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The present paper discusses the stress problem of “The Two-Way Multi-
Cell Plate” as shown in Fig. 1, and the problem is expressed by finite difference
equations with respect to the displacement vector at the nodal point, which are
solved by means of “Finite Fourier Integration Transforms”.

It is proved that the basic difference equations tend to the differential equa-
tion for the bending of an orthotropic plate, by letting the interval of the nodal
line be infinitely small.

For numerical examples, the two-way multi-cell plate of the four simply
supported sides are taken into account.

Introduction

The hollow structure, whose top and bottom deck plates are transversely as
well as longitudinally connected with one another by the thin web plates, is a
kind of sandwich plate. We will name it “Two-Way Multi-Cell Plate”.

In this paper, the stress problems of the two-way multi-cell plate will be
considered. As the structure consists of many rectangular plate elements, the
appropriate stiffness matrix should first be needed.

For this purpose, the displacement shear equation for the long strip element,
which was proposed by S. G. Nomachi, is integrated step by step with the
neglection of the smaller terms.

The crosswise web meets with the longitudinal ones, at the nodal points,
where equations of equilibrium are established with the three components of
displacement at the nodes, because the stiffness matrix relates the nodal displace-
ment vector with the nodal force vector.

Fixing the web plates by equi-distant
intervals in the « and y directions, respec-
tively, we can write the equations in the
form of the finite difference ones, which
could be efficiently treated by means of
“Finite Integration Transforms”.

If we let the interval of the webs
be infinitely small, keeping the average
rigidity of the web as a constant, the solu-
tion by “Finite Integration Transforms”

Fig. 1. Two-Way Multi-Cell Plate
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will lead us to an equivalent differential equation concerning the two-way multi-
cell plate.

Basic Formulas

(1) Displacement-shear-equation
The following equations are obtained for a folded plate element as shown
in Fig. 2.

T 45(x) = %(ZuA+uB)+i(SAB—SBA) (1)
TBA(x):%(Zu.B’*‘ﬁA)'F%(S'BA SAB), (2)
2 Gafout o) =-SE (wam )+ (San— S (3)
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Fig. 2. Folded Plate Element

Let the letter 7" be the shear flow and letter S, the normal force per unit
length.
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”_ax’

N=Eta, §=Sde.

(2) Finite Fourier Integration Transform and their inverse formulas

Let us introduce the symbolic notations

sl @] = fasin 57 (4)

@] =5 fla)cos 57 (5)
which are coupled with

fla) =25 5[ f@]sin 5 (6)

fa=2 5 @] cos 55 (7)

where
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l]

r[1@)=3{afr @]+ 55 r0),
ofs

B[f ) ] TS50, [ (8)

Nl

R )] = { —1)’f(n)+%f(0)}-
(2d=.0,11,.2 - )

For convenience sake, let us define the second difference and the modified
difference as follows :

Lf(x—1)=flz+1)-2 f(2)+f(z—1),
4 flx) =f(z+1)—flz—1).

Applying the above formulas to the sine and cosine transforms, we have
s[#fle—1)] = —sin E{(-10f-rO)-Desfr@],  (9)
s, :A f(x)] =—2.sin T R, [f(x)], (10)
C#fla=1)]= (=174 fn-1)- 270D (). an)

cf47@] == (=14 f-1-150)
+(1 + cos%r) {( 1Y fm)+ f(O)}+ 2-sin - g, [f(x)] : (12)

where

= 2(1——(:05 z—ﬂ)

n

Analysis of the Two-Way Multi-Cell Plate

We will begine with the three basic equations of equilibrium of shearing
forces along the nodal line in the z, y and z directions.

To make the discussion simple, it is assumed that the structure is symmet-
rical with respect to the middle plane of the depth, as shown in Fig. 3, so that
the deformations of the deck plate occur anti-symmetrically with respect to
neutral plane.

W=t e gt wl=w". (13)

First, we can get the following equation in the z direction

Ty yi(@)+ Ty ya(2)+T¥(x)=0. (14)

Adjusting the subscripts of Eq. (2) and (3) to those of Fig. 3, and substi-
tuting them into Eq. (14), we obtain,
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Ny, N,
( N+ > )uy’i‘ 6 (uy+1+uy 1) ZG( h )

Gt Gt )
+ i (Uys1+uy )+ [ (Oy1—0y1)+ Gl wy =0, (15)

which may be replaced by the abbreviate form :

where

(N+N°x> : G=~ZG(‘ t°1) ; ewofipL ol
te. ete.

hoz 2 ete. ¥

and by virtue of the procedure introduced in literature [2], Eq. (16) can be
expressed by the following difference equation,

K
2 frux 1+ Gé ( ?zux41+6ux)+_G2—2AXvX=0, (17)

where
£ fla—1) = flz+1)—2-fla)+flz—1),
4, flz) = flz+1)—f(z—1).
Then, Eq. (15) becomes

N L GERENT N NG Gledb ) &
(621 * 62 )" Yl ‘+< & Tiggn 3h(,j>"1f““¥
Gtz Gty 2 Gt Gt,,
221 YuYY 122 ]l(:).z : Uyt dxdyVxyt+—5 9 Arwx,)’zo
(18)
Similarly in the y direction, we can write as follows:
Nz G\ N, , N, Gto2
(622 +_6T>A YUx- P o 1+( 62, T 3}10,, > YvYY 1
Gtz Gt,
L Movxyy—2 G}tl(::,lz Uxy+ 4~ G A’XAYuYY'*_*;OM dywyy,=0.
" 2
(19)

Along the intersection of the crosswise ribs in the =z direction, we can
obtain the third equation of equilibrium of shearing forces,

X1, Y+{)

Fig. 3. Force acting on the plate
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Gto: h'(h: AZ

w W RS
21 X Wx-1,Y

Gty h
02/ i3 Lrw YY~1_GtOxAXuX,Y_GtOyAYvXY

1,]
0

] Py, (20)

2

9 2

= % [p(x ;+1)

2 b=

ot T[P(Y r+1)
2

f(x x- 1)

0

—P(y, )

where  p=uniform load distributed upper side of the rib element, and

P=concentrated load at nodal point.

Making use of Egs. (9), (10), (11) and (12), and performing the Finite Fourier
Integration Transform on Egs. (18), (19) and (20), we have

u='‘R, S,-[u(x, y)] , =8, R; [v (z, y)] , @ = 8.8 [w(x, 'y)] :

(21)
a; Ay dgg u P 1
Bt -t B E =4 Pai]s (22)
az Aazx dsg 7 p 3

where

- ¥6_<N Gt]l >D¢D (%_'_ N, U Gty 2o >Dm_ Gzﬁl D,—2 Gty
1 2

A A2 64 3h0z hOz R
. mx . mm . inm
ay, = Gty sin Sy =G sin —, SN, i =il 5

¢ L
ap=—0G ( a0 DL F oy 2}210"’ D,-) - ks = 2Gty, sin % 3

asy = iz, Agy = Qg3

1[N Gt,z2 N, , Ny, Gtom) Gta, Gty 2
“33—6(22 % )DD ( t o 3hy (D x D 2h,

Dm=2<1—cos ﬂ), D¢=2<1—cos l—”),
n k
Nx — Etlz ) NO.t s Eto:zllOg/ ) N,/ G Etll )
M)!l — Etl)g/ llo_,,
and nodal force in the z, ¥ and 2 directions are found in P, P, and P res
spectively. '
Derivation of differential equation

When we take the nodal length 4 and 2, to be infinitely small in Eq. (22),
what kind of differential equation will be found?
Taking P,=P;=0, Eq. (22) yields

det |a| @ = (anan—aias) Pz J kg 1(23)
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Deviding the nodal line into infinite number of pieces, is equal to letting »
and % be infinity, which enables us to write as follows :

D -_(ﬁf_f_i(iz s in, (im) 1(inY
=\ 12\% ) S ) e\ E )

D -_<ﬂ2_i mz \' mz . (mx) 1 (mz
o T 12\ n /) sin n "\ n 6\ n )’
l,,=n21 and l_,/:'kZz.

Substituting the above in (23) and neglecting the terms of higher order,
we have

2t
det |a|= [ 7 {ay<2+ §t>+a‘} ti“;z]D‘ [1 {Za, t1+2a,tl<u )

+2a, t2<2+ 3t)+2‘l=t2} ,;0;2 <2+%> tiozyz < )]
TTL PO 87 T AEIRE A PR ::;g]m
+4{%a,ay—ayt§i}g}l)i i
where
,lzt“h“’, t2=t°”—h°"’ by __lw

21 ? AR hoz tZz y a:‘/ - hOy t]l

mrm it
Dz=<T> and D, = <1y>
On the other hand, the terms of the right side of (23) yield
(@1 @z — az ars) - Ao, to, i 4o, to, X
Gtil, N GE haihp DAY - 2 (G oy hida s 1
Dividing Eq. (24) by the coefficient of ¢ in (25), and letting 4 and 2, be
small, we found that the coefficients with D? and D? become zero, and the
coefficient with D! reduces to

(25)

Gty hi, ( 1 Loz M
= Gth? = E|5-th? 2
B, = Gth},+ 6% el o the.+ 122, ) (26)
Evidently, B, is a averaged moment of inertia of rib plate together with
the upper and the lower flange plate about neutral axis.
In the same way B, and B,, are obtained as follows :

B,—E th L 3”)
1221 .
B,, = Ge(hi+12,).

Thus, we can obtain a differential equation from the equations of two-way
multi-cell plate, and that is the differential equation of orthotropic plate,
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o'w 0'w o'w :
Bz oz +B:cy axzayz +By ayd. =T (27)

Numerical Examples

The case when a lateral concentrated load acts on the center of the two-
way multi-cell plate with four simply supported sides, is calculated to illustrate
the numerical results, which are compared with those of the orthotropic plate

theory.
The computation was carried out by FACOM 230-60 in Hokkaido University.

E=34800kg/cm, v=0.0, t=3mm, f,=t,=5mm, 4=4=10cm,
hez=hy,=6cm, n=8, k=6.

P=-1xs
2 (X10E kfen? ) Oy w (x10%m)
= o

1 e st A7 1
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5 _CELL \TE
o——— TWO-WAY MULTI-CELL PLATE Wbke 4 plate theory(Timoshenko)
o------4 plate theory (Timoshenko) o—a two-way Mmulti-cell plate
Fig. 4. 0z and w diagram Fig. 5. o0, and w diagram
Conclusions

In order to solve the stress problem of the two-way multi-cell plate, we
would like to emphasize the followings ;
(a) The stiffness matrix is derived from the displacement shear equations of
the long strip, by successive integration, which yields more precise expression
of the stress by the nodal displacement together with a pair of adjacent ones.
(b) The equilibrium of forces at the nodal point is expressed by the simultaneous
difference equations, which is treated by means of “Finite Fourier Integration
Transforms”.
(¢) The method is not limited to the case of the two-way multi-cell plate, but
is valid for any type of the spatial structure consisting of the rectangular plate

elements.
The experiment checking the theory, will be carried out later.
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Appendix. I.-Notation

a=width of folded plate element ;
a;;=coefficient of stiffness matrix ;
B,, B,, B,,=coefficients of the equation of orthotropic plate ;
C;=symbol of cosine transform ;

; inY.
D.Z:Z<1—cos % >,

bx :2<1 —Cos mi) :
n

E=modulus of elasticity ;
G =shear modulus of elasticity ;
Noes ho, =heights of rib plate ;
k=number of nodal points in the y direction, positive integer ;
N,, N,, Ny, N,, =in-plane stiffness of plate element ;
n=number of nodal points in the z direction, positive integer ;
P,, P, I';=horizontal and lateral load on the plate containing boundary
values in the z, z and y directions, respectively ;
R;=symbol of modified cosine transform ;
S;=symbol of sine transform ;
S=normal force in the folded plate element ;
T'=shear flow in the folded plate element ;
t, ty,, t,, =thickness of flange plate and rib plates ;
u, v, w=horizontal and vertical displacement component in the z, y
and z directions, respectively ;
X, Y, Z=coordinate axes for discrete number ;
x, ¥, z=coordinate axes for continuous number ;
21, ,=nodal length of plate element ; and
v=Poisson’s ratio.
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