On a uniqueness theorem for the differential equation u' = f(t, u) in a Banach space

by Shigeo KATO*
(Received September 25, 1974)

Let E be a Banach space with norm $\| \ \|$, and let U be an open set in E. We consider the nonlinear abstract Cauchy problem

(D)
$$u' = f(t, u), \qquad u(0) = u_0 \in \overline{U}.$$

Here f is a continuous E-valued mapping defined on $[0, T] \times \overline{U}$. We say u is a solution of (D) on [0, T] with $u(0) = u_0$ if u is continuous on [0, T], differentiable on (0, T) and if $u(t) \in U$, u'(t) = f(t, u(t)) for $t \in (0, T)$.

It is our object in this paper to give a sufficient condition for the uniqueness of solutions of (D).

Our result is a straightforward extension into a general Banach space of that of J. M. Bownds and J. B. Diaz [1].

For u, v in E we define $\langle u, v \rangle$ by

$$\langle u, v \rangle = \lim_{h \to -0} \frac{1}{h} (\|u + hv\| - \|u\|).$$

The above limit exists for each u, v in E since $\frac{1}{h}(\|u+hv\|-\|u\|)$ is bounded and nondecreasing as $h \uparrow 0$.

LEMMA. Let I be an open interval and r a continuous function from I into E such that $D^-r(t)$ exists for all $t \in I$, where $D^-r(t)$ denotes the left derivative for r(t). If m(t) = ||r(t)|| for all $t \in I$, then $D^-m(t)$ exists and

$$D^-m(t) = \langle r(t), D^-r(t) \rangle$$
.

For a proof see [3].

Theorem. Suppose that f is continuously Fréchet differentiable on $(0, T) \times U$, and set

$$V(t, u) = f_t(t, u) + f_u(t, u) f(t, u)$$

for $(t, u) \in (0, T) \times U$. Suppose furthermore that

$$\langle f(t, u) - f(t, v), V(t, u) - V(t, v) \rangle \leq 0$$

for (t, u), $(t, v) \in (0, T) \times U$.

Then there exists at most one solution of (D).

PROOF. Suppose that there exist two solutions u and v of (D). Define

^{*} Department of Liberel Arts, Kitami Institute of Technology.

m(t) = ||f(t, u(t)) - f(t, v(t))|| for $t \in [0, T]$. Then, m(0) = 0, $m(t) \ge 0$ for $t \in [0, T]$, and

$$\begin{split} D^-m(t) &= \left\langle f(t,\,u(t)) - f(t,\,v(t)), \; D^-(f(t,\,u(t)) - f(t,\,v(t))\right\rangle \\ &= \left\langle f(t,\,u(t)) - f(t,\,v(t)), \; V(t,\,u(t)) - V(t,\,v(t))\right\rangle \end{split}$$

for $t \in (0, T)$, where we used the chain rule for Fréchet derivatives. Hence, the hypothesis of the theorem then implies that

$$D^-m(t) \leq 0$$
 for $t \in (0, T)$.

Thus if follows that $m(t) \equiv 0$ on [0, T] since m is nonincreasing and m(0) = 0. Since u and v are solutions of (D), $u'(t) \equiv v'(t)$ on (0, T), while the initial condition gives that u(0) = v(0), therefore, $u(t) \equiv v(t)$ on [0, T].

Remark 1. If E is a Hilbert space with inner product (,), then we can easily see that

$$\langle u, v \rangle = \begin{cases} \operatorname{Re}(u, v) / \|u\| & (u \neq 0) \\ -\|v\| & (u = 0), \end{cases}$$

and hence, our condition of the theorem becomes

$$\operatorname{Re}\left(f(t, u) - f(t, v), V(t, u) - V(t, v)\right) \leq 0$$

for (t, u), $(t, v) \in (0, T) \times U$.

REMARK 2. If $E = R^n$, the *n*-dimensional Euclidean space, and U is an open set in R^n .

Suppose that $f \in C([0, T] \times \overline{U}; R^n) \cap C^1((0, T) \times U; R^n)$, then for each $h = (h_1, \dots, h_n) \in R^n$

$$f_u(t, u) h = (h_1, \dots, h_n) \begin{pmatrix} f_{u_1}^1(t, u) & \cdots & f_{u_1}^n(t, u) \\ \vdots & & \vdots \\ f_{u_n}^1(t, u) & \cdots & f_{u_n}^n(t, u) \end{pmatrix},$$

where $f(t, u) = (f^1(t, u), \dots, f^n(t, u))$, and $f^i_{u_j}(t, u)$ denotes the partial derivatives of $f^i(t, u)$ with respect to u_j .

Hence our condition of the theorem becomes

$$\begin{split} \sum_{i=1}^{n} \left[f^{i}(t, u) - f^{i}(t, v) \right] & \left[\left(f^{i}_{t}(t, u) + \sum_{j=1}^{n} f^{i}_{u_{j}}(t, u) f^{j}(t, u) \right) - \left(f^{i}_{t}(t, v) + \sum_{j=1}^{n} f^{i}_{v_{j}}(t, v) f^{j}(t, v) \right) \right] & \leq 0 \end{split}$$

for (t, u), $(t, v) \in (0, T) \times U$.

EXAMPLE. We consider the scalar differential equation

$$u' = f(t, u) = 1 + \frac{1}{1 + \sqrt{u}}$$
 $(0 \le t \le T, u \ge 0)$.

In this case

$$V(t, u) = \frac{-1}{2\sqrt{u}(1+\sqrt{u})^2} \qquad (0 < t < T, u > 0).$$

Hence, for (t, u), $(t, v) \in (0, T) \times (0, \infty)$,

$$\begin{split} &\left(f(t,\,u) - f(t,\,v)\right) \left(\,V(t,\,u) - V(t,\,v)\right) \\ &= \frac{-(\sqrt{\,u}\,-\sqrt{\,v}\,)^2\left[1 + u + v + \sqrt{\,uv}\,+2(\sqrt{\,u}\,+\sqrt{\,v}\,)\right]}{2\sqrt{\,uv}\left[(1 + \sqrt{\,u}\,)\,(1 + \sqrt{\,v}\,)\right]^3} \leq 0\;, \end{split}$$

as required by the hypothesis of the theorem. The conclusion is that there is at most one solution u(t) for which u(t)>0 when t>0.

References

- J. M. BOWNDS and J. B. DIAZ: On restricted uniqueness for systems of ordinary differential equations, Proc. Amer. Math. Soc. 37 (1973), 100-104.
- [2] S. KATO: A Note on nonlinear differential equation in a Banach space, Proc. Japan Acad: 50 (1974), 313-316.
- [3] S. KATO: Some remarks on nonlinear differential equations in Banach spaces, to appear in Hokkaido Math. Jour.
- [4] H. MURAKAMI: On nonlinear ordinary and evolution equations, Funkcial. Ekvac. 9 (1966), 151-162.