On the Structural Analysis of the Langered Plate
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The stress distributions and deflections of the composite structure which
is built up with a deck plate and two spandrel arches stiffening the plate at
the edges, are disccussed.

In dividing the deck plate into long strips, and recomposing the structure
so as to apply Finite Fourier Integration Transform", the authors obtained the
solutions in simple forms, which is feasible to take the boundary conditions of
the plate into account.

As the numerical examples, the structure which has two opposite edges
simply supported and the other two edges rested on the stiffening frame works,
and is subjected to uniform load, are computed.

Introduction

The plate structure of its deck plate discretely supported along the edge
lines with vertical frame works, as shown in Fig. 1, is supposed to be a kind
of a deck type bridge structure.

If the aspect ratio of the length and width
is large, we can consider it as a Langer girder.
However, if the aspect ratio is small, we may
call it “Langered plate”.

In the latter case, the transverse elastic
behaviour becomes more complicated one than
the former, and it may be interesting for the ;
design to make the transverse elastic behaviour Fig. 1. Langered plate.
clear.

Therefore the long strip method based on the plate theory, is used for the
stress analysis of the deck plate. So doing the bending moment, torsional
moment and shearing force in the transverse direction can be expressed. On
the long side edges, the boundary values are represented by the mean values
over the short width.

In this way we find enough number of the equations of the equilibrium
of forces about every nodes to solve the necessary displacements out.
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Basic Formulas

1) Finite Strip Method?

Let us consider the case when a plate is divided into long strip elements,
as shown in Fig. 2, and assuming that the deflection surface concerning a strip
element is
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the basic differential and difference equations are expressed as follows :
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p.=linearly distributed load along the intersection,
N=bending rigidity of plate,
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Fig. 2. Finite strip element.
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2) Finite Fourier Integration Transform?

Let us introduce the symbolic notation

n—1
lﬂ.'.r (4)

Si[fl@)] = X fla)sin ==,

of which inversion formula is

f(x):%z:&[f(x)] sin %‘E (5)
Applying the above formulas to the sine transform, we have
Si[dzf(x— 1)] = —sin %n {(— 1) f(n)— (O)} —D, Si[f(x)] , (6)

where

Dy= 2(1—cos li)
n

3) Closed Form Solution Concerning Fourier Series

Following formulas have been introduced by Dr. S. Iguchi® :
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z E,; 112232 sin maé = W;:hm{(l — &) cosh za sinh 728

—¢&sinh 712(1—5)}, (8)
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1 n | | :
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1 1 :
2 i+ B 08 mné = %ﬁ[sinh—znl[smh nd cosh 7A(1—¢§)

+ 72 {cosh zA cosh 7A(1—£&)—(1—£) sinh 2 sinh zA(1 —E)}]— thi]
(13)
The Analysis of the Langered Plate

Let us consider a structure of which two opposite sides y=0 and y=/'
are simply supported and the other two sides =0 and x =1/ are supported
through the vertical members to the chord members of the structure.

Simple Support

Fig. 3. Langered plate.

Assuming that the shape of the chord members is parabolic and that the
structure together with external loads are symmetrical with respect to the
midspan of the plate, the deformation will occur symmetrically with respect to
the midspan.

Applying the Finite Fourier Transform in the z direction and the Finite
Fourier Integration Transform in the y direction to Egs. (2) and (3), we have

PRSI )
(= )7 o

6
A2l pas(o- B

—bN(l— % )(%) B, 8 [0,0] +S:S*' [p) sin 75 d, (14)
8.[@..] = Wbﬁ (1 » %) SIML]  (i%0) (15)
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Substituting Eq. (15) to Eq. (14) and performing the Fourier inverse trans-
form to the result, we obtain

g ol 2 ay-m-B, . mnx 0y
Si [Mrz] - alond [§ < . @ 2 Sin l ';gi [Mro]
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3
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+ 32 o sin / ] (16)
(m +Lzo>
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Applying the equations of closed form, we obtain
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Boundary Conditions

The boundary condition concerning M,, and Q, along the edge line x=0,

are expressed as:

e R T T —

Fig. 4. Boundary condition.

M,yz—N(l—V)<aa;g;> =0, and (18)
0,410+ Q,.,,(0)=S,.0). (19)

where
0.0 =['Qri@dy and

Q. =— N(dw)
Eq. (18) can be rewritten by Eq. (1) as

Do st~ (1 5) Bilvgz] =0 20

And we obtain from Eq. (19)

b(1-2) (s 31— N8 o)

4 (80=TD) (SULME] ~ N8, [i5]) = 8.[S. 0] 1)

Substituting Eq. (17) into Egs. (20) and (21), we have two equations of
boundary conditions concerning §;[M}] and S;[w,] :

Ay A [ 8:1M)] B,
8 [10,0] } - [ B,+ ALOS" [S,,,(O)]] (22)

Ay Az

where

Ap=P0)+P(1), Ap=Qi(0)+0i(1)+Q(0)+Qx(1),
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D;

A21=b<1— 6 ){P( 0)+P(1)} + {—%(1—%)2 360 (07D

36?)5D (30— 7D)< lg"){'ﬁ(o)+ﬁ'(1)},

A22=b<1— 6 ){Ql< 0)+Qi(1)+Q:(0)+ Qs(1)}

+0{= 5, (1= 8+ 5gg - 7D>} (G.(0)+0,(1)+ 0,(0)+ Q1)

And we have

S..(0)=H-C (23)
where H=horizontal reaction at the end of frame work, and
C=tan a,—tan a,,
, then we obtain
8i[we] = M;+ N;-H, (24)
Si[M%) = K.+ Li- 8[S..(0)], and (25)
%Z_(M+NH)ser (26)
where
M. = _Bl__ Ap : B Ap—AnB, A Ay Ay 8:[C]
s AIZ A12 All A22_A12 AZI ’ AIZ AO(AII AZZ_AIZ AZI) ‘
ol Bl AZZ—szBz i AIZ I
T et N W e e ol

All AZZ o ) A12 A21

From boundary condition for the lower chord members in the horizontal

direction, we obtain®

H-bsec’a, HC<h h,_

Z E-A® Z E AP A(y) )tana #e Z w,0:C=0

where A® =sectional area of chord member at y=7r, and
A" =sectional area of vertical member at y=r.

Substituting Eq. (26) to Eq. (27) yields

(27)
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9 .
‘ng = (Z M, sin %r>
H= . L ——
EA® Cif. h; h,_ 2C . inr
Z,: b secé‘cT,_i- ; f( AW Ai‘i ) tana. il Z,: (; N, sin 727>
(28)
Numerical Examples
For the numerical calculation, the following values are taken as:
E=21x10kg/cm®*, v=0.3, £=10cm,
[ =85 T 2 18 med b= kbmy a=idd)
f=10m, A®=A"=25em?, \and
fully uniform load ¢=1 kg/cm®.
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Fig. 5.

w along y=10"/2

Langered Plate

(%10 kg/em* )
emiimmsem=  Cage 2

Fig. 6. o0y along y=0/2

The comparison of the results of the Langered plate, with plate theory,
are shown in Fig. 5 and 6. Fig. 5 is for the deflection and Fig. 6 is for the

stress.

Case 1: Plate theory of

Case 2: Plate theory of
other two sides
x 1000 cm,

Case 3: Plate theory of
other two sides
%100 cm, and

Case 4: Plate theory of

other two sides

which four sides are simply supported,
which two sides are simply supported and the
are elastically supported by the beam & x h =10

which two sides are simply supported and the
are elastically supported by the beam & x h =10

which two sides are simply supported and the
are free from stresses.
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Remarks

We can point out the following remarks :

1) Because we need not to pay any attention to the convergence problem of
Fourier series, we can carry out the numerical calculation in short calculation
time.

2) If we may replace the frame works with equivalent elastic beams, we can
handls the analysis of Langered plate as the plate problem of which two opposite
sides are simply supported and the other two sides are elastically supported.
3) If we use large values to the sectional area of frame members, the numerical
results become equal to simply supported plate theory.
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