Unmbilical points on subspaces of Finslerian
and Minkowskian spaces.

by Nobuo MizocucHi and Shigeo KaTo

In the theory of the subspaces of an Finslerian space, we can define many
kinds of umbilicalities. We use the covariant derivatives on a subspace which
differ from the induced or intrinsic ones. §1 is devoted to the definitions of the
covariant derivatives and the deductions of the Gauss-Codazzi-Ricci’s equations.
In § 2, we obtain some properties about the umbilicalities. Especially THEOREM
4 is somewhat interesting. This is related to the isotropic curvature which is the
proper notion in Finslerian geometry but has the formal resemblance to the fact
that the totally umbilical subspace of a Riemannian space of constant curvature is
also of constant curvature. Umbilicalities on a subspace of a Minkowskian space
are studied in § 3.

§1. We consider an n-dimensional Finslerian space F, with line element
(x", 2") and fundamental metric function F(zx, #) where the small Latin indices
run over the range 1, 2, .-, #n. The metric tensor on F, is given by the com-
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2.,,08792"
properties of F,, we follow the H. Rund’s book [5]. An m-dimensional subspace
F, of F, can be represented locally by 2= z"(u*) where the Greek indices run over
the range 1, 2, ---, m and denote the quantities tangential to F,. The components
of the Finslerian metric tensor on F,, are denoted by s (U, &)= g (x, T) B} B! with
axt
ou"
tions C,B(u) =0 and we may find a system of its fundamental solutions C¥(u)
where the capital Latin indices run over the range m+1, m+2, ---, n and denote
the quantities normal to #,. Now we employ the following notations :

0" = g CICE, llgsell = g*®I17% o™l =l gall
B; = gﬂu gjiB,g, Cﬁ = gSlngCf' ( 1 )

About the notations, terminologies and some

ponents g, (x, &) =

2 =2 Bli— and 2" = B!u*. Consider a system of homogeneous equa-

Two matrices 1]}{3{,‘”, ][C@Il“ and ‘[|Bi|, “|C7|| constitute contravariant and cova-
riant conjugate frames of F, at every line element on F,,.

From E. Cartan’s symmetric connexion coefficients I'3(x, ) on F, ([1] p. 18,
[5] p. 70), we construct two connexions along F, with coefficients

) = By, 0) (P55 + P32, #) B B ) (2)

and

Iift )= O30 (P55 2 4 1ip(a, 2)Ctt, ) Biw). (3)
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In case of 2"=&"(x), the coeficients
[5]).
Following his methods, we will extend
with general dimensions.
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e were studied by some geometers ([3], [4],
But H. Rund treated these for line elements on a hypersurface F, , ([6]).

some of his discussions to the subspaces

To do thlS, we define the generalized covariant deriva-
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for the components T;‘gg" _

differs from H. Rund’s one ([6]). It is

do not in general consist with intrinsic or induced ones.
F, with connexion coefficients /I'};".

m

why we will investigate the subspace

S
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of the waved indices stands for a coraesponding set of indices.

may be easily justified with transformation laws of I}/,

(4)

e

s2(u,u) of a tensor over F, where each

Our definition
%« and I'$” but slightly
interesing that these covariant derivatives
And it is one reason
Corres-

ponding to I'}/, I'%* and I'G". we define the three curvature tensors by the follow-
ing systems of equations :

Kiu—2 (T8 8 rope e riprs),

Kip=2 (a;’ n-= aar m i+ Pﬁ[,l‘,;],>

Kt =2 (L8 LB oy i)

- . 1 =
Kijin = gljl\k-iln I\Erﬁa =49

Applying the formula (4) to B: and Cf we obtain the

Schouten’s tensors with components

h
H}, =Bz = ’%% +I'}Bi Bi—
and
acy  aCh .,
Lis=Csip= 3,6 — 6712,:7 u

Then we see that H% and Ll are respectively normal and tangential to

K;
&7 asja

(5)

generalized Euler-

rygB;= (6)
‘l*lijBz 1*911' h ( 7 )
F, with
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respect to the index A, that is,
H},=CLHE and Liy= B L5, (8)

It can be also shown that neither g, ; nor g,;,. vanish in general. Indeed we
may deduce the equations

95018 = 2C jun Hj 2" (9)
and
Grt1e = 9s011aB] By = 2C,0, B} BL H,. i’ (10)
! 1 0 1 ; .
with Cjy = &5 a?cjf These are the indirect illustrations of the fact that our

covariant derivatives differ from induced or intrinsic ones. Differentiating the equa-
tions ¢,,B{Cs=0 covariantly, we obtain a relation between the Euler-Schouten’s
tensors :

5 -+ 99 zs -3
Lis= — (97 ; ai:%u> afi’ (11)

Now we intend to see some relations between the various curvature tensors.
Calculations of the commutation formulae of our covariant derivatives to B! and

% give
¢ I 'I a["ffh ' /
2H = BY | KL JszBj+2 i B Hiw') — B K. (12)
and
I"*It
Lisja— Lasip= Cs <K,, JLBgBZ+~’ Bl Hoy, u )
- aCs ..
T K s — %f’ﬁ;-ﬁaur : (13)
On the other hand, the followings are also valid by means of (8):
;‘ﬁlla = B,?H LZI{_{"CH 7ﬂ||a s (14)
Ll e = By L.+ Cy Lis HZ . (15)

Using the relation (14) and decomposing the equations (12) with respect to
the index A, we can deduce the Gauss-Codazzi’s equations

a[‘*h

K ,+2HZ Ly, = Bt B! BiK}.;. B+ 2 B Bl Hj u* C =g o (16)
and
¢ B S 3173"
2[“]7(&:;”“]'—_3 B'IBL L . jé f'}‘?B B H,,,,u Cg C . (17)

Analogously the equations (13) and (15) yeild the Codazzi-Riccx’s equations

. o'z}
CtB!BiK}. ;B +2CiBf, Hisw C, 07

+ 24 K3, ,BIC{CY B; (18)

'~ k)
TS'Hﬂ LES'HT B

and
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al“*h

KE,.—2H%, L o= CiB]B:K%.,,Ci+2Cs Bl HG, w7 Cy 7 . (19)
To conclude the equations (18), we utilzed the identities
I
acb 5 By = —2B}CLC), B; - (20)

which follow from C%B; =0. Especially the equations (16) are denoted with (11)
as follows :
I\,,“g,, = BkBjBLBh I\kﬂ,, =) Zgj, grﬁHz-]r + 4H§[5H£1, ll' B:'Ckﬂ

*n

. Vi
+ 2B B Hot 5 4 g, By, (21)

§2. A vector with components

Hi, (u, @)t

N"(u, u) = F(z, ©)

is normal to F,, We call it the normal curvature vector at («") for a direction
() and its “length”

N, ) = (g, €)N(u, &) N“(w, u)) (23)

the normal curvature at («®) for a direction (#°). The normal curvature N (u,#)
is the first curvature in F, of the geodesic of F,, through the point (x“) in the
direction (%) which is defined by [5] p. 152 (1.8). If the normal curvature N (u, %)
is constant for all directions (%) at a point («), we call the point («*) the umbilical
point of first kind. By the equations

,al—ljli | ap# B/l Bsz (24)

o’ &

*

and the well known identities ?;;ff 2774 =0 ([1] p. 35, [5] p. 81), we can prove

the following property.
THEOREM 1. In order that a point («°) on F, be an umbilical point of
first kind, it is necessary and sufficient that the equations

N%(u, 1) gs(u, t2) 4° = g ji(x, ) N7 (e, u) H}, (u, w) 0"
3P, ) Capl @) N*(wsii) N, ) BY hd

are valid for all directions (&%) at (u“).

The equations (25) are so complicated that we can seldom expect further
investigations about an umbilical peint of first kind. To conquer this difficulty,
we will adopt another definition of umbilicality. Let us define the mean curvature
normal and the mean curvature at a line element («*, %) on F,, by a vector with
components

M" (u) = ;qu.(u @) g™ (u, u) (26)
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and a scalar
1
Mo, ) = (g, 3) Mt 0) M, ) (27)

Our mean curvatures depend not only the points but the directional arguments.
If the equations

Hi(u, ) = gy0 (0, 12) M" (u, 12) (28)

consist for all directions (%) at a point (%), then we call the point () the umbilical
point of second kind. This definition is formally a natural extension of that in
Riemannian geometry. The following properties tell us some relations between
the two umbilicalities defined above.

THEOREM 2. Let («*) be an umbilical point of second kind. Then, for
every direction at that point, the mean curvature normal coincides with the normal
curvature vector and consequently the mean curvature is the same as the normal
curvature. The point («*) is also the umbilical point of first kind if and only if
the equations

Cryi(x, %) N*(u, &) N? (u, ) Bt = 0 (29)

consist for all directions () at («*).
The proof of THEOREM 2 follows from (25) and (28). It is also obtainable

*h

from (24), (28) and the identities -@lj:j,f-.iiz Tee®t ([1] p. 35, [5] p. 81) that the

or
equations
cr OM' (u, %) sy
k2 aua ’
Cs(u, %) B{BiC)jon(x, #) 7" = 0 (30)

are valid for all directions (1) at an umbilical point («*) of second kind where the
single bar denotes E. Cartan’s covariant derivative ([1] p. 18, [5] p. 74). A totally
umbilical subspace F,, of second kind is defined by the property that all points on
F, are umbilical points of second kind. Noticing the fact that a totally geodesic
subspace F, be characterized by HZ (u,4) 4’1" =0, we can prove the following
theorem.

THEOREM 3. Let F, be a totally umbilical subspace of second kind of F,.
Then F,, is the totally geodesic subspace of F, if and only if the mean curvature
(i.e. normal curvature) of F,, vanishes identically.

The scalar
Kyjalz, &) 2 X222 X"

P (31)

R(z, #, X) = (926(, %) g10(2, &) — gas(x, 7) gunl, 7)) #* X X"

is called the Riemannian curvature with respect to a pair of two directions (%" : X"
at a point (z') on F, ([5] p.130.) If the Riemannian curvature R (z, 7, X) is
always independent of the choice of (X”) for every line element (=, 2N)AFycis
said to be of isotropic curvature R (z, ) = R (x, #, X). The necessary and sufficient
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condition for an F, to be of isotropic curvature R (x, #) is that F, admits a system
of equations

Kz, T) @t 3t = Rz, E{F* (2, T) 94 (x, %)

—(guslx, ) £°)(gan (2, T) Z°)} (32)
for every line element (x”, &%) ([5] p. 131). Analogous definitions may be applied
for a subspace F, with connexion coefficients /';". We shall define the Rieman-
nian curvature with respect to a pair of two dlrectlons (u* ; X*) at a point on a
subspace F,, by

Kigaut, w) W X uf X® .
Rty X) = (gt ) g1t 0)— st ) g0, ) X P X %

But our Riemannian curvature R (u,u#, X) or F, is not the intrinsic one. If the
Riemannian curvature R (u, i, X) of F,, is determined only by the line element on
F . we shall call it the isotropic curvature R (u,#) of F,. Now the equations

m?,

(21) yeild

Kipati' i = K, jon 3" B! 3 B+ g, {\F*N? H . — (H}, o) (H &)}
—FZNA‘BTL-B‘,ij”h-x . (34)

Noticing the symmetry of K, 2" 2 with respect to the indices j and A ([5] p. 109),
we can see that K, 4’4’ is also symmetric with respect to the indices 7 and a.
With this property, we know that F, is of isotropic curvature R (u,u) if and only
if F,, admits the equations

Kipoltty @) 08 = Rty ) (F*(, ) 9,010 2)
—(gsy (0, ) &) (g5 (10, ) )} - (35)
Its proof is formally the same as H. Rund’s proof of (32) ([5] p. 131).

Let F, be a totally umbilical subspace of second kind. Then the equations
(34) are reduced to

K5 @ = Ky jon & Bi 3 B+ M* {F? 91— (05 %) (95a ¥°)} (36)

because of the last relation of (30) and THEOREM 2. Furthermore, assuming
that F, be of isotropic curvature R (x, ), substitution of (32) into (36) gives

Kipat@u® = (R(x, Z)+ M*(u, ) {F* 9,0 — (95, % W) (gsa ')} - (37)

Comparing this with (35), we obtain a conclusion.

THEOREM 4. Let F, be of isotropic curvature and F,, its totally umbilical
subspace of second kind. Then F, has an isotropic curvature which is equal to
the sum of square of mean curvature (i.e. normal curvature) on F,, and isotropic
curvature of F,.

§3. If, around each point on F,, there exists a system of coordinates (x”")
in which the fundamental metric function F(z, #) is independent of the variables
(z"), our space F, is called the Minkowskian space M,. For an F, to be Min-
kowskian, it is necessary and sufficient that there consist two systems of equations
([1] p- 39, [5] p. 136)
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x4
=0 and 23—, (38)

n
Let F,, be a subspace of M,. Then the equations (24) become *%T" =0 by virtue

of (38). If F, admits an umbilical point («%) of second kind, the equations

005 (4, %)

M a2 = (39)

are valid for every direction (4°) at («). Taking account of the homogeneity of
(39) with respect to (4%), we have the last theorem.

THEOREM 5. Let («) be an umbilibal point of second kind on a subspace
F,, of a Minkowskian space M,. If the complement of the carrier of mean cur-
vature (i. e. normal curvature) as a function on the indicatrix at («%) is a void set,
the Minkowskian metric on the tangent space of F, at («*) must be Euclidean.
Especially, if an F,, is the totally umbilical subspace of second kind of a Min-
kowskian space M, and every point on F, satisfies the foregoing condition, the
Finslerian structure of F,, must be Riemannian.

Contrasting to this theorem, a totally umbilical subspace of second kind of a
Minkowskian space which has vanishing mean curvature (i. e. normal curvature) is
Minkowskian. It can be verified from THEOREM 3.
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