk [WOZ] ’
n—1 ;
AV EPWIOE S
n—1 ;. 1 ’ 1
R, [fW)] = L) cos F31 45 flm) (=1 +5£(0).
in which
¢ = V20N s - A =
I = (1= )(@aDbet 4 ) () +-G {3 Do DD
2 2 2
+2(1+vs>%;As(—l”—) :
2 2 2
( - z§><2223D D+ A, ”)(%) C— 22 D, De+-3-D; Dy,
& 27 )
=[1= 2 g
( ) S ( l
¢ jr
Ly = ( C;’ 1) sm¥sm*,
Apds [ 2 2
Niyy= —{(1— %) 3263 (Tn'> Cp *( - >}sm¥sm— ab,
CZ
o= () o o ()
2 2
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96 Toshiyuki OHSHIMA and Sumio G. NOMACHI

2 Agbrpg frebnude 2
N= (—%—1) Ts sin j: san- b <T77:> :
2
N22=<1—-i‘2’>%s Jism—’“—b(—f—),
2 2
Nesi= {({} ——1> % 1—cos J*)—l—Z = } 3Dy a <2Tﬂ> s

N A oo o B N R0R - Ao IV Fkrx
Noy= _{<1__? 4%3 D; (~2-> -}rc% Z-;; Dj—T:Dj} sip=—t b

Replacement of 2y, j, 7n and a by Z, k, 7 and b in Ly, Ly, Ny, N ai Ny Nas,
N, and Ny yields Ly, Lgs, Ny, Ny, Ny, Ngso Ny and Ny in which Ni;= Ny,

And satisfying the boundary conditions (9)~(17), we can obtain the eigenvalue
concerning phase velocity by the iteration method. Inversion theorem leads to
the solution which are for the finite Fourier integration transforms :

— 1 ™~ . T
U sin ﬂ-sin i
_4 5 Jny o krz
¥l = j};o k;) U-[I]| cos , Sin (19)
tW sin JEY cos ki
o n J

in which [I] is a unit matrix, #» and r are the numbers of the nodes in the ¥

and z directions, respectively.

Numerical Examples

In order to illustrate the numberical calculation of presenting formulas, rec-
tangular beam with square cross section of the side B (=82, =8%) as shown
in Fig. 3, is considered. The following values are taken in the calculation. The
computation was carried out by FACOM 230-75 Hokkaido university.

B = H=15cm, E=2.1x10*kg/cm?, p=7/g, y=2.4t/m% y,=7.85t/m?
v = 0.18, v,=0.3, V,=cp/c;=1.601, c,=3.051 km/sec,

cs = 1.906 km/sec, E;=2.1 x10°kg/cm? a=DB/l,

Vie = d/c;, BRS=1 31074,

B

&-a

Z

Fig. 3. Fiber-reinforced Square Beam.
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Dispersion curves of harmonic flexural waves with and without reinforcement
are shown in Fig. 4. And axial displacement mode of the waves are shown in
Fig. 5 for a=0.5 and Fig. 6 for a=2.5.
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Fig. 4. Dispersion Curve of Flexural wave.

Fig. 5. Mode of Longitudinal Displace- Fig. 6. Mode of Longitudinal Displace-
ment of Flexural Wave (a=0.5). ment of Flexural Wave (a=2.5).
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Final Remarks

1) Making use of finite prism method and finite Fourier integration trans-

forms, we can handle the fiber reinforced beam problem, keeping the discreteness
of the matter. We can save the task of replacing the discrete property of the

reinforcements to a fictitious continuous medium.

2) Comparing the numerical results of dispersion curves of flexural wavers

in the beam with and without the reinforcement, we find a little difference be-
tween them.

3) Numerical results of axial displacement modes with and without the

reinforcement are obtained for a=0.5 and 2'5. There is larger difference in
the result of a=0.5.

1)
2)

3)
4)
5)
6)

7)
8)

9)
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