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Introduction

In 1950, H. Nakano [3] constructed, on a finite measure space®, the modulared
function space® as a concrete example of abstract modulared semi-ordered linear
spaces which was defined also by the same author, and showed further conversely
that an arbitrary abstract modulared semi-ordered linear space could be represented
by a product space, in a sense, of such defined modulared function spaces.

However, if we define them on a locally finite measure space, we have more
general modulared function space. And then, any abstract modulared space is, now,
considered to be equivalent to one of latter modulared function spaces. In this
note, we give detailed proofs to the process of definition of this modulared function
space (§1), and do to the construction of its complementary space (2.1 in §2) as
well as to the possibility of integral representation of the modulared conjugate space
(2.2 in §2), founded on the theory constructed by H. Nakano. And we add a
sufficient condition for completely continuity of an integral operator as an application
of this integral representation (§ 3).

On the space of all the measurable functions defined on a measure space, if
we define an order-relation by such a manner that it will appear in 1.1 of §1, the
space get the structure of the semi-ordered linear space which is of super-universal
continuity or of universal continuity” according as the measure space being of finite-
ness or of local finiteness respectively.

§ 1. Modulared function spaces.
1.1. The definition of modulared function spaces.

Let 2 be an abstract space and x be a complete” g-additive measure defined
on a Borel field B of subsets of Q satisfying local finiteness :

1) For measure and integration, see, for instance, H. Nakano [4].
2) Terminologies and notations used in this note are due to H. Nakano [3].
3) Semi-ordered linear space R is said to be continuous if for any sequence 0<x,ER(v=1, 2, ---)
there exists N, R is said to be universally continuous if for any system 0<x;€ R (1€ 4) there
=1
exists Nay and R is said to be super-universally continuous if R is universally continuous and
a4

further for any 0<x; ER (A€ 4) there exists a sequence A,EA(v=1, 2, ---) such that Nx;= 0 22
i 1

g1 =
4) AE®D is said to be locally negligible if u (E;,A)=0 for all EEYB with p(E)<co. p is said to be
complete if, for any EC®, EC A for some locally negligible AE€®S implies EE 3.
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£ 1) ULE; p(E)<oo, EeB} = 0;
p 2) for any FCQ, FNEe®B for all EeB with p(E)<oco implies FeB .
Let @ (&, w) (=0, weR) be a function satisfying the following conditions :

®1) 00 (& w)<oco for all £=0, wel;
®2) @& w) is a measurable® function on 2 for all £=0;
®3) @(& w)is a non-decreasing convex functions of £=0 for all we? ;
®4) 00, ®)=0 for all we?;
D5) O(E—0, w)=0 (&, w) for all we? ;
D6) D& w)—>co0 as E&>o0 for all wel ;
)

for any we®, there exists £,>0 such that @ (&, , w)<oo.

(Instead of writing @ (|&|, w), we denote merely @ (¢, w) for £<0, if there is
no confusion in the following).

For any measurable function x () (w€Q), @ (x (»), w) is measurable too. We
denote by L, the system of all measurable functions x(w) (w€Q) satisfying

Su@ (ax (o), w) dp(w)<oo for some a=a,>0.

Here, S!;clpzsupr S;d,u; 1 (E)< o, Eeél')} where S;_dp is ordinary Lebesgue inte-
gral on £. We write ‘x(w)=<y (») a.e. (almost everywhere) on E’ if x(w)<y (o)
on a measurable set £ except for some locally negligible set A” (CE). We define
x=y for any z, yeL, if x(w)<y (w) a.e. on Q.

First we show that L, constitutes a universally continuous semi-ordered linear
space by above introduced order.

In fact, L, is linear, because, for any x, y€L,

D (x(w)+y (), 0)= % D (x (w), w)+ % O (y (), o)

by @ 3) which implies
{,2((x(@)+y (@), o) dp<oo  for some a>0.

L, is a lattice because x€L, implies |x|€L, and L,>x, x=y implies Y€ L,.
Thus, L, is a semi-ordered linear space.
L, is continuous, because for a system 0=<x,, x€L, (v=1, 2, ---), if ,<x

(v=1, 2, -+-) then sup z,(w)=<z,(w) ae. on 2 and so G Zel,.

v=1 y=1

In a continous semi-ordered linear space R, we define the projector [x] (x€ R) by
[]y= Ul |zlny)  for any 0<yeR.

We denote by 2, or X, the characteristic function of the point set £ or {w; x (@)%0}

5) A function f(w) (w€2) is said to be measurable on 2 if {w; f(w)<a} NECHB for all real number

a and for all EEB with p(E)<co.
6) See 4).
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in 2 for a measurable function x (o) (w€f) respectively. We see, for the projector
[x] of xeL,, by definition,
Izl y= Xy for all yeL,

under the convention (+ c0):0=0.

In order to show universal continuity of L,, we use the following theorem
(see H. Nakano [3; Th. 13. 1]).

(T. 1) In a continuous semi-ordered linear space R, if, for any system of
projectors [x;] (A€ A), there exists H [x;] then R is universally continuous.

L, is univerally cotinuous: We need only show that for the system of measur-
able sets E,, Ee®B (1€) satisfying E,C E (i€ 1), UE, belongs to B, by the theorem
€A1

(T. 1). Here, we may regard E, (A€ /) as a directed system Et,., with E,CE (1€/)

considering the system of all the finite unions of the original system.

First let p(E)<oo and 7=sup pu(E)<p(E)<o. We choose a countable system
2z4

E, (v=1, 2, --:) from {E,} such that
E, 1o and lim p(E,)=T.

v »00

Putting also E,= UE we have K€D and y(E,)=7 because E, CE and E, 13
If there exists 6>O such that yx(E, —E)=0 for some 2,€/ then

rzp(E,UE,)Zp(E,)+06 for all 2,>4.

Therefore E, includes E, except for some measurable set with null measure for

all 2€4. And since any measurable set including E, for all ¢/ includes E, except

on some locally negligible set, UE, must belong to 8. Next let x(E)=oo, the
as4

general case. Let £ (s€2) be the largest subsystem of B such that E“°c E with
p(E®)<oco for all €2, then E= UE® by p 1). Putting F,= U (E,NE“) for all
o3 €4 Z

o€l and F=UF,, we have F,e®B with p(F”)<oo for all ¢€X by the same way
a2

stated above because E,nE“%,., and E,nE“CE“ for all ie4. Therefore we
see, for any g€, FnE“=F, (€®B) which implies F (= UE,) €38 by ¢ 2). Thus L,
i€

is universally continuous.

Next we show that L, contains, in a sense, in plenty of non-trivial elements.
That is ;

(A) for any EeB with p(E)<oo and for any ¢>0 there exists E,—E(c)eB
such that %z €L, with

ey and p(E)=p(E)—e.
In fact, putting
(k) sup {¢; @ (§, w)<oo} =e (o) (0€Q),

¢, (w) is measurable because



62 Jyun Ishii
{0; &)=y} =U{w; @, 0)<ocoj  for every =0
7'<y

and 0<e, (0)< oo by @ 7).
Then for any EeB with p(E)<co we have

Enle; L<e@l=Els., E
ke J
and so, for any ¢>0, we can select 7, such that

23 (Enn):Z_/»l (E)_‘%
: 1
for which @ (-1 %y, (w), )< oo (we ) by (%)
For this E,, we have

[ 5 1 <= ‘: (p)A
Enaﬂ l(l) s ¢<70, w) =PJ~E1¢° T))-l EO

and also, for any ¢>0, there exists p, such that

pER)Zp(E,)— 5 -

Therefore p (E7)= p (E)—e, furthermore

[t (L. o)
Spop (EV)< oo
Thus EJ is E, in this problem.
Putting
My () = Sg(p (z(w), o dp  for all z€L,,

my satisfies the following properties, so-called modular conditions. (m, will be some-
times denoted merely by m if there is no confusion in the following).

0=m(x)< oo for all x€L,;
if m(éx)=0 for all £=0 then x=0;
for any xeL, there exists a,>0 such that m (a,x)<oco;

)
)
)
m 4) for every x€L,, m(&x) is a convex function of £=0;
) x| =yl (&, yeL,) implies m (x)=m (y);
) |x|N|y|=0 (x, yeL,) implies m (x+y)=m (x)+m (y);
)

0=z} ;21 x (x;, xEL,) implies m (x)=sup m (x,).
€1

In fact, m 1) or m 3) is clear by the definition of m or L, respectively.
m2): 0t (Ex)zgg(b (éx(w), ®) dp=0 for all £=0, then @ (¢ x(w), ®)=0

except on some locally negligible set E. for all £=0, and therefore it also holds
except on the locally negligible set U E.. Thus x(w)=0 ae. on 2 by @ 6).

§20
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m 3) and m5) are immediate consequences of convexity and monotony of
® (£, w) as a function of £=0, respectively. .
m6): Putting E,.={w; x(0)x0} and E,={w; y (0)>x0}, |x|n|y|=0 implies
p(E.NE,)=0, and so

§,0 @0 +y ), o) dp={ 0(z(), ) dﬂ+§ Oy (), o) dp.

m7T): 0=z, (®)les x(w) implies
D (z; (@), o)1cr ©(x(w), w) a.e. on 2.

Under such an assumption,

Su@ (x (w), ®) dp=sup S ? (xfw), w) dp

€4

is valid by the theory of Lebesgue integral.

A functional on a universally continuous semi-ordered linear space satisfying
from m 1) to m 7) is called a modular. The space L, with a modular m,(x) (x€L,)
is called a modulared function space by @ and is sometimes denoted by (L,, m,).

1.2. Monotone completeness of m;.

(B) m, is monotone complete; i.e. for 0=x,1,c,(x,€L,) with sup m (x;)< oo,
€1
there exists Ux, in L,.
€4
In fact, putting

(%) S (@) =sup @ (x;(0), ®).

€l
we have S” flw) dp<oo by theory of Lebesgue integral and so f(w)<oo a.e.
on . We choose a sequence A,€4(v=1, 2, ---) such that
17, and @ (x, (), o)1, flo) a.e. on 2

50 Z(w)=sup &, (w)€ L,.
Here i

(%8) ? (xw), o) =f(w) ae on Q.
Putting

(482 elw)=supi{é; @ (& 0)=0}  (0€Q),
then e w) is measurable because

{o; efw)=n} =r'r1r{w; ?(y, =0} for every =0,
and further ¢,€ L, because @ (¢w), w)=0 a.e. on 2.
Since @ (x,(w), 0)=? (zw), ») a.e. on 2 (2€4) by (%) and (), we have
xi(w) Zx(o) a.e. on {w; @ (v w), w)x0}

by @ 3) and
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x(w) Zew) ae. on {w, @ (x(w), v)=0}

by (###). That is
Zi(w) = xo(w) + e o) a.e. on 2 (1€/).

Thus for an upper bounded system x, (i€), there exists Ux, in L,.

284
§ 2. Modulared conjugate space of (L,, m,).

2.1. Complementary modulared function space of (L,, m,).
Putting, for all weQ

b vl & o)—@ 5—i, o (>0
(& o)== l < y )J

lim 7 (¢, o) (€=0),

§>+0

7 (£, ®) is measurable on £ with a parameter £=0 as well as is non-decreasing and
left-continuous as a function of £=0. Here, the measurability is deduced by that
7 (£, w) is a limit function of measurable functions, non-decreasingness by @ 3) on
2 and left-continuity by that z (&, ) is the left-side derivative of the convex func-
tion @ (§, w). (For detailed properties of convex functions, see M. A. Krasnoselskii
and Y. B. Rutickii [2]).

By inverse operation, we have

(x) 06 o=z o) d¢ (0eQ).
Let 7 (5, w) be the left-continuous inverse function of z (£, ) in the sense of
W. Young; i.e.
(x x) Z(y, ) =sup {¢; 7 (§, o)<y}

then 7 (y, ) is also measurable on 2 with a parameter £=0 and is non-decreasing
for £=0 too, where the measurability is due to the relation

{o; 7y, 0)<&}=N{o; (€, o)<y} for all £€=0

e
and the non-decreasingness is known by that y, <z, implies
7 (n, o)=sup{&; 7 (& o)<p}=
=sup {5, = (&, w)<772}:7f(ﬁza o). )
It is known (M. A. Krasnoselskii and Y. B. Rutickii [2]) that for all weR

Z(p—0, 0)SE=7(y+0, @)  for y=7(§, )
n (=0, 0)=9=7(£+0, o) for £=7 (1, o).

The complementary function @ (y, ) (=0, w€Q) of @ is defined by
207, =70, 0) d&f (720, weQ).

With respect to @, all the corresponding properies from @ 1) to @ 7); i.e. from
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@1) to @7), are valid too. For @ 1) and from @ 3) to @ 6), these are immediate
consequences of the definition of @. For @ 2); for every fixed =0, the measur-
ability of @ (5, ) with respect to w€2 is due to the fact that it is a limit function
of finite combinations of measurable functions by the definition of @. For @7);
because for any we®, there exists £,>0 such that @ (¢,, w)<oco by @ 7), we can
find a,>0 such that &, =a,>0 with 7 (a,, ®)<oco by (x), and so 7 (7 (a,, @), ®)=a,

by (x x). Thus @ (7 (a,, @), ®)= S:(aw’w)ﬁ' (p, ®) dp=a,z (a,, w)<oo.

We have so-called W. Young’s inequality (M. A. Krasnoselskii and Y. B.
Rutickii [2]) for & 5=0

(Y1) =0 o)+ 2y 0) (weD),
in particular
oy af=0(a, o)+ ¢ (B, o) (wef)

for
7 (@a—0, 0)<p=<z(a+0, ) and 7 (80, 0)=a=7(8+0, w).

@ (&, w) coincides with @ (¢, ®), because the process é—>7—>z—>@ is equiva-
lent to that of ¢—7—>z—®.

For @ (y, ») (p=0, wef), we obtain also a universally continuous semi-ordered
linear space L; with the monotone complete modular 7z, :

m,,(a)zggqi (@(w), o dp  (a€Ly)

by the same method we defined (L,, m,). (Lj;, mj) is called the complementary
modulared function space of (L,, m,).

2.2. Integral representation of modulared conjugate space of (L,, m,).

We can consider the modulared conjugate space (H. Nakano [3 ; § 38]) (Ly, m)”
of (Ly, m); ie. I is such a normal subspace of the conjugate space L, which is
the system of all universally continuous linear functional « (x) (x€L,) that satisfying

sup {|u ()| ; m(x)<1, x€L,} <

and in which a modular 7 is defined as

©) i (a) = sup {a(x)—m (@)}  (aeLy).
Now we prove that
(C) the modular conjugate space (Ly, m) of (L,, m) is isometric to the
complementary modulared function space (Lg, my) of (L,, m). And consequently,
this fact could be considered that (L;, mgj) gives an integral representation of
Ly, m).
We proceed to prove by deviding it into the three steps:

7) In this paragraph, m and m mean also me and moe respectively.
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2:2.1.
We cite the following theorem (H. Nakano [3; Th. 22.7]) which plays an

essential role on the conjugate space L,.
: (T.2) If for two universally continuous semi-ordered linear spaces R and
R, a bilinear functional
: (x, a) for z€R, acR
is defined such that
cl) bilinearity ;
(ax + By, @)= a(z, 4)+ By, 4)
(x, ad + Bb) = a(x, &)+ B (x, b),
c2) positivity ;
(z, ¢)=0 Jor =0, 420,
¢ 3) wuniversal continuity ;
Xyl O implies 1;1{ (%) =10 for a=0
A3l O implies lfelf {(mway=10 ifor. 2=20)
cd) for any positive a>0, there exists x=0 for which
(@, =0 and  (x, b)=0 for bpa=0,

¢b) for any positive =0 and a=0, there exists bAg() such that

([zly, &)=y, b)  for all yeR,

c6) for any positive x>0, there exists a=0 such that (x, 4)>0
then R is isomorphic to a complete semi-normal manifold ® of the conjugate
space K of R by the correspondance :

R>d—a"ekR, 4&%x)=(z, 4) Jor all ' zeR'

For the modulared function space L, and for its complementary modulared
function space Lgj we put

(z, a)=S”x (@ a(w) dp  (x€L,, acLy)

where the existance of the integral in the right term is lead by (Y,) and m 3).
Then we have a bilinear functional (x, a) on (L,, L;) satisfying from ¢ 1) to ¢ 6).
In fact, c1), ¢2) and ¢ 3) are evident.
c4): For any 0<a€lL; with 0<p(E)<oco where E={w; a(w)x0}, there
exists £, such that

EDE, 0<pu(E)<co and X,€L,

8) A linear manifold M of a semi-ordered linear space R is said to be complete semi-normal if for
any y €R with |x[n|y|=0 for all z€M implies y=0 and if |z|=|y|, £€M implies y € M.
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by (A). Therefore
SQX,A((D) a(w) dp>0 and S,,Xﬂn(‘”) b(w) dp=0

for be Lz with anb=0.
¢b5): For any 0=z €L, and 0<a €L,
putting
E={w; x(w)=0} and b(w)=%za (o)

then beL; by |a|=|b|. Therefore
[, 2cl0) ¥ (@) alw) du=§ y (@) b () dp

for all yeL;.
c6): For any 0%x€L,, putting E={w; x(0)x0} we can find E,e®B similarly
to ¢ 4) such that
EDE, with 0<pu(E)=p(E)
and a ()= Xz€L,.
Therefore
Sux (@) Xy (o) dp= SEa (w) dpp>0.
Thus, by the theorem (T. 2), L; could be considered as a complete semi-normal
manifold of L, up to isomorphism.
2:2.2.
Here we prove that on L;(CL,), ms coincides with # ; i.e.
(+) mg(a) = m (a) (aeLg) .
For this purpose, it suffices to show only

(++) m (x) = sup {(x, a)—mgz(a)} (xeL,)

acly,

because (+ +) deduces (+) by the relation @ and @ in 2. 1. and by ©).
For the proof, we classfy the elements of L; into following four cases.
1,. On the case 0=<x€L, is domestic; i.e. m (ax)<oco for some a>1.
Putting a (w)=r (x (0), ») then a€L,, because we have, for domestic =0,

sup {(m (x)—m (§ 2))/(1—£)} <o

by m 4) and consequently
Sux (@) 7 (x(0), o) dp=
:S { sup {(? (x (0), ©)—@ (£ z(w), 0)/(1—§) x(0)}x(w) dp<oo.

2 0561

By (Y,), we have
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and so
o> 2 (0) alo) du=§ 0 (@), o) dut+§ 8 (a) o) d.
Therefore there exists a€L; such that
m(z) =@, a)—mya) (xeLy).

1, On the case 0=x€L, with m (x)<co.

In this case, every éx with 0<&<1 is domestic and &x%,-.c,x. Therefore,
by 1,

m (x)=sup m(Ex)=sup sup {(Ex, a)—mgsa)}=

0s6<1 056<1 0sa€lLy
= sup sup {(£x, a)—msla)} =sup {(x, a)—msla)} .
0=a€L, 0£6<1 0=a€Ly

Thus

mAE) = sup {(x, @)—myla)} .

2,. On the case 0=x€Ly, m (x)=oc0 with sup m (y)=oco where
yeH

H={y; 0=y<x, myy)<oo}.
By 1,, m (y)= sup {(y, a)—mgla)} for ye H. Therefore

0=a€ly

oo =sup m (y) = sup { sup (y, a)—mgla)} =

yeH yeH ﬂérzEIA‘ll
= sup sup {(y, a)—mgla)} = sup {(x, a)—ms(a)} .
0Za€ly yEH 0acly

Thus

sup {(x, @)—mgsla)} = oo .

2,. On the case 0<x€L,, m(x)=o00 with sup m (y)=7< oco.
yeu

In order to avoid complexity, we prove next two lemmas (L. 1) and (L. 2) for
this case.
(L. 1) We have

(1) x(xfyu) yo = X(z—yﬂ) el

where Uy=vy, and e, is the same of (%) in § 1.
yEH

Proof. Putting X%,=%¢,, and y,=2%y,, (1) is
(1') Y = oty -

Since

(0w, o) dp={ 0 tydo). o) du<oo

9) For the existance of y,, we verify such that because I could be considered a directed system

y'yenr with sup m (y)<oo, consequently y,=UyE Lo.
YEH yeH
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by m (y,)< oo, we have
D (Y (w), w)<oo ae. on £.
Therefore
Llw) efw)=y,(w) a.e. on 0.
by (k).
If ey, there exist ¢>0 and E (¢)=Ee®B such that p(E)<oo, X,<2, and
Llw) efw)>y.(w)+ e Xdw) a.e. on £
with
D (y(w)+ ¢ X o), w)<oo a.e. on Q.
Therefore, there exists E,CE with x(E,)>0 and

qu) (Xz(@) Y (@) + e Xp(ow), @) du< co.

On the other hand, this relation implies X (.9, +¢X,)=w, because for any 0=z
with m (2)<oo, 2nx =y, we have Xz=y.
That contradicts to that

e+ eXpy =<Xzy, implies &2, =0.
Thus (1'), accordingly (1) too, are valid.
(L. 2) There exist y,€L, and a,€L; such that
(2) (x—2,), a)>0
(3) "117(5 al)éf (yn al) (Ego) .

Proof. Let y, and X, be the same in (1’) of (L. 1). Conveniently there exists
0=<a,eL; such that X,a,=a, by (A).
These 9, and a, satisfy (L. 2) as follows :
For (2);
(x—1.), a‘):S (x—y)(0) alw)dp>0,

o

and for (3);

<( (o) 1) e(0) dp=( alo) y(o) dp=(¢a, y)

for £=0, because we have
2 (y, 0)=7e(w) for >y, and a.e. @ on 2
where 7, is some positive number, by (%) and the definition of @.

Now we can calculate the value of the modular for the case 2, by (2)
and (3):

Wala)= sup {(x, a)—msla)} =sup {(z, & a)—myl¢ a)} =

= Slil:o’ {(5 z, a\)—§ (ys, a,)} :SE? {¢ ((r—y,), a.)):.
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Thus, that completes the proof of (+ +).
R0 Be
Finally we show L;=Ly; i.e. Lz is isomorphic to Iz
In fact, for any 0<acLy, there exists a>0 such that # (aa)<co by m 3).
For this a a, there exists a system 0=d,€L; (2€1) with a,1,c, «a and so
sup my(d;) = sup m (d4,)=m (a a)< oo
€1 pla |
by 2.2, 2.
Since mj; is monotone complete by (B), there exists d€L; such that 4,1,c,d. Thus

. J
aa=a and therefore a= — a€L;.
@

§ 3. Application to an integral operator.

We assume 2=[0, 1] in this section. As an application of the integral repre-
sentation shown in § 2, we give a sufficient condition for the complete continuity
of an integral operator defined on L,.

As for the case on Orlicz spaces, A. C. Zaanen [6] discussed on this kind of
problems. (See further M. A. Krasnoselskii and Y. B. Rutickii [2]). The follow
is considered a special generalization of one of those results to the case L.

That is; for @ (& 1) (£=0, te[0, 1)) and for its complementary function
@y, 5) (9=0, se[0, 1)) if

(1) @ and @ satisfy di-condition ; i.e. there exists T>0 and h (t)e L([0, 1])
such that

(42) Q28 YT O )+ N (Y

for all €0 and a.e. t on [0, 1] and likewise the analogous condition is satisfied
Sfor @ too;
Sfor K(s, t) (0=s, t<1) if

(2) K (s, t) is measurable on [0, 1] x [0, 1];
(3) K (s, t)eL; as a function of t for a.e. s on [0, 1];
(4) k (s)=ms(K (s, #))€ Ls

then the operation x=Ky (yeL,); i.e.

z(s) = S:K(s, O ylt)dt  for every yeL,

s a completely continuous linear operator on Lg
In fact, linearity of K is clear.

10) (1) is equivalent to that me (or mg) is finite; i.e. mo(x)<oco for all x&€Lo by [1; §4. Th. 17].
Refer also [5; §5. Th. 5. 2].
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For z€L; and y€L;, we have

71

(UK 9 26) y(0) ds de= S(QK(S ) y (t) de)|z (s)] ds<

= S;(m,,,(/c (s, )+m (y)|z(s)| ds=
:S; s)|z (s)| ds+m ( )S;]z (s)| ds

by =z (s )EL,,,CL,, (Y)) of §2 and assumptions.
Thus, by (C) of §2

2() =K (s, ) y () dr eLyo=L,,

that is, the range of K is also in L,.

Conditionally modular convergence' of m,, in this case, is equivalent to norm'
(by modular) convergence and L, is reflexive as a Banach space by (1). (Refer [3]).
Let y,€L,(n=1, 2, ---) be a (norm) bounded sequence; i.e. m (y,)<M for some
0<M< oo, then we can choose a weakly convergent sub-sequence 7,(¢) (p=n,, n,,

--+) such that

lim (= (1) 9,(0) d2=S'= (1) wlo) at

proo ¢ 0

for all zeL, and for some y,€L,.
Putting 2 ({)=K (s, ¢) (¢ L;), we have

lim z,(s)=lim S‘K(s, 8 y,(t) dt=

p »co P ro0

=\ K, 1) gle) di=zs),

that is, lim |z,(s)—z,(s)|=0 a.e. on [0, 1].
Therefore lim @ (z,(s)—x,s), s5)=0 a.e. on [0, 1].

proo

Furthermore we have, by (Y,)

|2,(s)—xols) | S mal(K (s, 2)+m (y,—yo) <k (s)+ M

because we can calculate and define M’ such that

1
m Y,y =5 {m 2y,)+m2y)}=
g7 (TM+T,+m (2 y)} =M
11) In modulared sapce R, a sequence x, ER(v=1, 2, ---) is said to be

vergent to x, if lim m (a(x,—2))=0 for some a>0.

v 00

12) In a modulared space R, we can introduce a norm by

[l :inf{ |;I s om (51‘)§1} (rER).

conditionally modular con-
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for some 0<7,<oo by (1).
Therefore we have

D ((x,fs)—xs)), SISO (k(s)+ M, s).
Where the right term is integrable by (4). Thus

lim Sl(l)(x,,’,s)-—.ro(s), s) ds=0
pro Vo
by theory of Lebesgue integral.

Consequently the sequence

=K (p=ny, ny )

converges in norm-topology. Therefore K is completely continuous.
Finally, the author wishes to express his gratitude to Drs. T. It6 and T.
Shimogaki for their useful suggestions on preparation of the note.
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