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1. Introduction and main result

Let E be a Banach space with the dual space E*. The norms in E and
E* are denoted by | ||

It is our object in this paper to give a sufficient condition for the existence
of the unique mild solution to the Cauchy problem of the from

(k1) w' () = Au(t)+f(2, u(?)), OxrL Th;
(1. 2) ) =t xeE,

where A is a densely defined closed linear m-dissipative operator and f(# x) is
strongly continuous mapping of [0, co)x E into E.

The main theorem we prove is as follows :

Theorem. Let A be a densely defined closed linear m-dissipative operator,
and let {T(¢); =0} be the strongly continuous semi-group of contraction oper-
ators which has A as its infinitesimal generator. Let f(¢, x) be a strongly con-
tinuous mapping of [0, co)x E into E which maps bounded sets into bounded
sets. Suppose furthermore that there exists a real-valued locally integrable func-
tion a(t) defined on [0, o) such that for (7 ), (¢ y)€[0, 0)x E and some

x*eF(x—vy)
2Re (f(t, 1)—f(t, u), =*) S al@)lz—yl?,

where F(z—y) denotes the set of all z*€ E* such that (z—y, 2¥)=|lx—y|*= l2*]]2
Then (1.1) has a unique mild solution «(¢) defined on [0, o).

2. Definitions

Definition 2.1. An operator A with domain D(A) is said to be dissipative
provided that Re(Ax— Ay, 2*)=<0 for all x, ye D(A) and some x¥eF(x—y). If
in addition, R(I—A)=E, we say that A is m-dissipative.

Remark. It is well known that A is the infinitesimal generator of a
strongly continuous semi-group {7'(#); £=0} of linear contractions on [ if and
only if A is densely defined closed linear m-dissipative, and in fact, satisfies

Re(Az— Ay, x*)<0 for all x, yeD(A) and all xz*eF(z—v).

Definition 2. 2. A function «: [0, T]->E is called a mild solution of (1.1)
and (1,2) if it admits the integral representation
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3. Proof of the theorem

Theorem will be proved by means of the propositions which follow, each
of which is under the hypothesis of the theorem.

Proposition 3. 1. For any x€ E there exist a positive number 7" and a
continuous function «(¢; x): [0, T]—>E such that u(¢; x) is a solution of (2.1)
on o

Proof. In view of the continuity of f(# x) there exist constants 7, >0,
T7:>0, and M >0 such that | f(z v)|| =M for (¢ v)€[0, T] x S(x, r,), where
S(z, ;) denotes the closed sphere of center x with radius 7.

Since D(A) is dense in E there exists a sequence x,6D(A) such that z,
converges to x. Let v=7(¢)x,+w. Then we can choose 7,>0 and a positive
integer L such that if n=L, £€[0, 73] and ||w| <7, M, then ve S(x, 7,) and so
I/ vl =M.

Let T=Min {7}, T;}. For any positive integer n=L, let tf=0 and u,(t})
=xz,. Inductively, for each positive integer 7, define 67, £, u, (£} ,) such that

(1) 0<6? and &, +02<T;
@) I el SOM+ Max {[(T@—D 2] 0s <),

then  sup {IIf(t, v)—f (881, wn(82-1))]] 5 t:_étét;‘_lwz}gl/n;

and 67 is the largest number such that (i) and (ii) hold.
Define #;=1¢},+0; and for each t€[¢} ,, 7] define

(3.1) u,.(t)=T(t—t.:tl)un(t;‘_l)ﬂ:n T(t—s) f(&1, un(2}-1)) ds.

$=1

It follows easily that for ze[#_,, 7]

3.3  w@=TOz+Z 7 Te—9fE () ds

n
=1 J%j-1

+St T(t—s) f(&r1, u,(27-1)) ds.

n
x 1

By the same argument as G. Webb [6], we see that w,(¢)eS(x, )N D(A) and
T=t% for some positive integer N=N(n).

We will show that the sequence of continuous functions {u,(z)} converges
uniformly to a function «(# x) from [0, 7'] to E. Note that if ze(z7 ., #7), then
u,(t) is differentiable at # and

(3.3)  un()=Aw, () + S8, ua(tir)) -

For each 7, s(t>s) in [0, T'] there exist 7, £ such that €[z} ,, £7] and se[#;_,, £7].
Then
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[l () =, ()| S |(T(2)— T'(s) .|
+3 Sj T (t—2)—T(s—2)) f(&-1, ua(t3r))llde

3
+ [ WTt=0)=Tle—e) Alth waltr-0)lde
+S:2][T(t ) f(87-1, ua(83-1))||dr

Wiz S I T(e—0) £(E-1 w5l

J=k+1 jl

+[la NTE=2) fle, waer))ae

4—1

< ][Aa:nﬂ(t—s)+2MZ (B—t3)+ 2M(s—t;,tl)+M(tz—s)+Mj:Zk;+l(t;‘—t741)
+ M(t—t7)=(||Az,|| +2M) (£—5) -

Therefore ||u,(t)—u,,(2)| is uniformly Lipschitz continuous on [0, 7'] with Lipscitz
constant ||Ax,| + || Ax,| +4M.

This implies that %Hun (£)—u,(2)]|* exists for a.e. 2€[0, T']. For each z€(0, T

there exist 7, # such that te(¢y, #) and t€(¢y,, ¢). By Lemma 1.3 in [3] and
(3.3) we have

(O e (O] = 2Re ()8, 50 (0)
= 2Re( A, (6)— 0 (8)) +F 2y 0 (B1) = (Ers e (B21)), i (8))

< 2Re( f(E 1, tn () —F (s ten(821)), 22 (0)
< a(t)]|ten () —un ()P + 2(1/n + 1) 20, (6) — 2 (2)]]
< (a(®)+1) llua(&)—n @+ (1) + 1)’
for a.e. t€[0, T'] and some ), (£)€F(u,(t)—u,(t)).
It follows that

i) O S |22 exp [ [ (ale)+1) k]
+(1fn+1 /m)ZS e [S:<a(f) +1) dr] ds

Sy ED {exp [So(a(f>+ 1) df] L 0<t< T}

¢

+(1/n+1)m) Max {So 90 [S a(r)+1)d‘r] ds; 0= T).

Thus {u,(#)} converges uniformly to a continuous function «(¢; z) on [0, T'].

Next we will show that the above u(#; x) satisfies (2.1) on [0, T]. To
show this, note that



246 Shigeo KATO
({19t uts; ) ds= Z [ Te—s)fle ulss 2))ds

+Stn T(t—s)f(s,uls; x)ds

k-1
for te[tp_y, 7.
Then we have by (3.2)

nun<t>—{T<t)x+S' T(t—s) fls, uls s ) ds}l| SIT(6) 2~ T(0

+S,2._1_{uf<tz-l, 82 =15, ) 1A 09— s, w5 )}

(3 {156 ) =Fls sl + 15 wals) = wlss 2)lJds

< Nl — | + [ 1+ Max (1705, (o)1, wls s @) s 02 T)] 7.

Because of the uniform convergence of {u,(?)} to u(¢; 2) on [0, T], C={u,(?)
ult); 0£t<T,n=1,2, -} is a compact set in E. Since f(¢, x) is uniformly
continuous on [0, 7] x C we have

Max {Hf(s u,(8))—f(s, uls; 2)|; O§t§T}——>O as n—>oo ,

and hence 2.1 holds for u(z; ).
Proposition 3. 2. Let z, y€E. If u(t; x) and v(t; y) satisfy (2.1) on
[0, T°,] and [0, T}], respectively, then
B4 s 2-vies isle—vl exp [ a0 +1) ]
for 0=¢t< Min (T, T.}.

Consequently, the solution of (2.1) is unique.

Proof. Let the sequences {z,} and {y,} be as in the proof of Proposition
3.1. For each positive integer 7 let {£/}7., be a partition of [0, Min {T,, T.,}]
and define for te[#;_,, £7],

wn(t; )= T(E) 2+ zl &i Tl—3)fls, ultyrs ) ds

o TE=9 6 uttes; @) ds,
and v, (¢; y) similarly.
Then, for te(t;_,, t7),
w,(t; )= Aun(t; 2)+ftry, u(tii; 7)),
and
v,(t; ¥)=Av,(t; y)+ (i, vt ¥).

Furthermore {u,(¢; )} and {v,(¢; y)} converge uniformly to «(¢; x) and v(¢; ¥)
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respectively as the mesh of {#} goes to zero with =.
By the same argument as in Proposition 3.1, we see that for ae. te(£;
t7) and some x}(£)eF(u,(t; x)—v,(t; v)),

I )
= 2Re( Al (t5 2)—0,(t; ¥)+F (o, w(tlor; D)—F B v(E 5 V) (@)
<a(@)|ua(t; 2)—valt; v

+2unles D=vales DG wales D)—FEs ultis )
1708, vales 9)—F(EEr vl 5 )
S(at)+ Dllwn(ts D=vale; D+ 2{IAE wale5 @) =fltn it DI
1Al vales 9=t oletrs WP,
and it follows that, for te[#; ,, £7],

it @)=t s D<=l exp [ (ate)+1) e
22 [3 {16 mlss @) —fers wiegas DI
A6 walss ) =F @ vt 15 )17} exp [[[(ate)+1) de] ds

2 {176 wals; D) —flet o uteiss DI
+ | £ (s, vals s 9))—f(E2or, v(EE1 s ||} exp [S:(a(r)+1)dr] ds.

By going to the mesh of {#} tend to zero with n, we have

Ju(es @—v(es vl le—yl? exp [[ (e +1)de].

The uniqueness of the solution of (2.1) follows at once.

Proposition 3. 3. For any x€E, the solution of (2.1) exists on [0, o).

Proof. It follows from Propositions 3.1., 3.2. that there exists a unique
local solution u(¢; x) of (2.1) on some interval [0, 2). We may assume that
[0, #) is a maximal interval of existence of u(z; x). We have only to show that
p< oo leads to a contradiction.

We define w,(¢; x) on [0, T'] as in the proof of Proposition 3.2, where 7
is an arbitrary number such that 0<7'<p.
Then, for a.e. te(£;_,, ;) and some z} ()€ F(x,(2)),

d
< lun(t s D) = 2Re(Auy(t; 2)+f(hs, ultiors 2)), 22(2)
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<a(@lu(es DI+ 21£6 Ol lua(es 2|
+2lf (8 ualt s 2))—f (o, ultias )| Juale; 2
<(@@)+2)llualt; DI+ 171 O+ £ (8 w25 2))—flEs, ultion; D)
Thus we have, for t€[#;_,, 7],
luntes el exp [[[(ate)+2)de]+ [ 176 01 exp [ [ (ato+2) e ] as
+ BT 155 wlss D)—f G w5 DI exp [{ @) +2 e as
F=1J%3-1 8
[ 1A walss Al ulers DI exo ([ late)+2)0e] as.

Consequently we obtain, for ¢€[0, 7',

Jutes sl exp [{ e +2 de]+ ({175 0l exp [ [ tate)+2) e | s

Thus we obtain the boundedness of u(t; x) on [0,0). If h 2’ >0 such that
h=h' and P—h=0, then by (2.1)

lu(e—h; 2)—u(e—h"; 2)|<||Az||(h—0")
+S:Ah (T(e—h—s)—T(@—h'—s))f(s, uls; x))|ds

+Sp_h’ | T(e—h'—s) f(s, u(s; x))||ds—0 as h, A’ —0.

o—nh

Thus, lim «(z; x) exists and so, by Proposition 3.1, u(¢; x) can be continued
10

to the right of @, which contradicts the assumption on p.
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